
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Efficient Model-Checking of Weighted CTL
with Upper-Bound Constraints

Jonas Finnemann Jensen, Kim Guldstrand Larsen,
Jǐŕı Srba, Lars Kaerlund Oestergaard

Department of Computer Science, Aalborg University
Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark
e-mail: jopsen@gmail.com, {kgl,srba}@cs.aau.dk, larsko@gmail.com

Received: February 2014 / Revised version: November 2014

Abstract We present a symbolic extension of depen-
dency graphs by Liu and Smolka in order to model-
check weighted Kripke structures against the logic CTL
with upper-bound weight constraints. Our extension in-
troduces a new type of edges into dependency graphs
and lifts the computation of fixed-points from boolean
domain to nonnegative integers in order to cope with
the weights. We present both global and local algorithms
for the fixed-point computation on symbolic dependency
graphs and argue for the advantages of our approach
compared to the direct encoding of the model checking
problem into dependency graphs. We implement all al-
gorithms in a publicly available tool and evaluate them
on several experiments. The principal conclusion is that
our local algorithm is the most efficient one with an order
of magnitude improvement for model checking problems
with a high number of “witnesses”.

1 Introduction

Model-driven development is finding its way into indus-
trial practise within the area of embedded systems. Here
a key challenge is how to handle the growing complexity
of systems, while meeting requirements on correctness,
predictability, performance and not least time- and cost-
to-market. In this respect model-driven development is
seen as a valuable and promising approach, as it al-
lows early design-space exploration and verification and
may be used as the basis for systematic and unambigu-
ous testing of a final product. However, for embedded
systems, verification should not only address functional
properties but also a number of non-functional proper-
ties related to timing and resource constraints.

Within the area of model-checking, a number of state-
machine based modeling formalisms have emerged, al-
lowing for such quantitative aspects to be expressed. In

particular, timed automata (TA) [2], and the extensions
to weighted timed automata (WTA) [8,4] are popular
and tool-supported formalisms that allow for such con-
straints to be modeled.

Interesting properties of TA and WTA may be ex-
pressed in natural weight-extended versions of classical
temporal logics such as CTL for branching-time and LTL
for linear-time. Just as TCTL and MTL provide exten-
sions of CTL and LTL with time-constrained modali-
ties, the logics WCTL and WMTL are extensions with
weight-constrained modalities interpreted with respect
to WTA. Unfortunately, the addition of weight now turns
out to come with a price: whereas the model-checking
problems for TA with respect to TCTL [1] and MTL [3]
are decidable, it has been shown that model-checking
WTA with respect to WCTL is undecidable [10].

In this paper we reconsider this model-checking prob-
lem in the setting of untimed models, i.e. essentially
weighted Kripke structures, and negation-free WCTL
formulae with only upper bound constraints on weights.
As main contributions, we show that in this setting the
model-checking problem is in PTIME, and we provide
an efficient symbolic, local (on-the-fly) model-checking
algorithm.

Our results are based on a novel symbolic exten-
sion of the dependency graph framework of Liu and
Smolka [20] where they encode boolean equation systems
and offer global (classical iterative fixed-point compu-
tation by repeated functor application) and local (on-
the-fly fixed-point computation by guided search) algo-
rithms for computing minimal and maximal fixed points
in linear time. Whereas a direct encoding of our model-
checking problem into dependency graphs leads only to
a pseudo-polynomial algorithm1, the novel symbolic de-
pendency graphs allow for a polynomial encoding and a
polynomial time fixed-point computation. Most impor-

1 Exponential in the encoding of the weights in the model and
the formula.

2 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

tantly, the symbolic dependency graph encoding enables
us to perform a symbolic local fixed-point evaluation.
Experiments with the various approaches (direct versus
symbolic encoding, global versus local algorithm) have
been conducted on a large number of cases, demonstrat-
ing that the combined symbolic and local approach is the
most efficient one. For model-checking problems with af-
firmative outcome, this combination is often one order
of magnitude faster than the other approaches.

Related Work. The present paper is situated in the area
of weighted automata [15,14] where weights come, in
general, from the domain of abstract algebraic struc-
tures. Our work focuses only on the concrete domain
of nonnegative integers that can be tested against given
upper-bounds but on the other hand we show that we
can design efficient algorithms for solving model check-
ing problems in this case.

Laroussinie, Markey and Oreiby [18] consider the prob-
lem of model-checking durational concurrent game struc-
tures with respect to timed ATL properties, offering a
PTIME result in the case of non-punctual constraints in
the formula. Restricting the game structures to a single
player gives a setting similar to ours, as timed ATL is
essentially WCTL. However, in contrast to [18], we do
allow transitions with zero weight in the model, mak-
ing a fixed-point computation necessary. As a result, the
corresponding CTL model-checking (with no weight con-
straints) is a special instance of our approach, which is
not the case for [18]. Most importantly, the work in [18]
does not provide any local algorithm, which our exper-
iments show is crucial for the performance. No imple-
mentation is provided in [18].

Buchholz and Kemper [11] propose a valued compu-
tation tree logic (CTL$) interpreted over a general set
of weighted automata that includes CTL in the logic
as a special case over the boolean semiring. For model-
checking CTL$ formulae they describe a matrix-based
algorithm. Their logic is more expressive than the one
proposed here, since they support negation and all the
comparison operators. In addition, they permit nested
CTL formulae and can operate on max/plus semirings
in O(min(log(t) ·mm, t ·nz)) time, where t is the number
of vector matrix products, mm is the complexity of mul-
tiplying two matrices of order n and nz is the number
of non-zero elements in special matrix used for checking
“until” formulae up to some bound t. However, they do
not provide any on-the-fly technique for verification.

Another related work by Bouyer, Larsen and Markey [9]
shows that model-checking with respect to WCTL is
PSPACE-complete for one-clock WTA and for TCTL
(the only cost variable is the time elapsed).

Several approaches to on-the-fly/local algorithms for
model-checking the modal mu-calculus have been pro-
posed. Andersen [5] describes a local algorithm for model-
checking the modal mu-calculus for alternation depth
one running in O(n · log(n)) where n is the product of

the size of the assertion and the labeled transition sys-
tem. Liu and Smolka [20] improve on the complexity of
this approach with a local algorithm running in O(n)
(where n is the size of the input graph) for evaluating
alternation-free fixed points. This is also the algorithm
that we apply for WCTL model-checking and the one
we extend for symbolic dependency graphs. Cassez et.
al. [12] present another symbolic extension of the algo-
rithm by Liu and Smolka; a zone-based forward, local al-
gorithm for solving timed reachability games. Later Liu,
Ramakrishnan and Smolka [19] also introduce a local
algorithm for the evaluation of alternating fixed points
with the complexity O(n + (n+adad)ad), where ad is the
alternation depth of the graph. We do not consider the
evaluation of alternating fixed points in the weighted
setting as this is left for future work.

Outline. Weighted Kripke structures and weighted CTL
(WCTL) are presented in Section 2. Section 3 then intro-
duces dependency graphs. Model checking WCTL with
this framework is discussed in Section 4. In Section 5 we
propose symbolic dependency graphs and demonstrate
how they can be used for WCTL model-checking in Sec-
tion 6. Experimental results are presented in Section 7
and Section 8 concludes the paper.

2 Basic Definitions

We shall first introduce the notion of a weighted Kripke
structure (WKS) and weighted computation tree logic
(WCTL). Let N0 be the set of nonnegative integers. A
Weighted Kripke Structure (WKS) is a quadruple K =
(S,AP, L,→), where S is a finite set of states, AP is a
finite set of atomic propositions, L : S → P(AP) is a
mapping from states to sets of atomic propositions, and
→⊆ S × N0 × S is the transition relation.

Instead of (s, w, s′) ∈→, meaning that from the state
s under the weight w we can move to the state s′, we
often write s

w→ s′. A WKS is nonblocking if for every
s ∈ S there is an s′ such that s

w→ s′ for some weight w.
From now on we consider only nonblocking WKS2.

A run in an WKS K = (S,AP, L,→) is an infinite
computation

σ = s0
w0→ s1

w1→ s2
w2→ s3 . . .

where si ∈ S and (si, wi, si+1) ∈→ for all i ≥ 0. Given
a position p ∈ N0 in the run σ, let σ(p) = sp. The accu-
mulated weight of σ at position p ∈ N0 is then defined
as Wσ(p) = Σp−1

i=0 wi where by definition Wσ(0) = 0.
We can now define negation-free Weighted Computa-

tion Tree Logic (WCTL) with weight upper-bounds. The

2 A blocking WKS can be turned into a nonblocking one by
introducing a new state with no atomic propositions, zero-weight
self-loop and with zero-weight transitions from all blocking states
into this newly introduced state.

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 3

s0

s1

s2

s3

s4

s5

s6

2

2

2
1

2

1

2 1

0 0

{mow}

{mow}

{mow}

{mow}

{mow}

{mow}

{dump}

Figure 2. A lawn mower example, s0 |= A mow U≤6 dump

set of WCTL formulae over the set of atomic proposi-
tions AP is given by the abstract syntax

ϕ ::= true | false | a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
E ϕ1 U≤k ϕ2 | A ϕ1 U≤k ϕ2 |
EX≤k ϕ | AX≤k ϕ

where k ∈ N0 ∪ {∞} and a ∈ AP. We assume that the
element ∞ is larger than any other natural number and
that ∞ + k = ∞− k = ∞ for all k ∈ N0. In Figure 1
we now inductively define the satisfaction triple s |= ϕ,
meaning that a state s satisfies a formula ϕ.

Example 1. Consider the WKS in Figure 2 with seven
states annotated with the propositions mow and dump.
It represents a grass field with different routes a lawn
mower can take from the starting position s0 to the
state s6 where the grass can be dumped. The weights on
the different transitions represent the number of units of
grass that is accumulated in the grass container when se-
lecting a particular route. The lawn mower breaks if we
try to store more than six units of grass in its container.
The question is whether the grass is always dumped be-
fore the lawn mower breaks, irrelevant of the selected
route. This is expressed by the formula A mow U≤6 dump
that is satisfied in the initial state s0 as even the most
expensive path from s0 to s6 (through the states s2, s4,
and s5) accumulates only six units of grass.

3 Dependency Graphs

In this section we present the dependency graph frame-
work and a local algorithm for minimal fixed-point com-
putation as originally introduced by Liu and Smolka [20].
This framework can be applied to model checking of the
alternation-free modal mu-calculus, including its sublog-
ics like CTL. Later, in Section 4, we demonstrate how to
extend the framework from CTL to WCTL and provide
an encoding of the WCTL model checking problem into
dependency graphs.

Definition 1 (Dependency Graph (DG)). A depen-
dency graph is a pair G = (V,E) where V is a finite set

a

b c

d

∅

a = b ∧ c
c = b ∨ (a ∧ d)
b = true

a b c d

A0 0 0 0 0
F (A0) 0 1 0 0
F 2(A0) 0 1 1 0
F 3(A0) 1 1 1 0
F 4(A0) 1 1 1 0

Figure 3. Four iterations of the global algorithm

of configurations, and E ⊆ V × P(V) is a finite set of
hyper-edges.

Let G = (V,E) be a dependency graph. For a hyper-
edge e = (v, T), we call v the source configuration and
T the target (configuration) set of e. For a configuration
v, the set of its edge-successors is given by succ(v) =
{(v, T) ∈ E}. The size of G is |G| = |V |+ |E| where |V |
and |E| is the size of these components in a binary rep-
resentation (note that the size of a hyper-edge depends
on the number of nodes it connects to).

An assignment A : V → {0, 1} is a function that as-
signs boolean values to configurations of G. A pre fixed-
point assignment of G is an assignment A where, for
every configuration v ∈ V , holds that if (v, T) ∈ E and
A(u) = 1 for all u ∈ T then also A(v) = 1.

By taking the standard component-wise ordering v
on assignments, where A v A′ if and only if A(v) ≤
A′(v) for all v ∈ V (assuming that 0 < 1), we get
by the Knaster-Tarski fixed-point theorem [16,23] that
there exists a unique minimum pre fixed-point assign-
ment, denoted by Amin . The minimum pre fixed-point
assignment Amin of G can be computed by repeated ap-
plications of the monotonic function F from assignments
to assignments, starting from A0 where A0(v) = 0 for all
v ∈ V , and where

F (A)(v) =
∨

(v,T)∈E

(∧
u∈T

A(u)

)

for all v ∈ V . Here we implicitly assume that a disjunc-
tion over an empty set equals to 0 and a conjunction
over an empty set equals to 1. We are guaranteed to
reach a fixed point after a finite number of applications
of F due to the finiteness of the complete lattice of as-
signments ordered by v. Hence there exists an m ∈ N0

such that Fm(A0) = Fm+1(A0), in which case we have
Fm(A0) = Amin . We will refer to this iterative algorithm
as the global one.

4 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

s |= true

s |= a if a ∈ L(s)

s |= ϕ1 ∧ ϕ2 if s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 if s |= ϕ1 or s |= ϕ2

s |= E ϕ1 U≤k ϕ2 if there exists a run σ starting from s and a position p ≥ 0

such that σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= A ϕ1 U≤k ϕ2 if for any run σ starting from s, there is a position p ≥ 0

such that σ(p) |= ϕ2,Wσ(p) ≤ k and σ(p′) |= ϕ1 for all p′ < p

s |= EX≤k ϕ if there is a state s′ such that s
w→ s′, s′ |= ϕ and w ≤ k

s |= AX≤k ϕ if for all states s′ such that s
w→ s′ where w ≤ k holds that s′ |= ϕ

Figure 1. Semantics of WCTL

Algorithm 1: Liu-Smolka Local Algorithm

Input: Dependency graph G = (V,E) and a
configuration v0 ∈ V .

Output: Minimum pre fixed-point assignment
Amin(v0) for v0.

1 Let A(v) = ⊥ for all v ∈ V
2 A(v0) = 0; D(v0) = ∅
3 W = succ(v0)
4 while W 6= ∅ do
5 let e = (v, T) ∈W
6 W = W \ {e}
7 if A(u) = 1 for all u ∈ T then
8 A(v) = 1; W = W ∪D(v)
9 else if there is u ∈ T such that A(u) = 0 then

10 D(u) = D(u) ∪ {e}
11 else if there is u ∈ T such that A(u) = ⊥ then
12 A(u) = 0; D(u) = {e}; W = W ∪ succ(u)

13 return A(v0)

Example 2. Figure 3 shows a dependency graph where
configurations are illustrated as labeled squares and hyper-
edges are drawn as a span of lines to every configuration
in the respective target set. The corresponding function
F is given as a boolean equation system. These equa-
tions represent naturally F such that in a given assign-
ment, we evaluate their right-hand sides and the new
assignment then updates the valuation of the left-hand
side configurations. We also depict four iterations of the
global algorithm (sufficient to compute the minimum pre
fixed-point assignment).

In model checking we are often only interested in
the minimum pre-fixed point assignment Amin(v) for a
specific configuration v ∈ V . For this purpose, Liu and
Smolka [20] suggest a local algorithm presented with mi-
nor modifications3 in Algorithm 1. The algorithm main-

3 At line 12 we added the assignment D(u) = {e}; the original
algorithm sets the dependency set to empty here, leading to an
incorrect propagation.

tains three data-structures throughout its execution: an
assignment A, a dependency set D for every configura-
tion and a set of hyper-edges W . The dependency set
D(v) for a configuration v maintains a list of hyper-
edges that were processed under the assumption that
A(v) = 0. Whenever the value of A(v) changes to 1, the
hyper-edges from D(v) must be reprocessed in order to
propagate this change to the respective sources of the
hyper-edges.

Theorem 1 (Correctness of Local Algorithm [20]).
Given a dependency graph G = (V,E) and a configura-
tion v0 ∈ V , Algorithm 1 computes the minimum pre-
fixed point assignment Amin(v0) for the configuration v0.

As argued in [20], both the local and global model
checking algorithms run in linear time.

4 WCTL and Dependency Graphs

In this section we suggest a reduction from the model
checking problem of WCTL (on WKS) to the compu-
tation of the minimum pre fixed-point assignment on a
dependency graph.

Given a WKS K, a state s of K, and a WCTL for-
mula ϕ, we construct a dependency graph where every
configuration is a pair of a state and a formula. Starting
from the initial pair 〈s, ϕ〉, the dependency graph is con-
structed according to the rules given in Figure 4. Note
that in Figure 4(f) the hyper-edge with several targets
is present only if all outgoing transitions from s have
weight at most k.

An example of the constructed dependency graph for
our lawn mower example from Figure 2 with the initial
state s0 and the formula A mow U≤6 dump is given in
Figure 5.

The next theorem relates the validity of a WCTL for-
mula in a given state with the minimum pre fixed-point
computation in the corresponding dependency graph.

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 5

〈s, true〉

∅
(a) True

〈s, a〉

∅

if a ∈ L(s)

(b) Proposition

〈s, ϕ1 ∧ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(c) Conjunction

〈s, ϕ1 ∨ ϕ2〉

〈s, ϕ1〉 〈s, ϕ2〉

(d) Disjunction

〈s,E ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤k−w1 ϕ2〉 〈sn,E ϕ1 U≤k−wn ϕ2〉· · ·

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si and wi ≤ k}

(e) Existential Until

〈s,A ϕ1 U≤k ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤k−w1 ϕ2〉 〈sn,A ϕ1 U≤k−wn ϕ2〉· · ·

if for all s
w→ s′ we have w ≤ k then

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(f) Universal Until

〈s,EX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, s2, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(g) Existential Next

〈s,AX≤k ϕ〉

〈s1, ϕ〉 〈sn, ϕ〉· · ·

let {s1, . . . , sn} = {si | s
wi→ si, wi ≤ k}

(h) Universal Next

Figure 4. Dependency graph encoding of state-formula pairs

Theorem 2 (Correctness of the Encoding). Let K =
(S,AP, L,→) be a WKS, s ∈ S a state, and ϕ a WCTL
formula. Let G be the constructed dependency graph rooted
with 〈s, ϕ〉. Then Amin(〈s, ϕ〉) = 1 if and only if s |= ϕ.

Proof. By structural induction on ϕ.

(I) Let ϕ = true. Clearly s |= true. At the same time
Amin(〈s, true〉) = 1 as in Figure 4(a) we have a
hyper-edge from the configuration 〈s, true〉 to the
empty target set, implying that A(v) = 1 for any
pre fixed-point assignment A of G.

(II) Let ϕ = a. We prove that Amin(〈s, a〉) = 1 if and
only if s |= a. If a ∈ L(s), meaning that s |= a,
then by Figure 4(b) there is a hyper-edge from the
configuration 〈s, a〉 to the empty target set. As in
(I) this means that Amin(〈s, a〉) = 1. If a /∈ L(s),
meaning that s 6|= a, then by the side-condition
in Figure 4(b) we can conclude that there is no
hyper-edge from the configuration 〈s, a〉 and hence
Amin(〈s, a〉) = 0.

(III) Let ϕ = ϕ1 ∧ ϕ2. We show that Amin(〈s, ϕ1 ∧
ϕ2〉) = 1 if and only if s |= ϕ1∧ϕ2. By Figure 4(c),
a configuration 〈s, ϕ1∧ϕ2〉 has a single hyper-edge

6 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

〈s0,A mow U≤6 dump〉

〈s0, dump〉

〈s1,A mow U≤4 dump〉〈s0,mow〉∅ 〈s2,A mow U≤4 dump〉 〈s3,A mow U≤4 dump〉

〈s1, dump〉

〈s1,mow〉

∅

〈s4,A mow U≤3 dump〉

〈s2, dump〉

〈s2,mow〉

∅

〈s4,A mow U≤2 dump〉

〈s3, dump〉

〈s3,mow〉

∅

〈s5,A mow U≤3 dump〉

〈s6,A mow U≤2 dump〉

〈s4, dump〉

〈s4,mow〉

∅ 〈s5,A mow U≤2 dump〉

〈s6,A mow U≤2 dump〉〈s6,A mow U≤1 dump〉 〈s6, dump〉

∅

〈s6,mow〉

〈s5, dump〉

〈s5,mow〉

∅

Figure 5. Dependency graph for the lawn mower example (thick configurations have the value 1 in Amin)

with the target set {〈s, ϕ1〉, 〈s, ϕ2〉}. Hence it is
easy to see that Amin(〈s, ϕ1∧ϕ2〉) = 1 if and only
if Amin(〈s, ϕ1〉) = 1 and Amin(〈s, ϕ2〉) = 1, which
is by induction hypothesis equivalent to s |= ϕ1

and s |= ϕ2, implying that s |= ϕ1 ∧ ϕ2 and vice
versa.

(IV) Let ϕ = ϕ1 ∨ ϕ2. We show that Amin(〈s, ϕ1 ∨
ϕ2〉) = 1 if and only if s |= ϕ1∨ϕ2. By Figure 4(d),
a configuration 〈s, ϕ1 ∨ ϕ2〉 has two hyper-edges
with the target sets {〈s, ϕ1〉} and {〈s, ϕ2〉}. Hence
Amin(〈s, ϕ1∨ϕ2〉) = 1 if and only ifAmin(〈s, ϕ1〉) =
1 or Amin(〈s, ϕ2〉) = 1, which is by induction hy-
pothesis equivalent to s |= ϕ1 or s |= ϕ2, implying
that s |= ϕ1 ∨ ϕ2 and vice versa.

(V) Let ϕ = E ϕ1 U≤k ϕ2. We show that we have
Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1 if and only if s |=
E ϕ1 U≤k ϕ2.
⇐: Let us first argue that s |= E ϕ1 U≤k ϕ2

implies Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1. Let s |=
E ϕ1 U≤k ϕ2, meaning that there is a run σ start-
ing from s and a position p ≥ 0 such that

σ(p) |= ϕ2 (1)

σ(p′) |= ϕ1 for all p′ < p, and (2)

Wσ(p) ≤ k . (3)

We assume that the position p is the smallest such
number satisfying the three conditions above. The

claim is now proved by another (nested) mathe-
matical induction on p.
If p = 0, meaning that s |= ϕ2, we know by
induction hypothesis (from the structural induc-
tion) that Amin(〈s, ϕ2〉) = 1 and this implies that
also Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1 by the left-
most edge in Figure 4(e). If p > 0 then s =

σ(0)
w→ σ(1), where w ≤ k, such that s |= ϕ1

and σ(1) |= E ϕ1 U≤k−w ϕ2. By structural induc-
tion hypothesis we know that Amin(〈s, ϕ1〉) = 1
and by the mathematical induction hypothesis we
get Amin(〈σ(1),E ϕ1 U≤k−w ϕ2〉) = 1. As the
rule in Figure 4(e) contains a hyper-edge with the
targets 〈s, ϕ1〉 and 〈σ(1),E ϕ1 U≤k−w ϕ2〉, neces-
sarily also Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1.
⇒: We shall argue that Amin(〈s,E ϕ1 U≤k ϕ2〉) =
1 implies the fact that s |= E ϕ1 U≤k ϕ2. Let
Amin(〈s,E ϕ1 U≤k ϕ2〉) = 1. By Figure 4(e) this
means that either (i) Amin(〈s, ϕ2〉) = 1, or that
(ii) Amin(〈s, ϕ1〉) = 1 and at the same time also
Amin(〈si,E ϕ1 U≤k−wi

ϕ2〉) = 1 for some si where
k − wi ≥ 0. In case (i), Amin(〈s, ϕ2〉) = 1 im-
plies by the induction hypothesis that s |= ϕ2,
meaning that s |= E ϕ1 U≤k ϕ2 according to the
WCTL semantics. In case (ii), by induction hy-
pothesis we know that s |= ϕ1 and we can re-
peat the same argument as before for the config-
uration 〈si,E ϕ1 U≤k−wi

ϕ2〉 where s
wi→ s′. If

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 7

at some point the formula ϕ2 gets satisfied in a
state s′ due to Amin(〈s′, ϕ2〉) = 1, then clearly
there is a run leading from s to s′, satisfying ϕ1

in all intermediate states until s′ is reached and
the accumulated weight does not exceed k. This
implies that s |= E ϕ1 U≤k ϕ2. Observe now,
that this is always the case, as otherwise if all
the successors of 〈s,E ϕ1 U≤k ϕ2〉 in the depen-
dency graph that get the value 1 in Amin never
have a hyper-edge to a configuration of the form
〈s′, ϕ2〉 where Amin(〈s′, ϕ2〉) = 1, we necessarily
get only cyclic dependencies among the hyper-
edges, meaning that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 0.
This contradicts our assumption.

(VI) Let ϕ = A ϕ1 U≤k ϕ2. We show that we have
Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1 if and only if s |=
A ϕ1 U≤k ϕ2.
⇐: We first argue that s |= A ϕ1 U≤k ϕ2 implies
Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1. Let s |= A ϕ1 U≤k ϕ2,
meaning that for any run σ starting in s there is
a position p ≥ 0 satisfying the conditions (1), (2)
and (3) listed in the proof of the existential until.
Let p be the maximum position where ϕ2 holds
over all such runs. Clearly p is finite, as otherwise
there must be a loop in the given WKS reachable
from s such that ϕ2 never holds on the loop, con-
tradicting our assumption s |= A ϕ1 U≤k ϕ2. The
claim is now proved by a nested mathematical in-
duction on p.
If p = 0 then s = σ(0) |= ϕ2 and by the struc-
tural induction hypothesis Amin(〈s, ϕ2〉) = 1. The
left-most edge in Figure 4(f) guarantees that also
Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1. If p > 0 then for
every run σ starting from s, the first transition
s = σ(0)

w→ σ(1) satisfies that w ≤ k and so
there is present the right-most hyper-edge as de-
picted in Figure 4(f). Clearly s |= ϕ1 and σ(1) |=
A ϕ1 U≤k−w ϕ2 in strictly less than p steps, so
we can use the mathematical induction hypothe-
sis to argue that all the target configurations of
the hyper-edge get the value 1 in the minimum
pre fixed-point assignment. This implies the fact
that Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1.
⇒: We show that Amin(〈s,A ϕ1 U≤k ϕ2〉) = 1
implies the fact that s |= A ϕ1 U≤k ϕ2. The argu-
ments follow the same reasoning as in the analo-
gous case for the existential until.

(VII) Let ϕ = EX≤k ϕ. It is easy to argument that
Amin(〈s,EX≤k ϕ〉) = 1 if and only if s |= EX≤k ϕ.
By the WCTL semantics s |= EX≤k ϕ iff there is a

transition s
w→ s′ such that w ≤ k and s′ |= ϕ. By

induction hypothesis s′ |= ϕ iff Amin(〈s′, ϕ〉) = 1.
This is by the rule in Figure 4(g) a necessary and
sufficient condition for Amin(〈s,EX≤k ϕ〉) = 1.

(VIII) Let ϕ = AX≤k ϕ. The argument is here analogous
to the existential case. Note that the hyper-edge in
Figure 4(h) consists only of the successors reach-

s 1

{a}

〈s,E a U≤1000 b〉

〈s,E a U≤999 b〉 〈s, a〉〈s, b〉

∅

〈s,E a U≤998 b〉

〈s,E a U≤997 b〉
...

〈s,E a U≤0 b〉

Figure 6. A WKS and its dependency graph for E a U≤1000 b

able by a transition with weight at most k. This
corresponds exactly with the definition of seman-
tics of AX≤k ϕ given in Figure 1. ut

In order to profit from the local algorithm by Liu
and Smolka [20] presented in the previous section, we
construct the dependency graph for a given state and
a WCTL formula in an on-the-fly manner, generating
successor configurations only when requested by the al-
gorithm. This on-the-fly exploration often gives us a
more efficient model checking algorithm compared to the
global approach. This is documented by the experiments
summarized in Section 7.

However, the main drawback of the presented ap-
proach is that we may need to construct exponentially
large dependency graphs. This is demonstrated in Fig-
ure 6 where a single-state WKS on the left gives rise to
a large dependency graph on the right where its size de-
pends on the bound in the formula. In the figure the node
〈s,E a U≤k b〉 is repeated for all k, 0 ≤ k ≤ 1000, giving
us an exponentially large encoding compared to the size
of the constants in the formula (stored in binary). Hence
the so far described method gives us only a pseudo-
polynomial algorithm for model checking WCTL.

5 Symbolic Dependency Graphs

We have seen in the previous section that the use of de-
pendency graphs for WCTL model checking suffers from
an exponential explosion due to the unfolding of the un-
til operators. We can, however, observe that the validity
of s |= E a U≤k b implies s |= E a U≤k+1 b. In what fol-
lows we suggest a novel extension of dependency graphs,
called symbolic dependency graphs, that use the implica-
tion above in order to reduce the size of the constructed
graphs. Then in Section 6 we use symbolic dependency
graphs for efficient (polynomial time) model checking of
WCTL.

8 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

Definition 2 (Symbolic Dependency Graph (SDG)).
A symbolic dependency graph is a triple G = (V,H,C),
where V is a finite set of configurations, H ⊆ V ×
P(N0 × V) is a finite set of weighted hyper-edges, and
C ⊆ V × (N0 ∪ {∞})× V is a finite set of cover-edges.

The difference from dependency graphs explained ear-
lier is that for each hyper-edge of an SDG a weight
is added to all of its target configurations, and a new
type of edge called a cover-edge is introduced. Let G =
(V,H,C) be a symbolic dependency graph. The size of
G is |G| = |V |+ |H|+ |C| where |V |, |H| and |C| is the
size of these components in a binary representation (as
before the size of a hyper-edge depends on the number of
nodes it connects to). For a hyper-edge e = (v, T) ∈ H
where v is the source configuration and T is the target
set of e, we say that (w, u) ∈ T is a hyper-edge branch
with weight w pointing to the target configuration u. The
edge-successor set succ(v) = {(v, T) ∈ H} ∪ {(v, k, u) ∈
C} is the set of hyper-edges and cover-edges with v as
the source configuration.

Figure 7(a) shows an example of an SDG. The main
difference is that symbolic dependency graphs operate
over the complete lattice N0∪{∞}, contrary to standard
dependency graphs that use only boolean values. Hyper-
edges are denoted by solid lines and hyper-edge branches
have weight 0 unless they are annotated with another
weight. Cover-edges are drawn as dashed lines annotated
with a cover-condition.

Intuitively, in each iteration of the fixed-point com-
putation, for each configuration in the graph we con-
sider the minimum over all outgoing hyper-edges where
for each hyper-edge we take the maximum over all val-
ues of the target configurations plus the corresponding
weights. Contrary to this, a cover-edge propagates the
value 0 to its source configuration, provided that the
value in its target configuration is smaller than or equal
to the cover-condition.

We shall now formally describe a global algorithm
for the computation of the minimum pre fixed-point. An
assignment A : V → N0∪{∞} in an SDG G = (V,H,C)
is a mapping from configurations to values. We denote
the set of all assignments by Assign and define a partial
order v over the assignments such that A v A′ if and
only if A(v) ≥ A′(v) for all v ∈ V . Note that the partial
order is the opposite of the normal ordering on integers,
hence, A0(v) = ∞ for all v ∈ V is the smallest element
in the lattice.

A pre fixed-point assignment is an assignment A ∈
Assign such that F (A) v A where F : Assign → Assign

ab

c d ∅

5

3

(a) A symbolic dependency graph

i a b c d

A0 ∞ ∞ ∞ ∞
F (A0) ∞ ∞ ∞ 0
F 2(A0) ∞ ∞ 0 0
F 3(A0) ∞ 3 0 0
F 4(A0) 0 3 0 0
F 5(A0) 0 3 0 0

(b) Minimum pre fixed-point computation

Figure 7. Minimum pre fixed-point assignment of an SDG

is defined as

F (A)(v) =



0 if there is (v, k, u) ∈ C such that

A(u) ≤ k <∞, or A(u) < k =∞

min
(v,T)∈H

(
max{A(u) + w | (w, u) ∈ T}

)
otherwise.

(4)

We assume that max ∅ = 0 and min ∅ = ∞. The
function F is clearly monotonic on the complete lat-
tice of all assignments ordered by v. It follows by the
Knaster-Tarski fixed-point theorem that there exists a
unique minimum pre fixed-point assignment of G, de-
noted Amin .

As the lattice contains no infinite decreasing sequences
of weights (nonnegative integers), the minimum pre fixed-
point assignment Amin of G can be computed by a finite
number of applications of the function F on the smallest
assignment A0, where all configurations have the initial
value∞. So there exists an m ∈ N0 such that Fm(A0) =
Fm+1(A0), implying that Fm(A0) = Amin is the mini-
mum pre fixed-point assignment of G. Figure 7(b) shows
a computation of the minimum pre fixed-point assign-
ment on the given symbolic dependency graph.

The next theorem demonstrates that fixed-point com-
putation via the global algorithm (repeated applications
of the function F) on symbolic dependency graphs runs
in polynomial time.

Theorem 3. Computation of the minimum pre fixed-
point assignment for an SDG G = (V,H,C) by repeated
application of the function F runs in time O(|V | · |C| ·
(|H|+ |C|)).

Proof. Let us first realize that a single iteration of F
takes O(|H| + |C|) as we go through all the edges and

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 9

and for each such edge update the value of the source
configuration. To prove our claim, it is so enough to es-
tablish that the algorithm terminates after no more than
|V | · |C| iterations.

Let us first consider a symbolic dependency graph
without any cover-edges G = (V,H, ∅). We shall argue
that the minimum pre fixed-point assignment Amin is
reached in at most |V | iterations. For this purpose, let
us write u⇒ v for v, u ∈ V , whenever there is (v, T) ∈ H
and (w, u) ∈ T such that Amin(v) = Amin(u) + w.
In other words, for any assignment A where A(u) =
Amin(u), one additional iteration of F on A will guaran-
tee that F (A)(v) = Amin(v). Clearly, all configurations
v such that (v, ∅) ∈ H get their final value Amin(v) = 0
already in the first iteration of the function F ; let us call
such configurations terminal. Now any configuration v
such that Amin(v) 6= ∞ gets its final value Amin(v) in
the number of iterations that corresponds to the short-
est path from v to some terminal configuration in the
graph (V,⇒). Such a path surely contains at most |V |
configurations. Finally, any configuration v such that
Amin(v) = ∞ gets its final value already in the initial
assignment A0, implying that in any case we need to
perform at most |V | iterations of the function F before
Amin is computed.

Assume now that the symbolic dependency graph
contains cover-edges too. It is clear that when a cover-
edge causes its source configuration to be updated, the
configuration gets the value 0 and hence cannot be im-
proved any more. Hence, after at most |V | iterations, at
least one cover-edge sets the value of its source configu-
ration to 0 (unless the algorithm already found the mini-
mum pre fixed-point and terminated). After this we need
to perform at most |V | iterations before the same hap-
pens for another cover-edge, etc. Hence the total number
of iterations is O(|V | · |C|) as required for establishing
the claim of the theorem. ut

We now propose a local algorithm for the compu-
tation of minimum pre fixed-points on symbolic depen-
dency graphs, motivated by the fact that in the model
checking we are often interested in the value of a single
given configuration only, hence we may be able (depend-
ing on the formula we want to verify) to explore only a
part of the reachable state space. This means that the
dependency graph does not have to be constructed be-
forehand and new successors are generated only when
needed (on-the-fly).

Given a symbolic dependency graph G = (V,H,C),
Algorithm 2 computes the minimum pre fixed-point as-
signment Amin(v0) of a configuration v0 ∈ V . The al-
gorithm is an adaptation of Algorithm 1. We use the
same data-structures as in Algorithm 1. However, the as-
signment A(v) for each configuration v now ranges over
N0 ∪{⊥,∞} where ⊥ once again indicates that the con-
figuration has not been explored yet.

Algorithm 2: Symbolic Local Algorithm

Input: An SDG G = (V,H,C) and a start
configuration v0 ∈ V .

Output: Minimum pre fixed-point assignment
Amin(v0) for the configuration v0.

1 Let A(v) = ⊥ for all v ∈ V
2 A(v0) =∞; W = succ(v0)
3 while W 6= ∅ do
4 Pick e ∈W
5 W = W \ {e}
6 if e = (v, T) is a hyper-edge then
7 if ∃(w, u) ∈ T where A(u) =∞ then
8 D(u) = D(u) ∪ {e}
9 else if ∃(w, u) ∈ T where A(u) = ⊥ then

10 A(u) =∞; D(u) = {e}; W = W ∪ succ(u)
11 else
12 a = max{A(u) + w | (w, u) ∈ T}
13 if a < A(v) then
14 A(v) = a; W = W ∪D(v)

15 let (w, u) = arg max
(w,u)∈T

A(u) + w

16 if A(u) > 0 then
17 D(u) = D(u) ∪ {e}

18 else if e = (v, k, u) is a cover-edge then
19 if A(u) = ⊥ then
20 A(u) =∞; D(u) = {e}; W = W ∪ succ(u)
21 else if A(u) ≤ k <∞ or A(u) < k =∞ then
22 if A(v) > 0 then
23 W = W ∪D(v)

24 A(v) = 0

25 else
26 D(u) = D(u) ∪ {e}

27 return A(v0)

Table 1 lists the values of the assignment A, the wait-
ing set W (implemented as a queue) and the dependency
set D during the execution of Algorithm 2 on the SDG
from Figure 7(a). Each row displays the values before the
i’th iteration of the while-loop. The value of the depen-
dency set D(a) for a is not shown in the table because
it remains empty. Initially, as we start the exploration
from the configuration a, we change its value in the cur-
rent assignment from undefined to infinity and place its
outgoing cover-edge to the waiting set W . In the next
round, this edge is removed from W and the assignment
for the configuration b is updated. The hyper-edge out-
going from b is then added to the waiting set and it is
noted in the dependency set D(b) that if the value of b
ever changes in the future, it should be back propagated
along the cover-edge (a, 5, b) to the configuration a. The
computation continues in this manner until the assign-
ment of the configuration d is eventually updated to 0 in
the fifth iteration. This means that the edge (c, {(0, d})
that depends on d is now reinserted into the waiting set
W and in the next iteration of the algorithm the value

10 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

of d is propagated to the configuration c. After this, the
assignment of the configuration b gets updated to 3 and
because A(b) ≤ 5, the configuration a finally gets the
value 0.

In order to prove the correctness of Algorithm 2,
we extend the loop invariant for standard dependency
graphs from [20] so that the weights are also considered.

Lemma 1. The while-loop in Algorithm 2 satisfies the
following loop-invariants (for all configurations v ∈ V):

1) If A(v) 6= ⊥ then A(v) ≥ Amin(v).
2) If A(v) 6= ⊥ and e = (v, T) ∈ H, then either

a) e ∈W ,
b) e ∈ D(u) for some (w, u) ∈ T such that A(v) ≤
A(u) + w = max{A(u′) + w′ | (w′, u′) ∈ T}, or

c) A(v) = 0.
3) If A(v) 6= ⊥ and e = (v, k, u) ∈ C, then either

a) e ∈W ,
b) e ∈ D(u) and A(u) > k, or
c) A(v) = 0.

Proof. We shall now argue for the initialization and
maintenance of the first invariant, followed by the ar-
guments regarding the remaining two invariants.

Invariant 1). Initially, A(v) = ⊥ for all v ∈ V \ {v0}
and A(v0) = ∞ for the initial configuration v0. Hence
the invariant trivially holds before the while-loop is en-
tered. For the maintenance of the invariant, observe that
the assignment A is updated only at lines 10, 14, 20
and 24. At lines 10 and 20 the value A(v) updated to
∞ and clearly ∞ ≥ Amin(v). At line 14, the value of
A(v) is updated to max{A(u) + w | (w, u) ∈ T} for
some hyper-edge (v, T). This update only happens if
A(u) 6= ⊥ for all (w, u) ∈ T and by the invariant assump-
tion, A(u) ≥ Amin(u) for all such u. This implies that
A(v) ≥ Amin(v) after the update—compare this with
the “otherwise” case in Equation (4). Finally, at line 24,
the value of A(v) is updated to 0, provided that there
exists a cover-edge (v, k, u) where A(u) ≤ k. Clearly,
A(u) 6= ⊥ and we can use the invariant assumption to
conclude that A(u) ≥ Amin(u). As A(u) ≤ k then also
Amin(u) ≤ k and clearly Amin(v) = 0 by the first case of
the function in Equation (4). Hence after the update of
A(v) we get that A(v) ≥ Amin(v) = 0 also at this line.
In summary, Invariant 1) is preserved at any line where
A(v) changes its value.

Invariants 2) and 3). The two invariants hold ini-
tially, because A(v) = ⊥ for all v ∈ V \ {v0} and for
the initial configuration v0, we have that W = succ(v0),
meaning that every hyper-/cover-edge with the source
configuration v0 is in W , satisfying the two invariants in
cases 2a) and 3a). For the maintenance of the invariants,
observe that whenever a hyper-/cover-edge e is removed
from W , it is added to the dependency set D(u) of at
least one target configuration u in edge e, unless it is the
case that A(v) gets the value 0. Also, whenever we ex-
plore a new configuration u by setting A(u) =∞, we al-
ways add succ(u) to W . By examining the pseudo-code,

the conditions in cases 2b) and 3b) are also satisfied as
requested by the lemma. We can so conclude that In-
variants 2) and 3) are maintained during the execution
of the while-loop. ut

These loop-invariants allow us to conclude with a the-
orem proving the correctness of the local algorithm.

Theorem 4 (Correctness of Local Algorithm). Al-
gorithm 2 terminates and computes an assignment A
such that A(v) 6= ⊥ implies A(v) = Amin(v) for all
v ∈ V . In particular, the returned value A(v0) is the
minimum pre fixed-point assignment of v0.

Proof. Let us first discuss termination of Algorithm 2.
The while-loop in Algorithm 2 terminates once the wait-
ing set W is empty. Clearly, at every execution of the
body of the while-loop, there is one edge removed from
W . In order to argue that W eventually becomes empty,
observe that whenever cover-/hyper-edges are added to
W , then in the same iteration there is a configuration
v such that the value of A(v) decreases (assuming that
⊥ > ∞ > n for any integer n). Together with the fact
that for each v the value A(v) is nonincreasing, while the
minimum possible value is 0, we get that cover-/hyper-
edges are added to W only finitely many times. This
implies the termination of the algorithm.

We shall now argue about the correctness of the al-
gorithm. By Invariant 1) of Lemma 1 we know that
A(v) ≥ Amin(v) for all v ∈ V where A(v) 6= ⊥. From
the minimality of Amin , it is now enough to show that
A is a pre-fixed point assignment, i.e. F (A)(v) ≥ A(v)
for all v where A(v) 6= ⊥, in order to conclude that
A(v) = Amin(v) for all v where A(v) 6= ⊥. To do so,
there are two cases according to Equation (4) that we
must verify for all v such that A(v) 6= ⊥.

i) Whenever (v, k, u) ∈ C such that A(u) ≤ k <∞ or
A(u) < k =∞ then A(v) = 0.

ii) Whenever (v, T) ∈ H then A(v) ≤ max{A(u) + w |
(w, u) ∈ T}.

For case (i), assume that there is a (v, k, u) ∈ C such
that A(u) ≤ k <∞ or A(u) < k =∞. We consider now
Invariant 3) from Lemma 1. As W = ∅ at the termina-
tion of the algorithm, we can eliminate part 3a) of the
invariant. Clearly, part 3b) does not hold either due to
our assumption, leaving us with the validity of part 3c)
saying that A(v) = 0 as required.

For case (ii), let (v, T) ∈ H. We consider Invariant 2)
from Lemma 1. As before part 2a) is eliminated due to
the fact that W = ∅. In any of the two remaining options
in part 2b) and part 2c) we get A(v) ≤ max{A(u) +w |
(w, u) ∈ T} as required.

Consequently, we can conclude that upon the termi-
nation of Algorithm 2, the assignment A(v) is the min-
imum pre fixed-point assignment for all v ∈ V where
A(v) 6= ⊥. As A(v0) is initially assigned the value∞, we
get A(v0) = Amin(v0) as claimed by the theorem. ut

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 11

i A(a) A(b) A(c) A(d) W D(b) D(c) D(d)

1 ∞ ⊥ ⊥ ⊥ (a, 5, b)
2 ∞ ∞ ⊥ ⊥ (b, {(0, c), (3, d)}) (a, 5, b)
3 ∞ ∞ ∞ ⊥ (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)})
4 ∞ ∞ ∞ ∞ (d, ∅) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
5 ∞ ∞ ∞ 0 (c, {(0, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
6 ∞ ∞ 0 0 (b, {(0, c), (3, d)}) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
7 ∞ 3 0 0 (a, 5, b) (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})
8 0 3 0 0 (a, 5, b) (b, {(0, c), (3, d)}) (c, {(0, d)})

Table 1. Execution of Algorithm 2 on SDG from Figure 7(a)

s0 s1 s2 s3 sn ∅. . .

0

b1

0

b2

0

b3

0

b4

0

bn

20

a1

21

a2

22

a3

23

a4

2n−1

an
z

Figure 8. An SDG where the local algorithm can run in exponential time

We note that the termination argument in Theorem 4
is not completely straightforward because there is no
guarantee that it terminates within a polynomial num-
ber of steps. This is depicted on the SDG in Figure 8
where, for technical convenience, we named the hyper-
edges a1, . . . , an, b1, . . . , bn and z. Consider now an ex-
ecution of Algorithm 2 starting from the configuration
s0 where we pick the edges from the waiting set W at
line 4 according to the strategy:

– if z ∈W then pick z, else
– if ai ∈ W for some i then pick ai (there will be at

most one such ai), else
– pick bi ∈W with the smallest index i.

Then the initial assignment of A(s0) = ∞ is gradually
improved to 2n − 1, 2n − 2, 2n − 3, . . . 1, 0. Hence,
in the worst case, the local algorithm can perform expo-
nentially many steps before it terminates, whereas the
global algorithm always terminates in polynomial time.
On the other hand, as we will see in Section 7, the local
algorithm is in practise performing significantly better
despite its high theoretical complexity. This is also partly
due to the fact that once we know that A(v0) = 0, we
can terminate the algorithm early even though W 6= ∅.

6 WCTL and Symbolic Dependency Graphs

We are now ready to present an encoding of a WKS and
a WCTL formula into symbolic dependency graphs in
order to decide the model checking problem via the com-
putation of the minimum pre fixed-point assignment.

Given a WKS K, a state s of K and a WCTL formula
ϕ, we construct the corresponding symbolic dependency
graph rooted at 〈s, ϕ〉 as before, with the exception of
the existential and universal until operators that are now

encoded by the rules in Figure 9. Note that for the for-
mulae E ϕ1 U≤∞ ϕ2 and A ϕ1 U≤∞ ϕ2 we still use the
rules from Figure 4 as the weights are not important in
these cases.

In Figure 10 we present the constructed symbolic de-
pendency graph for the lawn mower example from Fig-
ure 2. The values in the minimum pre fixed-point assign-
ment are depicted to the right of each configuration.

Theorem 5 (Correctness of the Encoding). Let K =
(S,AP, L,→) be a WKS, s ∈ S a state, and ϕ a WCTL
formula. Let G be the constructed symbolic dependency
graph rooted with 〈s, ϕ〉. Then s |= ϕ if and only if
Amin(〈s, ϕ〉) = 0.

Proof. We first observe that there are two kinds of con-
figurations in the symbolic dependency graph rooted
with 〈s, ϕ〉. Configurations of the form 〈s,E ϕ1 U≤? ϕ2〉
or 〈s,A ϕ1 U≤? ϕ2〉may have non-zero hyper-edge weights
and we refer to them as symbolic configurations. All other
configurations have zero-weighted outgoing hyper-edges
or an outgoing cover-edge and we call them concrete con-
figurations. Hence e.g. 〈s,E ϕ1 U≤k ϕ2〉 is regarded as a
concrete configuration.

We shall now argue for the following two properties
of concrete and symbolic configurations.

(i) For any concrete configuration v = 〈s, ϕ〉 holds
that either Amin(v) = 0 or Amin(v) = ∞. More-
over, Amin(〈s, ϕ〉) = 0 if and only if s |= ϕ.

(ii) For any symbolic configuration v = 〈s,Q ϕ1 U≤? ϕ2〉
where Q ∈ {E,A} holds that (a) if Amin(v) ∈
N0 then s |= Q ϕ1 U≤Amin(v) ϕ2, and (b) if s |=
Q ϕ1 U≤k ϕ2 then Amin(v) ≤ k.

Theorem 5 is now implied by property (i). The fact that
for any concrete configuration v either Amin(v) = 0 or
Amin(v) =∞ follows directly from the definition of Amin

and the encoding rules; note that any cover edge can

12 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

〈s,E ϕ1 U≤k ϕ2〉

〈s,E ϕ1 U≤? ϕ2〉

k

(a) Existential Until where k 6= ∞

〈s,A ϕ1 U≤k ϕ2〉

〈s,A ϕ1 U≤? ϕ2〉

k

(b) Universal Until where k 6= ∞

〈s,E ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,E ϕ1 U≤? ϕ2〉 〈sn,E ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(c) Existential Until Unfolding

〈s,A ϕ1 U≤? ϕ2〉

〈s, ϕ2〉 〈s, ϕ1〉 〈s1,A ϕ1 U≤? ϕ2〉 〈sn,A ϕ1 U≤? ϕ2〉· · ·

w1

wn

let {(s1, w1), . . . , (sn, wn)} = {(si, wi) | s
wi→ si}

(d) Universal Until Unfolding

Figure 9. SDG encoding of existential and universal ‘until’ formulas

update the source configuration only to the value 0. The
proofs of properties (i) and (ii) are now established by
structural induction on ϕ.

The cases for ϕ = true, ϕ = a, ϕ = ϕ1∧ϕ2, ϕ = ϕ1∨
ϕ2, ϕ = E ϕ1 U≤∞ ϕ2, ϕ = A ϕ1 U≤∞ ϕ2, ϕ = EX≤k ϕ1

and ϕ = AX≤k ϕ1 follow the same arguments as in the
proof of Theorem 2.

Let us so assume that ϕ = E ϕ1 U≤k ϕ2 where
k <∞. We want to argue for property (i), in other words
we want to show that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 0 if and
only if s |= E ϕ1 U≤k ϕ2. From Figure 9(a) we see that
any concrete configuration 〈s,E ϕ1 U≤k ϕ2〉 has a single
cover-edge with the cover-condition k leading to the sym-
bolic configuration v = 〈s,E ϕ1 U≤? ϕ2〉 for which we as-
sume that property (ii) holds. IfAmin(〈s,E ϕ1 U≤k ϕ2〉) =
0 then necessarily Amin(〈s,E ϕ1 U≤? ϕ2〉) ≤ k, which
implies by property (ii) part (a) that s |= E ϕ1 U≤k′ ϕ2

where k′ = Amin(〈s,E ϕ1 U≤? ϕ2〉) and hence also
s |= E ϕ1 U≤k ϕ2 as k′ ≤ k. On the other hand, if
s |= E ϕ1 U≤k ϕ2 then Amin(〈s,E ϕ1 U≤? ϕ2〉) ≤ k by
property (ii) part (b). This implies by the semantics of
the cover-edge that Amin(〈s,E ϕ1 U≤k ϕ2〉) = 0.

Let ϕ = E ϕ1 U≤? ϕ2. We want to show prop-
erty (ii). Let us first argue about part (b). Assume that
s |= E ϕ1 U≤k ϕ2. Hence there exists a run σ and a
position p ≥ 0 such that σ(p) |= ϕ2, σ(p′) |= ϕ1 for
all p′ < p, and Wσ(p) ≤ k. By induction on p we show
that Amin(〈s,E ϕ1 U≤? ϕ2〉) ≤ k. Clearly, if p = 0 then

σ(0) = s |= ϕ2, which by the left-most edge in Fig-
ure 9(c) implies that Amin(〈s,E ϕ1 U≤? ϕ2〉) = 0 ≤ k.
If p > 0 then σ(0) = s |= ϕ1 and there is a transition

σ(0)
wi→ si such that si |= E ϕ1 U≤k−wi

ϕ2. By structural
induction σ(0) = s |= ϕ1 implies that Amin(〈s, ϕ1〉) = 0
due to property (i) and the mathematical induction on
p gives us that Amin(〈si,E ϕ1 U≤? ϕ2〉) ≤ k − wi.
By combining these two facts using the rule in Fig-
ure 9(c), we conclude that Amin(〈s,E ϕ1 U≤? ϕ2〉) ≤ k.
Let us now focus on part (a) of property (ii). Assume
that Amin(〈s,E ϕ1 U≤? ϕ2〉) = k ∈ N0. We want to
prove that s |= E ϕ1 U≤k ϕ2. Considering the hyper-
edges in Figure 9(c), the reason for k ∈ N0 can be due
to the fact that Amin(〈s, ϕ2〉) = 0 (note that 〈s, ϕ2〉
is a concrete configuration) but then we are done as
s |= E ϕ1 U≤0 ϕ2. The other reason for k ∈ N0 can
be that Amin(〈s, ϕ1〉) = 0 (again this is a concrete con-

figuration) and there is a transition s
wi→ si such that

Amin(〈si,E ϕ1 U≤? ϕ2〉) = k−wi; this follows from the
rule in Figure 9(c). We can repeat the same argument
for 〈si,E ϕ1 U≤? ϕ2〉. If all such successors never con-
tain a hyper-edge to a node of the form 〈s′, ϕ2〉 where
Amin(〈s′, ϕ2〉) = 0 then clearly the minimum pre fixed-
point assignment never gets a value different from∞, as
we only have cyclic dependencies. The rest of the prop-
erty is now established by similar arguments as in the
proof of Theorem 2.

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 13

〈s0,A mow U≤6 dump〉 0

〈s0,A mow U≤? dump〉 6

6

〈s0, dump〉 ∞

〈s0,mow〉 0 〈s1,A mow U≤? dump〉 3

∅
〈s2,A mow U≤? dump〉 4 〈s3,A mow U≤? dump〉 3

2 2 2

〈s1, dump〉 ∞

〈s1,mow〉 0 〈s4,A mow U≤? dump〉 2

∅

1

〈s2, dump〉 ∞

〈s2,mow〉 0

∅

2

〈s3, dump〉 ∞

〈s3,mow〉 0

∅
〈s5,A mow U≤? dump〉 2

1

〈s4, dump〉 ∞

〈s4,mow〉 0

∅
〈s6,A mow U≤? dump〉 0

1

〈s5, dump〉 ∞

〈s5,mow〉 0

∅

2

〈s6, dump〉 0

∅
〈s6,mow〉 ∞

Figure 10. Symbolic dependency graph for the lawn mower example (all missing weights are by default 0)

For ϕ = A ϕ1 U≤k ϕ2 where k < ∞ and ϕ =
A ϕ1 U≤? ϕ2 we can use similar arguments as for the
existential until cases discussed above. ut

In Figure 11 we depict the symbolic dependency graph
encoding of E a U≤1000 b for the configuration s in the
single-state WKS from Figure 6. This clearly illustrates
the succinctness of SDG compared to the standard de-
pendency graphs. The minimum pre fixed-point assign-
ment of this symbolic dependency graph is now reached
in two iterations of the function F defined in Equa-
tion (4).

We note that for a given WKS K = (S,AP, L,→)
and a formula ϕ, the size of the constructed symbolic
dependency graph G = (V,H,C) can be bounded as
follows: |V | = O(|S| · |ϕ|), |H| = O(| → | · |ϕ|) and
|C| = O(|ϕ|). In combination with Theorem 3 and the
fact that |C| ≤ |H| (due to the rules for construction
of G), we conclude with a theorem stating a polynomial
time complexity of the global model checking algorithm
for WCTL.

Theorem 6. Given a WKS K = (S,AP, L,→), a state
s ∈ S and a WCTL formula ϕ, the model checking prob-
lem s |= ϕ is decidable in time O(|S| · |→| · |ϕ|3).

〈s,E a U≤1000 b〉 〈s,E a U≤? b〉

〈s, b〉 〈s, a〉 ∅

1000

1

Figure 11. SDG for s |= E a U≤1000 b and the WKS from Figure 6

Contrary to the polynomial running time of the global
algorithm, the local model checking approach from Al-
gorithm 2 can run (in the worst case) in exponential
time. Nevertheless, the experiments in the section to fol-
low show that this does not happen in practise and that
the local algorithm is the preferred choice for practical
applications.

We conclude this section with the fact that model
checking of until-formulae with interval bounds (both
lower and upper bounds) is already NP-hard. The proof
is by reduction from the well-known NP-complete prob-
lem subset-sum [21, Chap. 5]: given a set of integers
W = {w1, . . . , wn} and a target integer T , is there a
vector x = (x1, x2, . . . , xn) ∈ Nn0 such that

n∑
i=1

wi · xi = T ?

14 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

s

w1

w2

. . .

wn

Figure 12. Subset-sum construction

Given an instance W and T of the subset-sum prob-
lem, we construct a WKS K as shown in Figure 12
such that for every w ∈ W we add a self-loop labelled
with w. It is now easy to check that the formula s |=
E true U[T,T] true is satisfied if and only if W and T
is a positive instance of the subset-sum problem. The
model checking problem is hence NP-hard.

7 Experiments

In order to compare the performance of the algorithms
for model checking WCTL, we developed a prototype
tool implementation. There is a web-based front-end writ-
ten in CoffeeScript available at

http://wktool.jonasfj.dk/

and the tool is entirely browser-based, requiring no in-
stallation. Screenshots of the tool in the editor mode
(showing our running lawn mower example) and the vi-
sualization of the corresponding weighted Kripke struc-
ture are showed in Figure 13.

In the experiments, the model checking algorithms
run with limited memory resources but the tool allows a
fair comparison of the performance for the different algo-
rithms. All experiments were run on a standard laptop
(Intel Core i7) running Ubuntu Linux.

In order to experiment with larger, scalable models
consisting of parallel components, we extend the pro-
cess algebra CCS [22] with weight prefixing as well as
proposition annotations. The CCS syntax for our run-
ning example is given below.

S0 := mow:(<go,2>.S1 + <go,2>.S2 + <go,2>.S3);

S1 := mow:<go,1>.S4;

S2 := mow:<go,2>.S4;

S3 := mow:<go,1>.S5;

S4 := mow:(<go,0>.S5 + <go,1>.S6);

S5 := mow:<go,2>.S6;

S6 := dump:<go,0>.S6;

The weighted CCS defining equations and the annota-
tions with atomic propositions should be self-explanatory.
We just point to the fact that in weighted CCS transi-
tions are additionally labelled by actions (in our case by
a single action go) so that a synchronization among dif-
ferent parallel components is possible. The possibility to
communicate is also exploited in the weighted models of
Leader Election [13], Alternating Bit Protocol [7], and
Task Graph Scheduling problems for two processors [17]

used in our experiments. All weighted CCS models of the
experiments are available within the tool. The weight
(communication cost) is associated with sending mes-
sages in the first two models while in the task graph
scheduling the weight represents clock ticks of the pro-
cessors.

7.1 Standard vs. Symbolic Dependency Graphs

In Table 2 we compare the direct (standard dependency
graph) algorithms with the symbolic ones. The execution
times are in seconds and OOM indicates when verifica-
tion runs out of memory. For a fixed size of the problems,
we scale the bound k in the WCTL formulae.

In the leader election protocol we have a ring net-
work where each processes has a unique id (natural num-
ber). Initially, each process sends to its right neighbour
its id and then keeps forwarding to the right neighbour
any number received from its left neighbour, provided
that it is larger than its own id. The communication is
asynchronous and the process that receives from its left
neighbour its own id claims to become the leader. This
is signalled by setting the proposition leader to true. In
the protocol with eight processes we verified a satisfiable
formula E true U≤k leader, asking if a leader can be
determined within k message exchanges, and an unsat-
isfiable formula E true U≤k leader > 1, asking if there
can be more than one leader selected within k message
exchanges.

Alternating bit protocol is a simple communication
protocol that guarantees a correct message exchange be-
tween a sender and a receiver that communicate over
unreliable (lossy) FIFO channels. The sender can be in
a state s0 that signals that it is appending the bit 0 to the
transmitted message, or in the state s1 where the bit 1 is
appended. Similarly, the receiver is expected to receive a
message with appended bit 0 in its state d0 and the bit 1
in the state d1. Once a message is delivered, the proposi-
tion delivered is set to true. For an instance of the proto-
col with a communication buffer of size four, we verified
a satisfied formula E true U≤k delivered = 1, asking if a
message can be delivered within k communication steps,
and an unsatisfied formula E true U≤k (s0 ∧ d1)∨ (s1 ∧
d0), asking whether the sender and the receiver can get
out of synchrony within the first k communication steps.

For the satisfied formulae in these two experiments,
the direct global algorithm (global fixed-point computa-
tion on dependency graphs) runs out of memory as the
bound k in the formulae is scaled. The advantage of Liu
and Smolka [20] local algorithm is obvious, as on posi-
tive instances it performs (using a DFS search strategy)
about as well as the global symbolic algorithm. The local
symbolic algorithm clearly performs best. We observed a
similar behaviour also for other examples we tested and
the symbolic algorithms were regularly performing bet-
ter than the ones using the direct translation of WCTL
formulae into dependency graphs. Hence, from now on,

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 15

Figure 13. WKTool Screenshots (Editor and Visualizer)

Leader Election

Direct Symbolic

k Global Local Global Local

200 3.88 0.23 0.26 0.02 S
a
tisfi

ed

400 8.33 0.25 0.26 0.02
600 OOM 0.24 0.26 0.02
800 OOM 0.25 0.26 0.02

1000 OOM 0.26 0.27 0.02

200 7.76 8.58 0.26 0.26 U
n
sa

tisfi
ed

400 17.05 20.23 0.26 0.26
600 OOM OOM 0.26 0.26
800 OOM OOM 0.26 0.26

1000 OOM OOM 0.26 0.26

Alternating Bit Protocol

Direct Symbolic

k Global Local Global Local

100 3.87 0.05 0.23 0.03 S
a
tisfi

ed

200 8.32 0.06 0.23 0.03
300 OOM 0.10 0.28 0.04
400 OOM 0.11 0.23 0.03
500 OOM 0.13 0.23 0.03

100 3.39 3.75 0.27 0.23 U
n
sa

tisfi
ed

200 6.98 8.62 0.30 0.25
300 OOM 15.37 0.28 0.24
400 OOM OOM 0.27 0.24
500 OOM OOM 0.27 0.22

Table 2. Scaling of bounds in WCTL formula (time in seconds)

we shall focus on a more detailed comparison of the local
vs. global symbolic algorithms.

7.2 Local vs. Global Symbolic Dependency Graphs

In Table 3 we return to the leader election and alternat-
ing bit protocol but we scale the sizes (number of pro-
cesses and buffer capacity, resp.) of these models rather
than the bounds in formulae. The satisfiable and un-
satisfiable formulae are as before. In the leader election
the verification of a satisfiable formula using the local
symbolic algorithm is consistently faster as the instance
size is incremented, while for unsatisfiable formulae the
verification times are essentially the same. For the alter-
nating bit protocol, we present the results for the bound
k equal to 10, 20 and ∞. While the results for unsatisfi-
able formulae do not change significantly, for the positive
formula the bound 10 is very tight in the sense that there

are only a few executions or “witnesses” that satisfy the
formula. As the bound is relaxed, more solutions can be
found which is reflected by the improved performance of
the local algorithm, in particular in the situation where
the upper-bound is ∞.

We also tested the algorithms on a larger benchmark
of task graph scheduling problems [6]. The task graph
scheduling problem asks about schedulability of a num-
ber of parallel tasks with given precedence constraints
and processing times that are executed on a fixed num-
ber of homogeneous processors [17]. We automatically
generate models for two processors from the benchmark
containing in total 180 models and scaled them by the
number of initial tasks that we include from each case
into schedulability analysis.

The first three task graphs (T0, T1 and T2) are
presented in Table 4. We model check nested formu-
lae and the satisfiable one is E true U≤90 (treadyn−2 ∧

16 Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints

Leader Election

k = 200

n Global Local

7 0.08 0.01 S
a
tisfi

ed

8 0.26 0.02
9 1.06 0.03

10 5.18 0.03
11 23.60 0.03
12 Timeout 0.04

7 0.08 0.08 U
n
sa

tisfi
ed

8 0.26 0.26
9 1.05 1.06

10 4.97 4.96
11 23.57 24.07
12 Timeout Timeout

Alternating Bit Protocol

k = 10 k = 20 k =∞
n Global Local Global Local Global Local

5 0.33 0.10 0.33 0.07 0.33 0.04 S
a
tisfi

ed

6 0.78 0.18 0.77 0.17 0.80 0.06
7 1.88 0.34 1.92 0.14 1.96 0.05
8 4.82 0.82 4.71 0.72 4.78 0.09
9 13.91 10.60 12.41 1.67 12.92 0.20

10 OOM OOM OOM 6.29 OOM 0.23

4 0.27 0.24 0.27 0.23 0.29 0.24 U
n
sa

tisfi
ed

5 0.54 0.43 0.51 0.37 0.57 0.40
6 1.42 0.98 1.21 0.93 1.31 1.02
7 2.70 2.05 2.93 2.06 3.14 2.21
8 6.15 4.98 7.08 5.57 6.86 5.34
9 OOM OOM OOM OOM OOM OOM

Table 3. Scaling the model size for the symbolic algorithms (time in seconds)

T0 T1 T2

n Global Local Global Local Global Local

2 0.24 0.04 0.06 0.01 0.07 0.01

S
a
tisfi

ed

3 3.11 0.01 0.15 0.08 0.19 0.01
4 4.57 1.13 0.18 0.08 0.88 0.19
5 6.09 0.03 2.73 0.01 7.05 0.02
6 OOM OOM 5.27 1.08 OOM 1.44
7 OOM 0.02 OOM 0.02 OOM 0.01
8 OOM 0.03 OOM OOM OOM 2.75
9 OOM OOM OOM OOM OOM 1.86

10 OOM 0.03 OOM OOM OOM OOM

2 0.22 0.20 0.05 0.05 0.08 0.01 U
n
sa

tisfi
ed

3 2.91 2.55 0.14 0.13 0.20 0.01
4 6.35 4.45 0.16 0.14 0.91 0.20
5 7.45 5.00 2.31 1.69 7.48 0.03
6 OOM OOM 4.67 4.40 OOM 1.40
7 OOM OOM OOM OOM OOM OOM

Table 4. Scaling task graphs by the number of initial tasks (time in seconds)

180 task graphs for k = 30 k = 60 k = 90

Algorithm global local global local global local

Number of finished tasks 32 85 32 158 32 178
Accumulated time (seconds) 50.4 12.9 47.6 2.30 47.32 0.44

Table 5. Summary of task graphs verification (180 cases in total)

A true U≤80 done) asking whether there is, within 90
clock ticks, a configuration where the task tn−2 can be
scheduled such that then we have a guarantee that the
whole schedule terminates within 80 ticks. When the
upper-bounds are decreased to 5 and 10, the formula
becomes unsatisfiable for all task graphs in the bench-
mark.

Finally, we verify the formula E true U≤k done ask-
ing whether the task graph can be scheduled within
k clock ticks. We run the whole benchmark through
the test (180 cases) for values of k equal to 30, 60 and
90, measuring the number of finished verification tasks

(without running out of resources) and the total accu-
mulated time it took to verify the whole benchmark for
those cases where both the global and local algorithms
provided an answer. The results are listed in Table 5.
This provides further evidence for the claim that the lo-
cal algorithm profits from the situation where there are
more possible schedules as the bound k is being relaxed.

Jonas Finnemann Jensen et al.: Efficient Model-Checking of Weighted CTL with Upper-Bound Constraints 17

8 Conclusion

We suggested a symbolic extension of dependency graphs
in order to verify negation-free weighted CTL proper-
ties where temporal operators are annotated with upper-
bound constraints on the accumulated weight. Then we
introduced global and local algorithms for the computa-
tion of fixed points in order to answer the model checking
problems for the logic. The algorithms were implemented
and experimented with, coming to the conclusion that
the local symbolic algorithm is the preferred one, provid-
ing order of magnitude speedup in the cases where the
bounds in the logical formula allow for a larger number
of possible witnesses of satisfiability of the formula.

In the future work we will study a weighted CTL
logic with negation that combines lower- and upper-
bounds (the model checking problem for a logic con-
taining weight intervals is already NP-hard as showed
in Section 6). From the practical point of view it would
be worth designing good heuristics that can guide the
search in the local algorithm in order to find faster the
witnesses of satisfiability of a formula. Another challeng-
ing problem is to adapt our technique to support alter-
nating fixed points.

Acknowledgements. We thank the anonymous reviewers
for their useful comments and suggestions. The research
leading to these results has received funding from the EU
Seventh Framework Programme (FP7/2007-2013) under
Grant Agreement nr. 601148 (CASSTING).

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking
in dense real-time. Information and Computation,
104(1):2–34, 1993.

2. R. Alur and D.L. Dill. Automata for modeling real-time
systems. In Mike Paterson, editor, ICALP, volume 443
of LNCS, pages 322–335. Springer, 1990.

3. R. Alur, T. Feder, and T.A. Henzinger. The benefits of
relaxing punctuality. Journal of the ACM, 43(1):116–
146, 1996.

4. R. Alur, S. La Torre, and G.J. Pappas. Optimal paths in
weighted timed automata. In Proceedings of the 4th In-
ternational Workshop on Hybrid Systems: Computation
and Control (HSCC’01), volume 2034 of LNCS, pages
49–62. Springer, 2001.

5. H.R. Andersen. Model checking and boolean graphs.
Theoretical Computer Science, 126(1):3 – 30, 1994.

6. Kasahara Laboratory at Waseda Uni-
versity. Standard task graph set.
http://www.kasahara.elec.waseda.ac.jp/schedule/.

7. K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A
note on reliable full-duplex transmission over half-duplex
links. Communications of the ACM, 12(5):260–261, 1969.

8. G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen, P. Pet-
tersson, J. Romijn, and F.W. Vaandrager. Minimum-cost
reachability for priced timed automata. In Proceedings

of the 4th International Workshop on Hybrid Systems:
Computation and Control (HSCC’01), volume 2034 of
LNCS, pages 147–161. Springer, 2001.

9. P. Bouyer, K.G. Larsen, and N. Markey. Model checking
one-clock priced timed automata. Logical Methods in
Computer Science, 4(2), 2008.

10. T. Brihaye, V. Bruyère, and J.-F. Raskin. Model-
checking for weighted timed automata. In Yas-
sine Lakhnech and Sergio Yovine, editors, FOR-
MATS/FTRTFT, volume 3253 of LNCS, pages 277–292.
Springer, 2004.

11. P. Buchholz and P. Kemper. Model checking for a class
of weighted automata. Discrete Event Dynamic Systems,
20:103–137, 2010.

12. F. Cassez, A. David, E. Fleury, K.G. Larsen, and
D. Lime. Efficient on-the-fly algorithms for the analy-
sis of timed games. In Proceedings of the 16th Interna-
tional Conference on Concurrency Theory CONCUR’05,
volume 3653 of LNCS, pages 66–80. Springer, 2005.

13. E. Chang and R. Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations
of processes. Commun. of ACM, 22(5):281–283, 1979.

14. M. Droste and P. Gastin. Weighted automata and
weighted logics. Theoretical Computer Science, 380(1-
2):69–86, 2007.

15. M. Droste, W. Kuich, and H. Vogler. Handbook of
Weighted Automata. Springer Publishing Company, In-
corporated, 1st edition, 2009.

16. B. Knaster. Un théorème sur les fonctions d’ensembles.
Annales de la Société Polonaise de Mathématique, 6:133–
134, 1928.

17. Y.-K. Kwok and I. Ahmad. Benchmarking and compar-
ison of the task graph scheduling algorithms. Journal
of Parallel and Distributed Computing, 59(3):381 – 422,
1999.

18. F. Laroussinie, N. Markey, and G. Oreiby. Model-
checking timed ATL for durational concurrent game
structures. In E. Asarin and P. Bouyer, editors, FOR-
MATS, volume 4202 of LNCS, pages 245–259. Springer,
2006.

19. X. Liu, C.R. Ramakrishnan, and S.A. Smolka. Fully local
and efficient evaluation of alternating fixed points. In
Tools and Algorithms for the Construction and Analysis
of Systems, volume 1384 of LNCS, pages 5–19. Springer
Berlin Heidelberg, 1998.

20. X. Liu and S.A. Smolka. Simple linear-time algorithms
for minimal fixed points (extended abstract). In Proceed-
ings of the 25th International Colloquium on Automata,
Languages and Programming (ICALP’98), volume 1443
of LNCS, pages 53–66. Springer, 1998.

21. S. Martello and P. Toth. Knapsack problems: algorithms
and computer implementations. John Wiley & Sons, Inc.,
New York, NY, USA, 1990.

22. R. Milner. A calculus of communicating systems. LNCS,
92, 1980.

23. A. Tarski. A lattice-theoretical fixpoint theorem and its
applications. Pacific Journal of Mathematics, 5(2):285–
309, 1955.

