
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Discrete and Continuous Strategies for Timed-Arc Petri
Net Games?

Peter Gjøl Jensen, Kim Guldstrand Larsen, Jǐŕı Srba

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark

Received: November 2016 / Revised version: May 2017

Abstract. Automatic strategy synthesis for a given
control objective can be used to generate correct-by-
construction controllers of real-time reactive systems.
The existing symbolic approach for continuous timed
games is a computationally hard task and current tools
like UPPAAL TiGa often scale poorly with the model
complexity. We suggest an explicit approach for strat-
egy synthesis in the discrete-time setting and show that
even for systems with closed guards, the existence of
a safety discrete-time strategy does not imply the exis-
tence of a safety continuous-time strategy and vice versa.
Nevertheless, we prove that the answers to the existence
of discrete-time and continuous-time safety strategies
coincide on a practically motivated subclass of urgent
controllers that either react immediately after receiving
an environmental input or wait with the decision un-
til a next event is triggered by the environment. We
then develop an on-the-fly synthesis algorithm for dis-
crete timed-arc Petri net games. The algorithm is im-
plemented in our tool TAPAAL and based on the exper-
imental evidence, we discuss the advantages of our ap-
proach compared to the symbolic continuous-time tech-
niques.

1 Introduction

Formal methods and model checking techniques have
traditionally been used to verify whether a given system
model complies with its specification. However, when we
consider formal (game) models where both the controller
and the environment can make choices, the question now
changes to finding a controller strategy such that any
behaviour under such a fixed strategy complies with the

? Extended version of [24] with full proofs, improved implemen-
tation and updated experimential results.

given specification. The model checking approach can
be used as a try-and-fail technique to check whether a
given controller is correct but automatic synthesis of a
correct-by-construction controller, as already proposed
by Church [12,11], is a more difficult problem as docu-
mented e.g. by the SYNTCOMP competition and SYNT
workshop [23]. The area has recently seen renewed in-
terest, partly given the rise in computational power that
makes synthesis feasible. We focus on the family of timed
systems, where for the model of timed automata [1] syn-
thesis has already been proposed [35] and implemented
[3,10].

In the area of model checking, symbolic continuous-
time on-the-fly methods were ensuring the success of
tools such as Kronos [8], UPPAAL [4], Tina [5] and
Romeo [20], utilizing the zone abstraction approach [1]
via the data structure DBM [16]. These symbolic
techniques were recently employed in on-the-fly algo-
rithms [30] for synthesis of controllers for timed games [3,
10,35]. While these methods scale well for classical reach-
ability, the limitation of symbolic techniques is more ap-
parent when used for liveness properties and for solv-
ing timed games. We have shown that for reachability
and liveness properties, the discrete-time methods per-
forming point-wise exploration of the state-space can
prove competitive on a wide range of problems [2], in
particular in combination with additional techniques as
time-darts [27], constant-reducing approximation tech-
niques [6] and memory-preserving data structures like
PTrie [26,25].

In this paper, we benefit from the recent advances
in the discrete-time verification of timed systems and
suggest an on-the-fly point-wise algorithm for the syn-
thesis of timed controllers relative to safety objectives
(avoiding undesirable behaviour). The algorithm is de-
scribed for a novel game extension of the well-studied
timed-arc Petri net formalism [7,21] and we show that
in the general setting, the existence of a controller for a

2 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

safety objective in the discrete-time setting does not im-
ply the existence of such a controller in the continuous-
time setting and vice versa, not even for systems with
closed guards—contrary to the fact that continuous-time
and discrete-time reachability problems coincide for such
timed models [9], in particular also for timed-arc Petri
nets [32]. However, if we restrict ourselves to the prac-
tically relevant subclass of urgent controllers that ei-
ther react immediately to the environmental events or
simply wait for another occurrence of such an event,
then we can use the discrete-time methods for check-
ing the existence of a continuous-time safety controller
on closed timed-arc Petri nets. The algorithm for con-
troller synthesis is implemented in our open source tool
TAPAAL [15], including the memory optimization tech-
nique via PTrie [26,25]. The experimental data show a
promising performance on a large data-set of infinite job
scheduling problems and scaled instances of the disk op-
eration scheduling problem.

Related Work. An on-the-fly algorithm for synthesizing
continuous-time controllers for both safety, reachability
and time-optimal reachability for time automata was
proposed by Cassez et al. [10] and later implemented in
the tool UPPAAL TiGa [3]. This work is based on the
symbolic verification techniques invented by Alur and
Dill [1] in combination with ideas on synthesis by Pnueli
et. al [35] and on-the-fly dependency graph algorithms
suggested by Liu and Smolka [30]. For timed games, ab-
straction refinement approaches have been proposed and
implemented by Peter et al. [33,34] and Finkbeiner et
al. [19] as an attempt to speed up synthesis, while us-
ing the same underlying symbolic representation as UP-
PAAL TiGa. These abstraction refinement methods are
complementary to the work presented here. Our work
uses the formalism of timed-arc Petri nets that has not
been studied in this context before and we rely on the
methods with discrete interpretation of time as pre-
sented by Andersen et. al [2]. As an additional contri-
bution, we implement our solution in the tool TAPAAL,
utilizing memory reduction techniques by Jensen et. al
[26], and compare the performance of both discrete-time
and continuous-time techniques. Control synthesis and
supervisory control was also studied for the family of
Petri net models [17,18,36,38] but these works do not
consider the timing aspects.

2 Disk Operation Scheduling Example

We shall now provide an intuitive description of the
timed-arc Petri net game of disk operation scheduling in
Figure 1, modelling the scheduler of a mechanical hard-
disk drive (left) and a number of read stream requests
(right) that should be fulfilled within a given deadline D.
The net consists of places drawn as circles (the dashed
circle around the places R1, R2, R3 and Buffer simply

means that these places are shared between the two sub-
nets) and transitions drawn as rectangles that are either
filled (controllable transitions) or framed only (environ-
mental transitions). Places can contain tokens (like the
places R1 to R3 and the place track1) and each token
carries its own age. Initially all token ages are 0. The
net also contains arcs from places to transitions (input
arcs) or transitions to places (output arcs). The input
arcs are further decorated with time intervals restrict-
ing the ages of tokens that can be consumed along the
arc. If the time interval is missing, we assume the default
[0,∞] interval not restricting the ages of tokens in any
way.

In the initial marking (token configuration) depicted
in our example, the two transitions connected by input
arcs to the place track1 are enabled and the controller
can decide to fire either of them. As the transitions con-
tain a white circle, they are urgent, meaning that time
cannot pass as long at least one urgent transition is en-
abled. Suppose now that the controller decides to fire
the transition on the left of the place track1. As a result
of firing the transition, the two tokens in R1 and track1

will be consumed and a new token of age 0 is produced
to the place W1. Tokens can be also transported via a
pair of an input and output transport arcs (not depicted
in our example) that will transport the token from the
input to the output place while preserving its age.

In the new marking we just achieved, no transition
is enabled due to the time interval [1, 4] on the input arc
of the environmental transition connected to the place
W1. However, after one time unit passes and the token
in W1 becomes of age 1, the transition becomes enabled
and the environment may decide to fire it. On the other
hand, the place W1 also contains the age invariant ≤ 4,
requiring that the age of any token in that place may
not exceed 4. Hence after age of the token reaches 4,
time cannot progress anymore and the environment is
forced to fire the transition, producing two fresh tokens
into the places Buffer and track1. Hence, reading the
data from track 1 of the disk takes between 1ms to 4ms
(depending on the actual rotation of the disk) and it is
the environment that decides the actual duration of the
reading operation.

The idea is that the disk has three tracks (positions of
the reading head) and at each track track i the controller
has the choice of either reading the data from the given
track (assuming there is a reading request represented by
a token in the place Ri) or move the head to one of the
neighbouring tracks (such a mechanical move takes be-
tween 1ms to 2ms). The reading requests are produced
by the subnet on the right where the environment de-
cides when to generate a reading request in the interval
between 6ms to 10ms. The number of tokens in the right
subnet represents the parallel reading streams. The net
also contains inhibitor arcs with a cirle-headed tip that
prohibit the environmental transitions from generating
a reading request on a given track if there is already one.

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 3

0

R3

0

R2

0

R1

0

track1

track2

track3

W1

inv: ≤ 4

W2

inv: ≤ 4

W3

inv: ≤ 4

down1

inv: ≤ 2

down2

inv: ≤ 2

up3

inv: ≤ 2

up2

inv: ≤ 2

Buffer

inv: ≤ 10

[1 , 2]

[1 , 4]

[1 , 2]

[1 , 4]

[1 , 4]

[1 , 2]

[1 , 2]

Buffer inv: ≤ 10

0

R1

0

R2

0

R3

Fail

[6 , 10][6 , 10]

[6 , 10]

[D,D][D,D][D,D]

Fig. 1: A timed-arc Petri net game model of a harddisk

Finally, if the reading request takes too long and the age
of the token in Ri reaches the age D, the environment
has the option to place a token in the place Fail .

The control synthesis problem asks to find a strat-
egy for firing the controllable transitions that guarantees
no failure, meaning that irrelevant of the behaviour of
the environment, the place Fail never becomes marked
(safety control objective). The existence of such a control
strategy depends on the chosen value of D and the com-
plexity of the controller synthesis problem can be scaled
by adding further tracks (in the subnet of the left) or al-
lowing for more parallel reading streams (in the subnet
on the right). In what follows, we shall describe how to
automatically decide in the discrete-time setting (where
time can be increased only by nonnegative integer val-
ues) whether a controller strategy exists. As the control-
lable transitions are urgent in our example, the existence
of such a discrete-time control strategy implies also the
existence of a continuous-time control strategy where the
environment is free to fire transitions after an arbitrary
delay taken from the dense time domain—a result we
formally state and prove in Section 4.

3 Definitions

Let N0 = N ∪ {0} and N∞0 = N0 ∪ {∞}. Let R≥0
be the set of all nonnegative real numbers. A timed
transition system (TTS) is a triple (S ,Act ,→) where
S is the set of states, Act is the set of actions and
→⊆ S×(Act∪R≥0)×S is the transition relation written

as s
a→ s′ whenever (s, a, s′) ∈ →. If a ∈ Act then we call

it a switch transition, if a ∈ R≥0 we call it a delay tran-
sition. We also define the set of well-formed closed time

intervals as I def
= {[a, b] | a ∈ N0, b ∈ N∞0 , a ≤ b} and its

subset I inv def
= {[0, b] | b ∈ N∞0 } used in age invariants.

Definition 1 (Timed-Arc Petri Net).
A timed-arc Petri net (TAPN) is a 9-tuple
N = (P, T, Turg , IA,OA, g ,w ,Type, I) where

– P is a finite set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– Turg ⊆ T is the set of urgent transitions,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA → I is a time constraint function assigning

guards to input arcs such that
– if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

– w : IA ∪ OA → N is a function assigning weights to
input and output arcs,

– Type : IA∪OA→ Types is a type function assigning
a type to all arcs where Types = {Normal , Inhib} ∪
{Transportj | j ∈ N} such that
– if Type(z) = Inhib then z ∈ IA and g(z) = [0,∞],
– if Type((p, t)) = Transportj for some (p, t) ∈ IA

then there is exactly one (t, p′) ∈ OA such that
Type((t, p′)) = Transportj ,

– if Type((t, p′)) = Transportj for some (t, p′) ∈ OA
then there is exactly one (p, t) ∈ IA such that
Type((p, t)) = Transportj ,

– if Type((p, t)) = Transportj = Type((t, p′)) then
w((p, t)) = w((t, p′)),

4 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

– I : P → Iinv is a function assigning age invariants
to places.

Remark 1. Note that for transport arcs we assume that
they come in pairs (for each type Transportj) and that
their weights match. Also for inhibitor arcs and for input
arcs to urgent transitions, we require that the guards
are [0,∞]. This restriction is important for some of
the results presented in this paper and it also guaran-
tees that we can use DBM-based algorithms in the tool
TAPAAL [15].

Let N = (P, T, Turg , IA,OA, g ,w ,Type, I) be a

TAPN. We denote by •x
def
= {y ∈ P ∪ T | (y, x) ∈

IA ∪ OA, Type((y, x)) 6= Inhib} the preset of a tran-
sition or a place x. Similarly, the postset is defined as

x•
def
= {y ∈ P ∪ T | (x, y) ∈ (IA ∪ OA)}. Let B(R≥0) be

the set of all finite multisets over R≥0. A marking M on
N is a function M : P −→ B(R≥0) where for every place
p ∈ P and every token x ∈ M(p) we have x ∈ I (p), in
other words all tokens have to satisfy the age invariants.
The set of all markings in a net N is denoted byM(N).

We write (p, x) to denote a token at a place p with the
age x ∈ R≥0. Then M = {(p1, x1), (p2, x2), . . . , (pn, xn)}
is a multiset representing a marking M with n tokens
of ages xi in places pi. We define the size of a marking
as |M | =

∑
p∈P |M(p)| where |M(p)| is the number of

tokens located in the place p.

Definition 2 (Enabledness). Assume a given TAPN
N = (P, T, Turg , IA,OA, g ,w ,Type, I). We say that a
transition t ∈ T is enabled in a marking M by the mul-

tisets of tokens In = {(p, x1p), (p, x2p), . . . , (p, x
w((p,t))
p) |

p ∈ •t} ⊆ M and Out = {(p′, x1p′), (p′, x2p′), . . . ,
(p′, x

w((t,p′))
p′) | p′ ∈ t•} if

– for all input arcs except the inhibitor arcs, the tokens
from In satisfy the age guards of the arcs, i.e.

∀p ∈ •t. xip ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the
transition t, the number of tokens in p is smaller than
the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = Inhib

⇒

|M(p)| < w((p, t))

– for all input arcs and output arcs which constitute
a transport arc, the age of the input token must be
equal to the age of the output token and satisfy the
invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA it holds that

Type((p, t)) = Type((t, p′)) = Transportj

⇒
(
xip = xip′ ∧ xip′ ∈ I (p′)

)
for 1 ≤ i ≤ w((p, t))

– for all normal output arcs, the age of the output to-
ken is 0, i.e.

∀(t, p′) ∈ OA). Type((t, p′)) = Normal

⇒

xip′ = 0 for 1 ≤ i ≤ w((t, p′)).

A TAPN N defines a TTS T (N)
def
= (M(N), T,→)

where states are the markings and the transitions are as
follows.

– If t ∈ T is enabled in a marking M by the multisets
of tokens In and Out then t can fire and produce the
marking M ′ = (MrIn)]Out where] is the multiset
sum operator and r is the multiset difference opera-

tor; we write M
t→M ′ for this switch transition.

– A time delay d ∈ R≥0 is allowed in M if
– (x+d) ∈ I(p) for all p ∈ P and all x ∈M(p), and

– if M
t→M ′ for some t ∈ Turg then d = 0.

By delaying d time units in M we reach the marking
M ′ defined as M ′(p) = {x + d | x ∈ M(p)} for all

p ∈ P ; we write M
d→M ′ for this delay transition.

Let →def
=
⋃
t∈T

t→ ∪
⋃
d∈R≥0

d→. By M
d,t→ M ′ we

denote that there is a marking M ′′ s.t. M
d→M ′′

t→M ′.
The semantics defined above in terms of timed tran-

sition systems is called the continuous-time semantics. If
we restrict the possible delay transitions to take values
only from nonnegative integers and the markings to be
of the form M : P −→ B(N0), we call it the discrete-time
semantics.

An example of a TAPN modeling an office fridge can
be seen in Figure 2. Initially, the Fridge contains two
tokens, representing two boxes of yogurt. If a sudden
Hunger occurs—which happens every 6 to 24 hours—
the yogurts are moved to the Eat place. As the arcs
moving the yogurts are diamond tipped transport-arcs
(with weight two), the ingredients retain their age when
moved. At the Eat place, we can now either put an un-
eaten yogurt back to the fridge (by firing the middle
transition and hence preserving its age) or eat it and re-
place it with a new product, resetting the age of the (now
replaced) yogurt—this occurs when firing the top tran-
sition. Notice that both transitions are urgent, denoted
by the rectangle with an empty inner circle. This implies
that we need to choose immediately whether or not we
consume any of the yogurts. When replacing the yogurt,
we also place a token in the Watching place. As the new
yogurt is precious to us, we will for the next 12 hours
be watching the fridge, inhibiting anyone to steal the
yogurt—here modeled by an circle-tipped inhibitor arc.
After exactly 12 hours, the token in Watching is forced
to disappear as a combination of the guards [12,12] and
the invariant [0, 12] abbreviated as inv: ≤ 12. If any yo-
gurt reaches an age between 36 to 42 hours, and we are

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 5

Eat 0 0

Fridge

Watching inv: ≤ 12

0

Hunger inv: ≤ 24

Steal

Bin

2× 2×

[36 , 42]

[72 ,∞)

[6 , 24]

[12 , 12]

Fig. 2: A TAPN model of the office fridge

not Watching the fridge, then someone may Steal a yo-
gurt. At the same time, if any of the yogurts gets more
than three days old, it may be sent to the Bin.

As this describes a plain TAPN, it is always non-
deterministically decided what happens when, so it is
surely possible that a yogurt gets stolen or is placed to
the bin. However, there are some transitions that we are
clearly in control of and others that are controlled by
the environment. This brings us to the definition of a
two player game.

3.1 Timed-Arc Petri Net Game

We extend the TAPN model into the game setting by
partitioning the set of its transitions into the controllable
and uncontrollable ones.

Definition 3 (Timed-Arc Petri Net Game). A
Timed-Arc Petri Net Game (TAPG) is a TAPN with
its set of transitions T partitioned into the set of tran-
sitions Tctrl owned by the controller and the set Tenv

owned by the environment.

Let us transform our fridge model from Figure 2 into
a TAPG, depicted in Figure 3. In the game, we are able
to define which transitions are controllable (denoted by
solid rectangles, like the two urgent transitions in our
figure) and which are not controllable and its firing is
determined by the environment (denoted by frame rect-
angles). Hence we are not in control of when we get hun-
gry or whether other person will steal or throw out our
food.

Let G be a fixed TAPG. Recall thatM(G) is the set
of all markings over the net G. A controller strategy for
the game G is a function

σ :M(G)→M(G) ∪ {wait}

from markings to markings or the special symbol wait
such that

Eat 0 0

Fridge

Watching inv: ≤ 12

0

Hunger inv: ≤ 24

Steal

Bin

2× 2×

[36 , 42]

[72 ,∞)

[6 , 24]

[12 , 12]

Fig. 3: A TAPG model of the office fridge

– if σ(M) = wait then either M can delay forever

(M
d→ for all d ∈ R≥0), or there is d ∈ R≥0 where

M
d→ M ′ and for all d′′ ∈ R≥0 and all t ∈ Tctrl we

have that whenever M ′
d′′→M ′′ then M ′′

t

6→, and
– if σ(M) = M ′ then there is a d ∈ R≥0 and there is a

t ∈ Tctrl such that M
d,t→M ′.

Intuitively, a controller can in a given marking M ei-
ther decide to wait indefinitely (assuming that it is not
forced by age invariants or urgency to perform some con-
trollable transition) or it can suggest a delay followed by
a controllable transition firing. The environment can in
the marking M also propose to wait (unless this is not
possible due to age invariants or urgency) or suggest a
delay followed by firing of an uncontrollable transition.
If both the controller and environment propose transi-
tion firing, then the one preceding with a shorter delay
takes place. In the case where both the controller and
the environment propose the same delay followed by a
transition firing, then any of these two firings can (non-
deterministically) happen.

This intuition is formalized in the notion of plays
following a fixed controller strategy that summarize all
possible executions for any possible environment.

Let π = M1M2 . . .Mn . . . ∈ M(G)ω be an arbitrary
finite or infinite sequence of markings over G and let M
be a marking. We define the concatenation of M with π
as M ◦ π = MM1 . . .Mn . . . and extend it to the sets of
sequencesΠ ⊆M(G)ω so thatM◦Π = {M◦π | π ∈ Π}.

Definition 4 (Plays According to the Strategy σ).
Let G be a TAPG, M a marking on G and σ a con-
troller strategy forG. We define a function Pσ :M(G)→
2M(G)ω returning for a given marking M the set of all
possible plays starting from M under the strategy σ.

– If σ(M) = wait then Pσ(M) =
⋃
{M ◦ Pσ(M ′) | d ∈

R≥0, t ∈ Tenv , M
d,t→ M ′} ∪ X where X = {M} if

6 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

M
d→ for all d ∈ R≥0, or if there is d′ ∈ R≥0 such

that M
d′→ M ′ and M ′

d′′

6→ for any d′′ > 0 and M ′
t

6→
for any t ∈ Tenv , otherwise X = ∅.

– If σ(M) 6= wait then according to the definition of

controller strategy we have M
d,t→ σ(M) and we define

Pσ(M) =
⋃
{M ◦ Pσ(σ(M))} ∪

⋃
{M ◦ Pσ(M ′) | d′ ≤

d, t′ ∈ Tenv ,M
d′,t′→ M ′}.

The first case says that the plays from the marking
M where the controller wants to wait consist either of
the marking M followed by any play from a marking M ′

that can be reached by the environment from M after
some delay and firing a transition from Tenv , or a finite
sequence finishing with the marking M if it is the case
that M can delay forever, or we can reach a deadlock
where no further delay is possible and no transition can
fire.

The second case where the controller suggests a tran-
sition firing after some delay, contains M concatenated
with all possible plays from σ(M) and from σ(M ′) for
any M ′ that can be reached by the environment before
or at the same time the controller suggests to perform
its move.

We can now define the safety objectives for TAPGs.
A safety objective is a Boolean expression over arith-
metic predicates which observe the number of tokens in
the different places of the net. Let ϕ be so a Boolean
combination of predicates of the form e ./ e where
e ::= p | n | e + e | e − e | e ∗ e and where p ∈ P ,
./∈ {<,≤,=, 6=,≥, >} and n ∈ N0. The semantics of ϕ
in a marking M is given in the natural way, assuming
that p stands for |M(p)| (the number of tokens in the
place p). We write M |= ϕ if ϕ evaluates in the mark-
ing M to true. We can now state the safety synthesis
problem.

Definition 5 (Safety Synthesis Problem). Given a
marked TAPG G with the initial marking M0 and a
safety objective ϕ, decide if there is a controller strategy
σ such that

∀π ∈ Pσ(M0).∀M ∈ π.M |= ϕ . (1)

If Equation (1) holds then we say that σ is a winning
controller strategy for the objective ϕ.

As an example, we might want to find a strategy for
managing our yogurts in the office, modelled in Figure 3.
Formally, we can state our goal of not having our food
stolen nor thrown out as the safety objective Steal =
0∧Bin = 0. One can verify that this can be achieved by
e.g. always consuming both yogurts every time hunger
strikes. Another safe controller strategy is to return a
yogurt into the fridge as long as it is strictly less than
12 hours old, otherwise to eat it.

As another example in Figure 1, we may wish to syn-
thesize, for a given deadline D, a controller for the safety

objective Fail = 0, hence yielding a controller that can
serve three parallel streams with the maximal latency of
D. The synthesis problem for this scenario is consider-
ably more complex and with shall return to this problem
in our experiments.

4 Synthesis in Continuous and Discrete Time

It is known that for classical TAPNs with closed inter-
vals, the continuous and discrete-time semantics coincide
up to reachability [32], which is what safety synthesis re-
duces to if the set of controllable transitions is empty.
Contrary to this, Figures 4a and 4b show that this does
not hold in general for safety strategies.

For the game in Figure 4a, there exists a strategy
for the controller and the safety objective Bad ≤ 0 but
only in continuous-time semantics as the controller has
to keep the age of the token in place P1 strictly below
1, otherwise the environment can mark the place Bad
by firing U1. If the controller instead fires transition C1

without waiting, U2 becomes enabled and the environ-
ment can again break safety. Hence it is impossible to
find a discrete-time strategy as even the smallest possi-
ble discrete delay of 1 time unit will enable U1. However,
if the controller waits an infinitesimal amount (in the
continuous semantics) and fires C1, then U2 will not be
enabled as the token in P2 aged slightly. The controller
can now fire C2 and repeat this strategy over and over
in order to keep the token in P1 from ever reaching the
age of 1.

The counter example described before relies on Zeno
behaviour, however, this is not needed if we use transport
arcs which do not reset the age of tokens (depicted by
arrows with diamond-headed tips), as demonstrated in
Figure 4c. Here the only strategy for the controller to
avoid marking the place Bad is to delay some fraction
and then fire T0. Any possible integer delay (1 or 0)
will enable the environment to fire U0 or U1 before the
controller gets to fire T1. Hence we get the following
proposition.

Proposition 1. There is a TAPG and a safety objec-
tive where the controller has a winning strategy in the
continuous-time semantics but not in the discrete-time
semantics.

Figure 4b shows, on the other hand, that a safety
strategy guaranteeing Bad ≤ 0 exists only in the
discrete-time semantics but not in the continuous-time
semantics. Here the environment can mark the place Bad
by initially delaying 0.5 and then firing U0. This will
produce a token in P1 which restricts the time from pro-
gressing further and thus forces the controller to fire T3
as this is the only enabled transition. On the other hand,
in the discrete-time semantics the environment can ei-
ther fire U0 immediately, but then T1 will be enabled,
or it can wait (a minimum of one time unit), which in

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 7

0P1

Bad

0

P2

P3

0 P4

U1

U2

C1

C2

[1 , inf)

[0 , 0]

(a) A TAPG where Bad ≤ 0 can be guaranteed by the
controller under the continuous-time semantics (by ex-
ploiting Zeno behaviour) but not under the discrete-time
semantics.

0P0

P1

inv: ≤ 0

P2

Bad

0

P3

U0

T1

T3

T2

[0 , 0]

[1 ,∞)

(b) A TAPG where Bad ≤ 0 can be guaranteed by the
controller under the discrete-time semantics but not un-
der the continuous-time semantics.

0

P0

inv: ≤ 1

P1 Bad

T0

T1

U0

U1

[1 ,∞)

[0 , 0]

(c) A TAPG where Bad ≤ 0 can be guaranteed by the controller under the continuous-time semantics (without exploiting
Zeno behaviour) but not under the discrete-time semantics.

Fig. 4: Difference between continuous and discrete-time semantics

turn enables T2. Hence the controller can in both cases
avoid the firing of T3 in the discrete-time semantics. This
implies the following proposition.

Proposition 2. There is a TAPG and a safety objec-
tive where the controller has a winning strategy in the
discrete-time semantics but not in the continuous-time
semantics.

This indeed means that the continuous and discrete-
time semantics are incomparable and it makes sense to
consider both of them, depending on the concrete ap-
plication domain and whether we consider discretized
or continuous time. Nevertheless, there is a practically
relevant subclass of the problem where we consider
only urgent controllers and where the two semantics
coincide. This class contains, for example, all digital
circuit-controllers supervising a real-time environment
and other applications such as worst-case-optimal con-
troller synthesis for duration probabilistic automata [28].

We say that a given TAPG is with an urgent con-
troller if all controllable transitions are urgent, formally
Tctrl ⊆ Turg . For example the game net in Figure 3 is
with urgent controller as the two controllable transitions
are both urgent. We can now state our main result of this
section, showing that the discrete and continuous seman-
tics coincide for the subclass timed-arc Petri net games
with urgent controllers.

Theorem 1. Let G be a TAPG with urgent controller
and let ϕ be a safety objective. There is a winning con-
troller strategy for G and ϕ in the discrete-time seman-
tics iff there is a winning controller strategy for G and
ϕ in the continuous-time semantics.

4.1 Proof of Theorem 1

The rest of this section is now devoted to proving The-
orem 1. Clearly, if the urgent controller has a winning
strategy while the environment is allowed to make real-
time delays, it also has a winning strategy if the environ-
ment is only allowed to perform discrete-time delays. We
prove the opposite implication by showing that any uni-
versal evidence for nonexistence of a controller winning
strategy in the continous semantics can be translated
into such an evidence in discrete semantics (under the
restriction that we consider only urgent controllers). We
start by defining a witness for the fact that the controller
does not have a winning strategy. A witness can allow
for noninteger delays of the environmental moves and
the main development of the proof is based on showing
that such a witness can be transformed into another one
with integer delays only. We do so by translating a wit-
ness into a system of linear constraints consisting only of
difference constraints which guarantee that if the system
has a real solution then it also has an integer solution.

Let us first define a witness for the nonexistence of
a controller strategy for a given TAPG G with urgent
controller. The intuition of the witness is to provide a
strategy for the environment such that it considers all
possible choices of the controller. Thus, for the environ-
ment choices there are only singleton continuations (if
any), and for controller choices there is a multitude of
possible continuations.

Definition 6. A witness is a function γ : M(G) →
2M(G) for a marked TAPG G with urgent controller that
for every marking M defines the next possible markings

8 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

for the environment to consider. The function γ must
satisfy the following conditions for every M ∈M(G).

– If M 6|= ϕ then γ(M) = ∅.
– Else if there is no d ∈ R≥0 and no t ∈ T such that
M

d→M ′
t→ then γ(M) = ∅.

– Else if for all t ∈ Tctrl it holds that M
t

6→ then
γ(M) = {M ′} where for some d ∈ R≥0 and some

t ∈ Tenv it holds that M
d,t→M ′.

– Else
– either γ(M) = {M ′} such that M

t→M ′ for some
t ∈ Tenv , or

– γ(M) = {M ′ |M t→M ′, t ∈ Tctrl} provided that

there is at least one t ∈ Tctrl such that M
t→.

Let us note that as the controller is urgent, the cases
above enumerate all next markings to consider once we
fix some environmental strategy but still consider all pos-
sible controller moves.

Let π ∈ M(G)+ and by last(π) we denote the last
marking in the nonempty sequence of markings π. We
now define Γ0 = {M0} containing the initial marking
and Γk = {π ◦M | π ∈ Γk−1, M ∈ γ(last(π))}∪{π | π ∈
Γk−1, γ(last(π)) = ∅} such that Γk describes all possible
plays of length at most k under a fixed environmental
strategy.

Observe now that a witness γ disproves the existence
of any controller winning strategy for the objective ϕ iff
there is k ∈ N such that Γk = Γk+1 and for all π ∈ Γk
we have last(π) 6|= ϕ showing that every branch of the
tree eventually breaks ϕ. We call such a witness a counter
witness and denote Γk as P(γ). In what follows, whenever
the witness function γ for a given marking M returns a
set of next markings, we implicitly assume that we know
what time delay and transition was fired (according to
the definition of γ) in order to reach each individual
marking from γ(M).

Given a counter witness disproving the existence of
any controller winning strategy, we shall now construct a
linear constraint system describing a family of witnesses
while preserving the plays in P(γ) and alternating only
the delays during each play. The goal is to prove that
the delays can be altered into integer delays while still
preserving the counter witness. The technique of encod-
ing a net computation via a linear constraint system is
an adaption of the one used by Mateo et al. [32]. The
notation from [32] for describing the linear programs cor-
responding to a given trace in the system is reused but
generalized from a single trace to trees.

Let G be a marked TAPG with urgent controller,
and γ be a counter witness for the safety objective ϕ.
A counter witness tree is a graph where all plays from
P(γ) are organized such that they share prefixes and the
edges are labelled by a real-time delay and a transition
that was fired after the delay in order to reach the next
marking in the play (according to γ). An example of
a counter witness tree is given in Figure 5. Here the

solid edges correspond to the controller choices (with
the implicit delay 0 as we are restricted to an urgent
controller) and the dashed edges are the environmental
choices where arbitrary real-time delays are possible.

Remark 2. Strictly speaking, organizing the plays so
that they share prefixes, may result in the fact that
two different plays, after their prefixes diverged, can still
both converge later on the same marking M . Hence this
situation will not give us a tree structure as the node M
will have more than one parent. This is undesirable, so
we will implicitly assume that once plays in the game
started to differ after a common prefix, any possible
markings that are afterwards shared among such plays
will appear in the witness tree is several copies (one for
each such branch containing a shared marking).

The idea is now to create a constraint system from
the counter witness where the concrete delays are re-
placed by variables, and then solve the resulting con-
straint system and argue that there is an integer solution
to the system. Let us first construct a table Θ, assisting
us in creating this constraint system and reflecting the
classical firing rule of P/T nets (disregarding the timing
constraints for a moment).

The table Θ that serves as a documentation for the
counter witness γ and it is given in the form of a matrix
with m rows (representing tokens) where m is the max-
imum number of tokens in any marking in P(γ) and n
columns (representing markings in the counter witness
tree) where n is the total number of nodes in the counter
witness tree. Here we let M and M ′ to range over spe-
cific marking in the counter witness tree (columns) and
y range over the tokens in the markings (rows). As each
column of the table represents a single marking where
not necessarily all m tokens are used, we mark each field
Θy,M with either ⊥ (unused token) or the pair (p, f)
where p ∈ P represents the location of the token and
f ∈ {0, •} is a flag signalling whether the age of the
given token was reset to 0 or left unchanged (represented

by the value •). We let Θplace
y,M and Θflag

y,M to denote the
elements p and f of the pair of Θy,M , respectively.

We can now define the notion of a valid table.

Definition 7 (Valid table for a witness γ). Given a
counter witness γ with its corresponding witness tree, a
table Θ is valid if the following conditions are satisfied.

a) For the initial marking M0 =
{(p1, x1), (p2, x2), . . . , (pk, xk)}, it holds that
the first column of Θ with index M0 is given by

Θy,M0

def
= (py, xy) if 1 ≤ y ≤ k, and Θy,M0

def
= ⊥ if

k < y ≤ m.
b) For each column M in the table where M |= ϕ and an

edge M
d,t→M ′ in the witness tree, there are two sets

Consume, Produce ⊆ {1, 2, . . . ,m} of token indices
and a bijection U : {0, . . . ,m} → {0, . . . ,m} such
that

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 9

M0

M00

M01 M010 6|= ϕ

M000

M0000

M0001

M0002

M00010 6|= ϕ

M00000 6|= ϕ

M00020 6|= ϕ

up2

W1 3.0,Fail

1.4, track2

up3

W2

down1

1.6,Fail

1.6,Fail

1.6,Fail

Fig. 5: The tree representation of a counter witness for ϕ = Fail ≤ 0 for the example in Figure 1 where D = 3. The
labels of the edges indicate which place will receive a new token by delaying and firing the corresponding transition.
Dashed edges indicate the choices of the environment, solid edges are the controller choices (with default delay 0).

– Consume is giving the (indices of) tokens con-
sumed when the transition t was fired in the
marking M after the delay of d time units in order
to reach the marking M ′ and where it holds that
for all p ∈ •t we have w(p, t) = |{y ∈ Consume |
Θplace

y,M = p}|, and for all p ∈ P \ •t we have

{y ∈ Consume | Θplace
y,M = p} = ∅,

– Produce is giving the (indices of) tokens produced
in the column M ′ by firing the transition t and
where it holds that for all p ∈ t• we have w(t, p) =

|{y ∈ Produce | Θplace
y,M ′ = p}| and for all p ∈ P \ t•

we have {y ∈ Produce | Θplace
y,M ′ = p} = ∅, and

– the bijection U : {1 , . . . ,m} → {1 , . . . ,m} maps
the indices of column M to those in the column
M ′ such that

1. if |Consume| ≤ |Produce| and y ∈ Consume
then U(y) ∈ Produce,

2. if |Consume| ≥ |Produce| and U(y) ∈
Produce then y ∈ Consume,

3. if y ∈ Consume and Type((Θplace
y,M , t)) =

Transportj = Type((t, p′)) then U(y) = y and

Θplace
y,M ′ = p′,

4. if y ∈ {1 , . . . ,m} \ Consume and Θy,M 6= ⊥
then U(y) = y and Θplace

y,M ′ = Θplace
y,M ,

5. if y ∈ {1 , . . . ,m} \Consume and Θplace
y,M = ⊥

then either U(y) ∈ Produce, or U(y) = y and

Θplace
y,M ′ = ⊥, and

6. if ΘU(y),M ′ = ⊥ then y ∈ Consume or

Θplace
y,M ′ = ⊥.

– and for the column M ′ in the table holds:
– if Type((p, t)) = Inhib for some p ∈ P then

|{y ∈ {1 , . . . ,m} | Θplace
y,M = p}| < w(p, t)

– for all y ∈ Produce, if
Type((t, Θplacey,M ′)) = Normal then T flag

y,M ′ = 0

else T flag
y,M ′ = •, and

– if y /∈ Produce and Θy,M ′ 6= ⊥ then

T flag
y,M ′ = •.

We can now transform the counter witness tree from
Figure 5, into such a table, as presented in Table 1.

By following the indices, and the columns given by
the table, one can reconstruct an untimed version of the

tree given in Figure 5, verifying that the table encodes
a valid tree of traces in the classical untimed semantics
of Petri nets.

Each column of the table with index M now defines
the corresponding untimed marking u(M) as follows.

Definition 8 (Untimed marking for column M).
Let M be a column index in a valid table. We define the
untimed marking u(M)

def
= {Θplace

y,M ∈ P | 1 ≤ y ≤ m} as
a multiset of all places where a token is present in the
column M of the table.

From the construction, we can verify the validity of
the following lemma.

Lemma 1 (Untimed consistency of a valid table).
Let Θ be a valid table and M and M ′ two of its column

indices such that M
d,t→M ′. Then u(M)

t→ u(M ′) in the
classical (untimed) Petri net semantics.

While the construction so far preserves the movement
of tokens, it does not encode the restrictions of token
ages. We continue by encoding these timing constraints
imposed by guards, age invariants and urgency.

We introduce first some notation. Let M
d,t→ M ′ be

an edge in the witness tree. By eM we denote the global
execution time of the transition t, yielding the total time
elapsed since the computation started from the initial
marking until the transition t was fired. Note that if
t ∈ Tenv then from M there is a unique outgoing edge in
the witness tree and if t ∈ Tctrl then there can be several
outgoing edges but all delays on such edges are 0 as we
deal with urgent controller. Hence the global execution
time of firing t can be associated to the marking M . Now
we can define a shorthand age(y ,M) for the age of the
token given by the row y in a valid table for γ, just at
the moment of firing the transition t.

Definition 9 (Token-age expression). Let Θ be a
valid table for γ and let M be its column index. We
define age(y ,M), where 1 ≤ y ≤ m, as the expression

“ eM − eMj−1 ”

such that in the witness tree for γ with the branch
M0M1 . . .Mj−1MjMj+1 . . .Mi . . .Mk ∈ P(γ) where

10 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

M0 M00 M000 M0000 M00000 M0001 M00010 M0002 M00020 M01 M010

1 (R1 , 0) (R1 , •) (R1 , •) (R1 , •) (Fail, 0) (R1 , •) (Fail, 0) (R1 , •) (Fail, 0) (W1 , 0) (W1 , •)
2 (R2 , 0) (R2 , •) (R2 , •) (R2 , •) (R2 , •) (W2 , 0) (W2 , •) (R2 , •) (R2 , •) (R2 , •) (Fail, 0)
3 (R3 , 0) (R3 , •) (R3 , •) (R3 , •) (R3 , •) (R3 , •) (R3 , •) (R3 , •) (R3 , •) (R3 , •) (R3 , •)
4 (track1 , 0) (up2 , 0) (track2 , 0) (up3 , 0) (up3 , •) ⊥ ⊥ (down1 , 0) (down1 , •) ⊥ ⊥

Table 1: A valid table for the counter witness tree in Figure 5. The rows track the placement of the four tokens we
have in the game (here ⊥ means that a token is not present in the net). Otherwise each cell indicates where is the
token located (first coordinate) and whether its age did not change compared to the previous marking (the value •
in the second component) or if it was reset to the age 0 (again indicated in the second component).

M = Mi and it is the case that Θflag
y,Mj

= 0 and

Θflag
y,Mj+1

= Θflag
y,Mj+2

= . . . = Θflag
y,Mi

= •. By convention

M−1 is replaced with 0, such that i.e. age(y ,M0) = eM0
.

We can now construct a system of inequalities from
a valid table Θ.

Definition 10 (Constraint system). Let Θ be a
valid table for a counter witness γ. The constraint sys-
tem C for Θ is the set of inequations over the variables
eM where M is a column index of Θ and C is constructed
as follows. For each two column indices M and M ′ with

an edge M
d,t→M ′ in the witness tree for γ, we

– add to C the constraint eM ≤ eM ′ , and
– if Θplace

y,M = p and y ∈ Consume1 and (p, t) ∈ IA and
g((p, t)) = [`, u], we add ` ≤ age(y ,M) and if u 6=∞
also age(y ,M) ≤ u to C, and

– if M ′ enables some urgent transition then we add
eM ′ − eM = 0 to C.

If the initial marking enables some urgent transition then
we also add the constraint eM0

= 0. Finally, we add
the inequalities for age invariants such that for all y ∈
{1 , . . . ,m} and all column indices M :

– if Θplace
y,M = p and I (p) = [0, u] where u ∈ N0, we add

the inequality age(y ,M) ≤ u to C.

Given our witness from Figure 5, translated into a
valid table in Table 1, we can now construct the con-
straint system as follows. In order to simplify the nota-
tion, we shall write e.g. e010 instead of eM010

.

– First, we add the inequalities for preserving the or-
dering of transition in the witness tree:

e0 ≤ e00, e00 ≤ e000, e000 ≤ e0000, e0000 ≤ e00000

e000 ≤ e0001, e0001 ≤ e00010

e000 ≤ e0002, e0002 ≤ e00020

e0 ≤ e01, e01 ≤ e010 .

1 The set Consume for the edge M
d,t→ M ′ was fixed in Defini-

tion 7, part b).

– For the nontrivial age invariants, we add

age(2 ,M0001) ≤ 4, age(2 ,M00010) ≤ 4

age(1 ,M01) ≤ 4, age(1 ,M010) ≤ 4

age(4 ,M00) ≤ 2, age(4 ,M0000) ≤ 2

age(4 ,M00000) ≤ 2, age(4 ,M0002) ≤ 2

age(4 ,M00020) ≤ 2

that expand to

e0001 − e000 ≤ 4, e00010 − e000 ≤ 4

e01 − e0 ≤ 4, e010 − e0 ≤ 4

e00 − e0 ≤ 2, e0000 − e000 ≤ 2

e00000 − e000 ≤ 2, e0002 − e000 ≤ 2

e00020 − e0002 ≤ 2 .

– For urgency, we add the constraints

e0 = 0, e000 − e00 = 0 .

– Finally for the guards on input arcs, we add the con-
straints

1 ≤ age(4 ,M00) ≤ 2, 3 ≤ age(1 ,M0000) ≤ 3

3 ≤ age(1 ,M0001) ≤ 3, 3 ≤ age(1 ,M0002) ≤ 3

3 ≤ age(2 ,M01) ≤ 3

that expand to

1 ≤ e00 − e0 ≤ 2, 3 ≤ e0000 ≤ 3

3 ≤ e0001 ≤ 3, 3 ≤ e0002 ≤ 3

3 ≤ e01 ≤ 3 .

One can verify that the original global real-time de-
lays from Figure 5 form a solution of the constructed con-
straint system: e0 = 0, e00 = 1.4, e000 = 1.4, e0000 = 3.0,
e00000 = 3.0, e0001 = 3.0, e00010 = 3.0, e0002 = 3.0,
e00020 = 3.0, e01 = 3.0, e010 = 3.0 Moreover, the con-
structed equation system also has an integer solution
(this is not only a coincidence), e.g. e0 = 0, e00 = 2,
e000 = 2, e0000 = 3, e00000 = 3, e0001 = 3, e00010 = 3,
e0002 = 3, e00020 = 3, e01 = 3, e010 = 3 and such a so-
lution also forms a counter witness in our TAPG with
urgent controller.

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 11

Lemma 2. Let γ be a counter witness for a TAPG G
and the safety objective ϕ.

a) There is a valid table Θ for γ and the corresponding
constraint system C has a solution.

b) Let eM where M ranges over the columns of
Θ be another solution of C. Then for any play

M0M1M2 . . .Mk ∈ P(γ) such that M0
d0,t0→ M1

d1,t1→
M2

d2,t2→ . . .Mk, the same sequence of transi-
tions t0, t1, t2, . . . , tk−1 can be fired from M0 with

the following delays: M0

eM0
,t0→ M ′1

eM1
−eM0

,t1→
M ′2

eM2
−eM1

,t2→ . . .M ′k such that Mi |= ϕ iff M ′i |= ϕ.
c) The constraint system C has an integer solution.

Proof. a) From the requirements for a valid table,
Lemma 1 and the construction of the constraint system,
we can by case analysis verify that if we define eMi

=
d0 + d1 + . . . + di in the play M0M1M2 . . .Mi . . .Mk ∈
P(γ) where M0

d0,t0→ M1
d1,t1→ M2

d2,t2→ . . .Mi
di,ti→ . . .Mk,

then this forms a solution for the system C. Hence by
considering the timing given in the counter witness tree,
we have a solution for the constraint system.

b) On the other hand, we notice that the system C
contains all the timing constraints that are necessary for
successfully executing all the transitions in the counter
witness tree and for producing valid plays. Then simply
computing the relative delays before a transition firing
can be done by subtracting from the global execution
time when the transition is fired the global execution
time of the transition that we fired right before. Clearly,
as both Mi and M ′i where achieved by firing the same
sequence of transitions with just different delays, they
have the same token distribution and hence Mi |= ϕ iff
M ′i |= ϕ.

c) As the constraint system C uses only difference
constraints (difference of at most two variables is com-
pared with a constant), it falls within the special subset
of linear programming problems with totally unimodu-
lar matrices [13]. For this specific subclass, solving the
constraint-system reduces to a shortest-path problem
with integer weights only. This reduction implies that
an integer solution of such a system exists [14,22], pro-
vided that the system is solvable, which it is by part a)
of the lemma. ut

From Lemma 2 we have that if it is possible to con-
struct a counter witness for the existence of a controller
strategy in the continuous-time semantics, then we can
translate such a counter witness into a counter witness
with integer delays only. This concludes the proof of The-
orem 1.

5 Discrete-Time Algorithm for Synthesis

We shall now define the discrete-time algorithm for syn-
thesising controller strategies for TAPGs. As the state-

space of a TAPG is infinite in several aspects (the num-
ber of tokens in reachable markings can be unbounded
and even for bounded nets the ages of tokens can be ar-
bitrarily large), the question of deciding the existence of
a controller strategy is in general undecidable (already
the classical reachability is undecidable [37] for TAPNs).

We address undecidability by fixing a constant k,
bounding the number of tokens in any marking reached
by the controller strategy. This means that instead of
checking the safety objective ϕ, we verify instead the
safety objective ϕk = ϕ ∧ k ≥

∑
p∈P p that at the same

time ensures that the total number of tokens is at most
k. This will, together with the extrapolation technique
below, guarantee the termination of the algorithm. We
note that in case the net is bounded, there is always
some constants k for which checking the property ϕk is
equivalent to the original safety property ϕ and hence
the analysis is both sound and complete in this case.

5.1 Extrapolation of TAPGs

We shall now recall a few results from [2] that allow us to
make finite abstractions of bounded nets (in the discrete-
time semantics). The theorems and lemmas in the rest
of this section also hold for continuous-time semantics,
however, the finiteness of the extrapolated state space is
not guaranteed in this case.

Let G = (P, T, Tenv , Tctrl , Turg , IA,OA, g ,w ,Type, I)
be a TAPG. In [2] the authors provide an algorithm for
computing a function Cmax : P → (N0∪{−1}) returning
for each place p ∈ P the maximum constant associated
to this place, meaning that the ages of tokens in place
p that are strictly greater than Cmax(p) are irrelevant.
The function Cmax(p) for a given place p is computed
by essentially taking the maximum constant appearing
in any outgoing arc from p and in the place invariant of
p, where a special care has to be taken for places with
outgoing transport arcs (details are discussed in [2]). In
particular, places where Cmax(p) = −1 are the so-called
untimed places where the age of tokens is not relevant
at all, implying that all the intervals on their outgoing
arcs are [0,∞].

Let M be a marking of G. We split
it into two markings M> and M≤ where
M>(p) = {x ∈M(p) | x > Cmax(p)} and M≤(p) =
{x ∈M(p) | x ≤ Cmax(p)} for all places p ∈ P . Clearly,
M = M>]M≤.

We say that two markings M and M ′ in the net G
are equivalent, written M ≡ M ′, if M≤ = M ′≤ and for
all p ∈ P we have |M>(p)| = |M ′>(p)|. This means that
for tokens with ages below the maximum constants M
and M ′ agree and also on the number of tokens above
the maximum constant. Let us here introduce the no-
tion of timed bisimilarity (we refer e.g. to [29] for more
information).

12 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

Definition 11 (Timed Bisimulation). A binary re-
lation R over the markings is a timed bisimulation if for
any two markings such that MRM̂ we have

– if M
d→M ′ then M̂

d→ M̂ ′ such that M ′RM̂ ′,
– if M̂

d→ M̂ ′ then M
d→M ′ such that M ′RM̂ ′,

– if M
t→M ′ then M̂

t→ M̂ ′ such that M ′RM̂ ′, and

– if M̂
t→ M̂ ′ then M

t→M ′ such that M ′RM̂ ′.

This means that delays and transition firings on one side
can be matched by exactly the same delays and transi-
tion firings on the other side and vice versa.

We can now see that the above defined relation ≡ is
an equivalence relation and it is also a timed bisimula-
tion.

Theorem 2 ([2]). The relation ≡ is a timed bisimula-
tion.

We can now define a function computing canonical
representatives for each equivalence class of ≡.

Definition 12 (Cut). Let M be a marking. We define
its canonical marking cut(M) by cut(M)(p) = M≤(p)]{

Cmax(p) + 1, . . . ,Cmax(p) + 1︸ ︷︷ ︸
|M>(p)| times

}
.

The idea of cut is to utilize our knowledge from Theo-
rem 2 that for any two markings which are timed bisim-
ilar, it is sufficient to only do computations on one of
them. The cut function takes this one step further and
defines, for a group of bisimilar markings, a single canon-
ical representative M capable of exhibiting the same be-
haviour as any marking M ′ where M = cut(M ′).

Lemma 3 ([2]). Let M , M1 and M2 be markings. Then
(i) M ≡ cut(M), and (ii) M1 ≡ M2 if and only if
cut(M1) = cut(M2).

Note that as our safety objective ϕ deals only with
the number of tokens in places but not with their actual
ages, we get that M |= ϕ if and only if cut(M) |= ϕ for
any marking M .

5.2 The Algorithm

After having introduced the extrapolation function cut
and our enforcement of the k-bound, we can now de-
sign an algorithm for computing a controller strategy σ,
provided such a strategy exists.

Algorithm 1 describes a discrete-time method to
check if there is a controller strategy or not. It is cen-
tered around four data structures: Waiting set for stor-
ing markings to be explored, Losing set that contains
marking where such a strategy does not exist, Depend
function for maintaining the set of dependencies to be
reinserted to the waiting list whenever a marking is

declared as losing, and Processed set for already pro-
cessed markings. All markings in the algorithm are al-
ways considered modulo the cut extrapolation. The algo-
rithm performs a forward search by repeatedly selecting
a marking M from Waiting and if it can determine that
the controller cannot win from this marking, then M
gets inserted into the set Losing while the dependencies
of M are put to the set Waiting in order to backward
propagate this information. If the initial marking is ever
inserted to the set Losing , we can terminate and an-
nounce that a controller strategy does not exist. If this
is not the case and there are no more markings in the set
Waiting , then we terminate with success. In this case, it
is also easy to construct the controller strategy by mak-
ing choices so that the set Losing is avoided.

To prove that our algorithm is correct, we prove ter-
mination, soundness, and completeness.

Lemma 4 (Termination). Algorithm 1 terminates.

Proof. Let us first argue that the sets Waiting , Losing
and Processed can contain only an a priori bounded num-
ber of markings. To see this, we observe that markings
added to Processed and Losing are only those that were
previously removed from Waiting . Therefore it is suffi-
cient to show that the number of different markings in
Waiting is bounded. From the definition of ϕk at line 2,
we can see that a marking satisfies ϕk only if is has at
most k tokens and due to the test at line 23, only such
markings can be inserted to Waiting . For the given num-
ber k, we notice that there are only finitely many extrap-
olated (by the function cut) markings with at most k to-
kens. Hence the set Waiting can contain only a bounded
number of different extrapolated markings.

Unless the test at line 4 succeeds and we immediately
terminate due to the check at line 8, the following invari-
ant will hold during the execution of the main while-loop
at lines 8 to 26: Waiting ∩ Losing = ∅. This is due to
the fact that at every line where we add markings to
Waiting (lines 15, 19 and 25), we are guaranteed that
such markings are not in the set Losing , and we only
add a new marking to Losing (lines 14 and 18) when the
marking was just popped from Waiting at line 9. Simi-
larly, it is easy to observe that during the execution of
the algorithm, the sets Losing and Processed are only
growing (there are no lines that ever remove elements
from these sets).

In each iteration of the while-loop, we can observe
that the size of the set Waiting is either decreased by
popping an element at line 9, or if new elements are
added to Waiting then either the cardinality of Losing
or Processed increases by one. We show that by analysing
the lines where new elements are possibly added to
Waiting . This can happen at lines 15 and 19 but at the
previous lines 14 and 18, respectively, the marking M got
inserted into Losing . Because this M was just popped
from Waiting at line 9 and due to the previously intro-
duced fact that Waiting ∩Losing = ∅, the cardinality of

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 13

Algorithm 1: Safety Synthesis Algorithm

Input: A TAPG G = (P, T, Tenv , Tctrl , Turg , IA,OA, g ,w ,Type, I), initial marking M0, a safety objective ϕ, a bound k.
Output: tt if there exists a controller strategy ensuring ϕ from M0 and not exceeding k tokens in any intermediate

marking, ff otherwise
1 begin
2 Waiting := Losing := Processed := ∅; ϕk = ϕ ∧ k ≥

∑
p∈P p;

3 M ← cut(M0); Depend [M]← ∅;
4 if M 6|= ϕk then
5 Losing ← {M}
6 else
7 Waiting ← {M}
8 while Waiting 6= ∅ ∧ cut(M0) 6∈ Losing do
9 M ← pop(Waiting);

10 Succsenv := {cut(M ′) | t ∈ Tenv , M
t→M ′};

11 Succsctrl := {cut(M ′) | t ∈ Tctrl , M
t→M ′};

12 Succsdelay :=

∅ if M
1

6→
{cut(M ′)} if M

1→M ′

13 if ∃M ′ ∈ Succsenv s.t. M ′ 6|= ϕk ∨M ′ ∈ Losing then
14 Losing ← Losing ∪ {M};
15 Waiting ← (Waiting ∪Depend [M]) \ Losing ;

16 else
17 if Succsctrl ∪ Succsdelay 6= ∅ ∧ ∀M ′ ∈ Succsctrl ∪ Succsdelay. M ′ 6|= ϕk ∨M ′ ∈ Losing then
18 Losing ← Losing ∪ {M};
19 Waiting ← (Waiting ∪Depend [M]) \ Losing ;

20 else
21 if M 6∈ Processed then
22 foreach M ′ ∈ (Succsctrl ∪ Succsenv ∪ Succsdelay) do
23 if M ′ 6∈ Losing ∧M ′ |= ϕk then
24 Depend [M ′]← Depend [M ′] ∪ {M};
25 Waiting ←Waiting ∪ {M ′};
26 Processed ← Processed ∪ {M};
27 return tt if cut(M0) 6∈ Losing, else ff

Losing is so increased. Another place where a new mark-
ing can be added to Waiting is at line 25. However, in
this case we know that M 6∈ Processed due to the test at
line 21, and this implies that by executing line 26, the
cardinality of the set Processed increased.

In summary, in each iteration of the while-loop ei-
ther the size of Waiting decreases and if not then either
the cardinality of Losing or Processed increases. As these
sets are a priori bounded, we know that eventually the
set Waiting becomes empty and the algorithm termi-
nates (unless the algorithm already terminated due to
the successful check cut(M0) ∈ Losing at line 8). ut

Having proved the termination, we now continue by
proving soundness.

Lemma 5 (Soundness). If Algorithm 1 returns ff
then there is no controller winning strategy from M0 for
the safety objective ϕk = ϕ ∧ k ≥

∑
p∈P p.

Proof. We prove the lemma by establishing the invari-
ant claiming that there is no controller winning strategy
for any marking ever inserted into the set Losing . By ob-
serving that the algorithm returns ff only if cut(M0) ∈

Losing and the fact that by Theorem 2 the marking
cut(M0) is losing if and only if M0 is losing (note that
our safety logic only queries the number of tokens in
places but not their actual ages), this will conclude the
proof of this lemma.

The invariant clearly holds before the while-loop is
entered as Losing is empty. Assume now that the set
Losing contains markings for which the controller has no
strategy to satisfy ϕk and that we add a new marking M
to the set Losing . We want to argue that the controller
does not have a winning strategy from the marking M .
A new marking M can be added only at lines 14 or 18.

– If the marking M was added to Losing at line 14
then surely, by the test at line 13, there is an envi-

ronmental transition M
t→ M ′ with t ∈ Tenv such

that cut(M ′) 6|= ϕk (and hence also M ′ 6|= ϕk) or
cut(M ′) ∈ Losing . Hence, clearly the controlled can-
not have a winning strategy from M as the environ-
ment can force the computation to the marking M ′

that either breaks the safety formula ϕk or cut(M ′)
belongs to Losing that contains only markings from
which controller cannot win and as cut(M ′) is los-

14 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

ing for the controller, so is the marking M ′ by using
Theorem 2.

– If the marking M was added to Losing at line 18
then the environment can let the controller to act
fromM , implying that the controller has to either fire

some t ∈ Tctrl such that M
t→ M ′ or perform a unit

delay such that M
1→M ′ and in both situations the

controller cannot win from M ′ as in the previous case
because either cut(M ′) 6|= ϕk or cut(M ′) ∈ Losing .

The soundness of the approach is hence introduced. ut

Finally, we can present the completeness lemma.

Lemma 6 (Completeness). If Algorithm 1 returns tt
then the controller has a winning strategy from M0 for
the safety objective ϕk = ϕ ∧ k ≥

∑
p∈P p.

Proof. Assume that Algorithm 1 returns tt . We shall de-
fine a winning strategy for the controller starting from
the initial marking M0. Note that as we consider here
discrete-time semantics, it is enough for each marking
M visited during a play to determine whether the con-
troller’s strategy should suggest (i) to fire some control-
lable transition without any delay, (ii) to perform a delay
of one time unit, or (iii) to do nothing (allowed only if
none of the options (i) and (ii) are possible). Such a
strategy can, in a straightforward way, be extended to
the controller strategy as defined in Section 3.1 that pro-
poses from a marking M to delay d time units followed
by firing of a controllable transition, or to wait for ever.
In what follows, we shall define a winning strategy for
the controller from a marking M by defining it for the
marking cut(M). By Theorem 2 such a strategy from
cut(M) is a valid winning strategy also for the marking
M .

The intuition behind the controller strategy is to
make sure that any play includes only markings M such
that cut(M) ∈ Processed r Losing (in the rest of this
proof we consider the sets Processed and Losing after the
termination of the algorithm). By examining that the set
Processed contains only markings that were previously
in Waiting and that any marking inserted into Waiting
at line 25 must satisfy the proposition ϕk because of the
check at line 23 (the markings inserted to Waiting at
lines 15 and 19 were in the set Waiting earlier), we can
see that all markings in Processed r Losing satisfy the
formula ϕk. Hence staying in ProcessedrLosing is a safe
controller strategy.

Let us so assume a marking M ∈ Processed rLosing .
We shall now determine whether the controller should
propose to fire some controllable transition enabled in
M , to delay in M for one time unit, or to do nothing.
There are three cases to consider.

– If M
1→M ′ such that cut(M ′) ∈ Processed r Losing

then the controller will propose to delay for one time
unit. Clearly, there cannot be any t ∈ Tenv with

M
t→ M ′′ where M ′′ 6|= ϕk or cut(M ′′) ∈ Losing

as otherwise this would be detected at line 13 and
it would imply that M ∈ Losing (due to the back-
propagation of this fact at line 15). This contradicts
our assumption that M ∈ Processed r Losing and
hence the controller’s choice to delay one time unit
is safe here.

– If M
1→ M ′ but cut(M ′) 6∈ Processed r Losing

then as cut(M ′) was surely processes due to the
classical forward search implemented at lines 21 to
25, this can only be possible if cut(M ′) ∈ Losing .
As the fact that a marking is added to Losing is
back-propagated at lines 15 and 19, and because
M 6∈ Losing , we know due to the test at line 17 there

is at least one t ∈ Tctrl such that M
t→M ′′ such that

M ′′ |= ϕk and cut(M ′′) 6∈ Losing . Should this not
be the case, then M would end up in the set Losing
at line 18. This contradicts our initial assumption
that M ∈ Processed r Losing . The controller can in
this case propose to fire one of such transitions t dis-
cussed above and the resulting marking will belong to
Processed r Losing . Clearly, as in the previous case,
any environmental transition enabled in M must also
lead to a marking from Processed r Losing .

– If M 6 1→ then as before any environmental transition
from M leads to a marking from Processed r Losing
and if some controller transition is enabled at M then
at least one such transition will bring us, by argu-
ments already given above, to Processed r Losing .

We have so defined a controller strategy that will visit
only markings from Processed r Losing and hence it is
a winning controller strategy for the objective ϕk. ut

We are now ready to state the correctness of our
algorithm that follows from Lemmas 4, 5 and 6.

Theorem 3 (Correctness). Algorithm 1 terminates
and returns tt if and only if there is a controller strategy
for the safety objective ϕk = ϕ ∧ k ≥

∑
p∈P p.

Clearly, if the input Petri net game is k-bounded
(there is no reachable marking with more than k tokens)
then a marking satisfies ϕk if and only if it satisfies ϕ
and hence our algorithm decides the existence of the con-
troller winning strategy for the safety objective ϕ (in the
discrete-time semantics). For unbounded nets, the exis-
tence of such a controller winning strategy is undecid-
able (already the reachability problem is undecidable for
timed-arc Petri nets under discrete-time semantics [37])
but our algorithm can possibly find a controller winning
strategy for the objective ϕ that visits only markings
with a bounded number of tokens even for games on
unbounded timed-arc Petri nets. There can though still
be other controller winning strategies that may require
an unbounded number of tokens in the visited markings.
Such strategies will not be discovered by our algorithm.

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 15

1 Stream D = 133 D = 173 D = 213 D = 253 D = 293 D = 333 D = 373
Tracks 70 90 110 130 150 170 190

TAPAAL 16.86s 36.84s 69.55s 119.68s 182.60s 271.82s 376.48s
UPPAAL 36.41s 76.63s 193.37s 351.17s 509.46s 1022.83s 1604.04s

2 Streams D = 19 D = 27 D = 35 D = 43 D = 51 D = 59 D = 67
Tracks 6 8 10 12 14 16 18

TAPAAL 1.17s 5.61s 19.13s 49.23s 114.23s 225.38s 426.99s
UPPAAL 19.11s 93.46s 436.15s 1675.85s 3328.66s � �

3 Streams D = 17 D = 21 D = 25 D = 29 D = 35 D = 39 D = 43
Tracks 3 4 5 6 7 8 9

TAPAAL 1.30s 8.5s 38.16s 129.27s 454.08s 1153.65s �
UPPAAL 885.56s � � � � � �

Table 2: Time in seconds to find a controller strategy for the disk operation scheduling for the smallest D where such
a strategy exists.

6 Experiments

The discrete-time controller synthesis algorithm was im-
plemented in the tool TAPAAL [15] and we evaluate
the performance of the implementation by comparing it
to UPPAAL TiGa [3] version 0.18, the state-of-the-art
continuous-time model checker for timed games. The ex-
periments were run on AMD Opteron 6376 processor
limited to using 19 GB of RAM2 and with one hour
timeout (denoted by �).

Compared to our experiments presented at [24], the
performance of TAPAAL improved as we now use a more
efficient PTrie [26] implementation that is both faster
and has a smaller memory foot-print than the one used
in [24].

6.1 Disk Operation Scheduling

In the disk operation scheduling model presented in Sec-
tion 2 we scale the problem by changing the number of
tracks and the number of simultaneous read streams. An
equivalent model using the timed automata formalism
was created for UPPAAL TiGa. We then ask whether
a controller exists respecting a fixed deadline D for all
requests. For each instance of the problem, we report the
computation time for the smallest deadline D such that
it is possible to synthesize a controller. Notice that the
disk operating scheduling game net has an urgent con-
troller, hence the discrete and continuous-time semantics
coincide.

The results in Table 2 show that our algorithm scales
considerably better than TiGa (that suffers from the
large fragmentation of zone federations) as the number of
tracks increases (by which we scale the size of the prob-
lem) and it is significantly better when we add more
read streams (by which we scale the concurrency and
consequently also the number of timed tokens/clocks).

2 UPPAAL TiGa only exists in a 32 bit version, but for none of
the tests the 4GB limit was exceeded for UPPAAL TiGa.

6.2 Infinite Job Shop Scheduling

In our second experiment, infinite job shop scheduling,
we consider the duration probabilistic automata [31].
Kempf et al. [28] showed that ”non-lazy” schedulers are
sufficient to guarantee optimality in this class of au-
tomata. Here non-lazy means that the controller only
chooses what to schedule at the moment when a run-
ning task has just finished (the time of this event is de-
termined by the environment). We here consider a vari-
ant of this problem that should guarantee an infinite
(cyclic) scheduling in which processes—while compet-
ing for resources—must meet their deadlines. The count-
down of a process is started when its first task is initiated
and the process deadline is met if the process is able to
execute its last task within the deadline. After such a
completed cycle, the process starts from its initial con-
figuration and the deadline-clock is restarted. The task
of the controller is to find a schedule such that all pro-
cesses always meet their deadline. The problem can be
modelled using urgent controller, in which case the dis-
crete and continuous-time semantics coincide.

The problem is scaled by the number of parallel pro-
cesses, number of tasks in each processes and the size
of constants used in guards (except the deadline D that
contains a considerably larger constant). For each set of
scaling parameters, we generated 100 random instances
of the problem and report on the number of cases where
the tool answered the synthesis problem (within one
hour deadline) and if more than 50 instances were solved,
we also compute the median of the running time.

The comparison with UPPAAL TiGa in Table 3
shows a trend similar to the previous experiment. Our al-
gorithm scales nicely as we increase the number of tasks
as well as the number of processes. This is due to the fact
that the zone fragmentation in TiGa increases with the
number of parallel components and more distinct guards.
When scaling the size of constants, the performance of
the discrete-time method gets worse and eventually UP-
PAAL TiGa can solve more instances.

16 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

2 Processes/7-13 tokens

Max Age 10 Tasks 12 Tasks 14 Tasks 16 Tasks 18 Tasks

5 (100) 54s (100) 118s (100) 238s (100) 464s (100) 661s
D ≤ 144 (100) 100s (98) 413s (85) 1201s (35) � (18) �
10 (100) 270s (100) 699s (98) 1281s (87) 2370s (28) �
D ≤ 288 (96) 221s (69) 1443s (43) � (16) � (1) �
15 (100) 852s (85) 2043s (28) � (15) � (5) �
D ≤ 432 (87) 315s (60) 1960s (19) � (8) � (0) �
20 (84) 1982s (23) � (14) � (4) � (2) �
D ≤ 576 (90) 554s (66) 2914s (34) � (4) � (1) �

3 Processes/10-19 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks

5 (100) 2s (100) 33s (100) 295s (71) 1375s (42) �
D ≤ 57 (99) 16s (69) 1827s (4) � (0) � (0) �
10 (100) 14s (99) 328s (50) 3538s (20) � (8) �
D ≤ 114 (98) 32s (52) 3338s (6) � (0) � (0) �
15 (100) 44s (73) 1052s (32) � (6) � (1) �
D ≤ 171 (98) 27s (50) � (1) � (0) � (0) �

4 Processes/13-25 tokens

Max Age 2 Tasks 3 Tasks 4 Tasks 5 Tasks 6 Tasks

5 (95) 178s (35) � (9) � (1) � (0) �
D ≤ 66 (3) � (0) � (0) � (0) � (0) �
10 (62) 1805s (12) � (3) � (0) � (0) �
D ≤ 132 (0) � (0) � (0) � (0) � (0) �

Table 3: Results for infinite scheduling of DPAs. The first row in each age-instance is TAPAAL, the second line is
UPPAAL TiGa. The format is (X) Y s where X the number of solved instances (within 3600 seconds) out of 100 and
Y is the median time needed to solve the problem. The largest possible constant for each row is given as an upper
bound of the deadline D.

2 Yogurts/9 tokens 3 Yogurts/13 tokens

Scale UPPAAL TAPAAL UPPAAL TAPAAL

1/6 1.10s 0.22s � 95.44s

1/3 1.11s 5.64s � OOM

1/2 1.12s 42.68s � OOM

2/3 1.15s 231.29s � OOM

5/6 1.11s 656.10s � OOM

1/1 1.11s OOM � OOM

Table 4: Results for the office fridge example from Fig-
ure 3 where constants are scaled by the given factor. We
limit the number of tokens in the net to 9 or 13. Time is
given in seconds, OOM signifies that the tool exceeded
the memory-limitation (19 GB) and � indicates that
more than one hour of computation time was used.

6.3 Office Fridge Example

As the last experiment, we return to our motivating ex-
ample from Figure 3. In this experiment, we scale all
constants in the model by the factors of 1

6 , 1
3 , 1

2 , 2
3 , 5

6
and 1. We also scale the number of yogurts from 2 to 3—
this also changes the weight on the transport-arc from
Fridge to Eat to 3.

As illustrated in Table 4, our algorithm is sensitive
to the size of the constants. This is expected as the algo-

rithm uses an explicit exploration of the discrete state-
space. We observe that eventually our algorithm runs
out of memory—in particular with the exact values as
provided in Figure 3. Compared to UPPAAL TiGa, it
is apparent that the symbolic approach does not suffer
from scaling the sizes of constants, however, it exceeds
the one hour timeout for the case of 3 yogurts while we
can still solve this problem for the scaling factor 1

6 .

7 Conclusion

We introduced timed-arc Petri net games and showed
that for urgent controllers, the discrete and continuous-
time semantics coincide. The presented discrete-time
method for solving timed-arc Petri net games scales con-
siderably better with the growing size of problems, com-
pared to the existing symbolic methods. On the other
hand, symbolic methods scale better with the size of
the constants used in the model. In the future work, we
may try to compensate for this drawback by using ap-
proximate techniques that “shrink” the constants to rea-
sonable ranges while still providing conclusive answers
in many cases, as demonstrated for pure reachability
queries in [6]. Another future work includes the study of
different synthesis objectives, as well as the generation

Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games 17

of continuous-time strategies from discrete-time analysis
techniques on the subclass of urgent controllers.

Acknowledgments. The research leading to these results
has received funding from the project DiCyPS funded
by the Innovation Fund Denmark, the Sino Danish Re-
search Center IDEA4CPS and the ERC Advanced Grant
LASSO. The third author is partially affiliated with FI
MU, Brno, Czech Republic.

References

1. R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, Apr. 1994.

2. M. Andersen, H. Larsen, J. Srba, M. Sørensen, and
J. Taankvist. Verification of liveness properties on closed
timed-arc Petri nets. In Mathematical and Engineering
Methods in Computer Science: 8th International Doc-
toral Workshop, vol. 7721 of LNCS. Springer, 2013.

3. G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G.
Larsen, and D. Lime. Uppaal-tiga: Time for playing
games! In Computer Aided Verification: 19th Interna-
tional Conference, vol. 4590 of LNCS. Springer, 2007.

4. G. Behrmann, A. David, K. Larsen, J. Hakansson, P. Pet-
terson, W. Yi, and M. Hendriks. Uppaal 4.0. In Third
International Conference on Quantitative Evaluation of
Systems, 2006.

5. B. Berthomieu and F. Vernadat. Time Petri nets analysis
with TINA. In Third International Conference on Quan-
titative Evaluation of Systems. IEEE Computer Society,
2006.

6. S. Birch, T. Jacobsen, J. Jensen, C. Moesgaard,
N. Samuelsen, and J. Srba. Interval abstraction refine-
ment for model checking of timed-arc Petri nets. In
Formal Modeling and Analysis of Timed Systems: 12th
International Conference, vol. 8711 of LNCS. Springer,
2014.

7. T. Bolognesi, F. Lucidi, and S. Trigila. From Timed Petri
Nets to Timed LOTOS. In Protocol Specification, Test-
ing and Verification X, Proceedings of the IFIP WG6.1
Tenth International Symposium on Protocol Specifica-
tion. North-Holland, 1990.

8. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis,
and S. Yovine. Kronos: A model-checking tool for real-
time systems. In Computer Aided Verification: 10th In-
ternational Conference, vol. 1427 of LNCS, 1998.

9. M. Bozga, O. Maler, and S. Tripakis. Efficient verifica-
tion of timed automata using dense and discrete time
semantics. In Correct Hardware Design and Verification
Methods: 10th IFIP WG10.5 Advanced Research Work-
ing Conference, vol. 1703 of LNCS. Springer, 1999.

10. F. Cassez, A. David, E. Fleury, K. G. Larsen, and
D. Lime. Efficient on-the-fly algorithms for the analysis
of timed games. In Concurrency Theory: 16th Interna-
tional Conference, vol. 3653 of LNCS. Springer, 2005.

11. A. Church. Application of recursive arithmetic to the
problem of circuit synthesis. Journal of Symbolic Logic,
1963.

12. A. Church. Logic, arithmetic, and automata. In Proc. In-
ternat. Congr. Mathematicians (Stockholm, 1962). Inst.
Mittag-Leffler, 1963.

13. J. Cong, B. Liu, and Z. Zhang. Scheduling with soft con-
straints. In Proceedings of the 2009 International Con-
ference on Computer-Aided Design, Nov 2009.

14. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. third edition., 2009.

15. A. David, L. Jacobsen, M. Jacobsen, K. Jørgensen,
M. Møller, and J. Srba. TAPAAL 2.0: Integrated devel-
opment environment for timed-arc Petri nets. In Tools
and Algorithms for the Construction and Analysis of Sys-
tems: 18th International Conference, vol. 7214 of LNCS.
Springer, 2012.

16. D. Dill. Timing assumptions and verification of finite-
state concurrent systems. In Automatic Verification
Methods for Finite State Systems: International Work-
shop, vol. 407 of LNCS. Springer, 1990.

17. B. Finkbeiner. Bounded synthesis for Petri games. In
Correct System Design: Symposium in Honor of Ernst-
Rüdiger Olderog on the Occasion of His 60th Birthday,
vol. 9360 of LNCS. Springer, 2015.

18. B. Finkbeiner and E. Olderog. Petri games: Synthesis of
distributed systems with causal memory. In Proceedings
Fifth International Symposium on Games, Automata,
Logics and Formal Verification, vol. 161 of EPTCS, 2014.

19. B. Finkbeiner and H. Peter. Template-based controller
synthesis for timed systems. In Tools and Algorithms for
the Construction and Analysis of Systems: 18th Interna-
tional Conference, vol. 7214 of LNCS. Springer, 2012.

20. G. Gardey, D. Lime, M. Magnin, and O. Roux. Romeo:
A tool for analyzing time Petri nets. In Computer Aided
Verification: 17th International Conference, vol. 3576 of
LNCS. Springer, 2005.

21. H. Hanisch. Analysis of Place/Transition Nets with
Timed Arcs and its Application to Batch Process Con-
trol. In Application and Theory of Petri Nets 1993: 14th
International Conference, vol. 691 of LNCS. Springer,
1993.

22. A. Hoffman and J. Kruskal. Integral boundary points
of convex polyhedra, in Linear Inequalities and Related
Systems (H. Kuhn and A. Tucker, Eds.). Annals of
Maths. Study, 1956.

23. S. Jacobs, R. Bloem, R. Brenguier, R. Könighofer, G. A.
Pérez, J. Raskin, L. Ryzhyk, O. Sankur, M. Seidl, L. Ten-
trup, and A. Walker. The second reactive synthesis
competition (SYNTCOMP 2015). In Proceedings of the
Fourth Workshop on Synthesis (SYNT’15), vol. 202 of
EPTCS, 2016.

24. P. G. Jensen, K. G. Larsen, and J. Srba. Real-time
strategy synthesis for timed-arc Petri net games via dis-
cretization. In Proceedings of the 23rd International
Symposium on Model Checking Software (SPIN’16), vol.
9641 of LNCS. Springer, 2016.

25. P. G. Jensen, K. G. Larsen, and J. Srba. PTrie: Data
structure for compressing and storing sets via prefix shar-
ing. In Proceedings of the 14th International Colloquium
on Theoretical Aspects of Computing (ICTAC’17), vol.
10580 of LNCS. Springer, 2017. To appear.

26. P. G. Jensen, K. G. Larsen, J. Srba, M. G. Sørensen,
and J. H. Taankvist. Memory efficient data structures
for explicit verification of timed systems. In NASA For-
mal Methods: 6th International Symposium, vol. 8430 of
LNCS. Springer, 2014.

27. K. Jørgensen, K. G. Larsen, and J. Srba. Time-darts: A
data structure for verification of closed timed automata.

18 Peter Gjøl Jensen et al.: Discrete and Continuous Strategies for Timed-Arc Petri Net Games

In Proceedings Seventh Conference on Systems Software
Verification, vol. 102 of EPTCS. Open Publishing Asso-
ciation, 2012.

28. J.-F. Kempf, M. Bozga, and O. Maler. As soon as prob-
able: Optimal scheduling under stochastic uncertainty.
In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, vol. 7795 of
LNCS. Springer, 2013.

29. K. G. Larsen and Y. Wang. Time-abstracted bisimula-
tion: Implicit specifications and decidability. Information
and Computation, 1997.

30. X. Liu and S. A. Smolka. Simple linear-time algorithms
for minimal fixed points (extended abstract). In Au-
tomata, Languages and Programming: 25th International
Colloquium, vol. 1443 of LNCS. Springer, 1998.

31. O. Maler, K. G. Larsen, and B. H. Krogh. On zone-
based analysis of duration probabilistic automata. In
Proceedings of the 12th International Workshop on Veri-
fication of Infinite-State Systems (INFINITY’10), vol. 39
of EPTCS. Open Publishing Association, 2010.

32. J. Mateo, J. Srba, and M. Sørensen. Soundness of timed-
arc workflow nets in discrete and continuous-time seman-
tics. Fundamenta Informaticae, 2015.

33. H. Peter. Component-based abstraction refinement for
timed controller synthesis. In 2013 IEEE 34th Real-
Time Systems Symposium. IEEE, IEEE Computer So-
ciety, 2009.

34. H. Peter, R. Ehlers, and R. Mattmüller. Synthia: Veri-
fication and synthesis for timed automata. In Computer
Aided Verification: 23rd International Conference, vol.
7214 of LNCS. Springer, 2011.

35. A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller
synthesis for timed automata. In System Structure and
Control. Citeseer, Elsevier, 1998.

36. J. Raskin, M. Samuelides, and L. Begin. Petri games
are monotone but difficult to decide. Technical report,
Université Libre De Bruxelles, 2003.

37. V. Ruiz, F. C. Gomez, and D. de Frutos Escrig. On
non-decidability of reachability for timed-arc Petri nets.
In The 8th International Workshop on Petri Nets and
Performance Models. Proceedings., 1999.

38. Q. Zhou, M. Wang, and S. Dutta. Generation of optimal
control policy for flexible manufacturing cells: A Petri
net approach. The International Journal of Advanced
Manufacturing Technology, 1995.

