PTrie: Data Structure for Compressing and
Storing Sets via Prefix Sharing

Peter Gjol Jensen, Kim Guldstrand Larsen, and Jifi Srba

Department of Computer Science, Aalborg University,
Selma Lagerlofs Vej 300, 9220 Aalborg East, Denmark

Abstract. Sets and their efficient implementation are fundamental in
all of computer science, including model checking, where sets are used as
the basic data structure for storing (encodings of) states during a state-
space exploration. In the quest for fast and memory efficient methods
for manipulating large sets, we present a novel data structure called
PTrie for storing sets of binary strings of arbitrary length. The PTrie
data structure distinguishes itself by compressing the stored elements
while sharing the desirable key characteristics with conventional hash-
based implementations, namely fast insertion and lookup operations. We
provide the theoretical foundation of PTries, prove the correctness of
their operations and conduct empirical studies analysing the performance
of PTries for dealing with randomly generated binary strings as well
as for state-space exploration of a large collection of Petri net models
from the 2016 edition of the Model Checking Contest (MCC’16). We
experimentally document that with a modest overhead in running time,
a truly significant space-reduction can be achieved. Lastly, we provide
an efficient implementation of the PTrie data structure under the GPL
version 3 license, so that the technology is made available for memory-
intensive applications such as model-checking tools.

1 Introduction

Formal verification techniques are being increasingly employed in many differ-
ent industrial applications, including both hardware and software systems. In
the hardware industry such techniques have been adopted by most of the major
leading companies and a widespread adoption in the software industry is under
way. Formal techniques have become essential for certain safety-critical appli-
cations for example in the avionics and aerospace industry but also in other
areas—like the development of operating systems, control systems for railways
and numerous other applications. The performance of the respective verification
tools depends to a large extent on fast and memory efficient implementations of
the underlying data structures used in the verification algorithms. This is in par-
ticular due to the state-space explosion problem that all modern model checkers
must deal with. Such tools are not only constrained by the time requirements
but also by the physical limitations like the amount of memory resources of the
hardware that the implementation is targeted for.

A common data structure used in model checking and many other appli-
cations is a set. We revisit the state-of-the-art implementation approaches for
storing sets that offer the basic operations of inserting an element to the set,
removing an element from the set and a membership check. This simple set in-
terface is sufficient for the applications in many explicit model checkers, while
the symbolic approaches may require more complex operations like intersection
and union that are, however, more expensive in implementation. In order to
compete with the foremost hash-based approaches for storing sets, we develop a
particular tree-based representation of a set called PTrie that is optimized both
for speed and memory. PTrie is designed for storing binary strings of arbitrary
length but via binary encoding/decoding techniques it can be used as a general
set-implementation. An early implementation of PTrie was briefly mentioned in
a tool paper by Jensen et. al [15], indicating encouraging performance results.
Since then the data structure was further developed, extensively tested and ma-
tured so that it became competitive with the industrial leading implementations.

Although generic data structures for sets already exist in the standard-library
of C++, Google’s google: :dense_hash_set (and google: : sparse_hash_set) im-
plementations perform significantly faster (or have a smaller memory footprint)
than other reasonable alternatives as documented e.g. in [22,23]. PTrie are de-
signed as an almost general replacement of such library implementations and
yield a sensible trade off between time and space consumption by utilizing the
inherent prefix-sharing whenever beneficial. The main characteristic of the struc-
ture is the partial (lazy) construction of the trie—hence the name Partial Trie
(PTrie)—that is optimized for storing a large number of binary strings of vary-
ing size. At the same time the PTrie data structure utilizes the prefix-sharing of
the binary strings, often resulting in significant compression of the stored data,
sometime up to 70% compared to the Google’s hash-based implementation . In
the present paper, we formally define the syntax and semantics of PTries, give the
algorithms for the interface operations, prove their correctness and provide an
open-source implementation that is thoroughly tested against other approaches.

Related Work. While tries were introduced already in the 1960’s [11], their pri-
mary focus was on reducing search time in large sets of text-strings. Different
variants of tries have been developed during the years, such as Radix tree [18, 12]
designed for storing more than single characters on edges or trie-based hashmaps
for both the sequential and concurrent setting [1, 19]. Our work differs by having
a very conservative approach to the expansion of the trie in order to achieve
both speed and overall memory reductions. Notably, the burst tries [13] do not
make use of a B-Tree-style pointer scheme and do not enforce removal of the
prefix, resulting in an overhead in memory-consumption and not reduction as in
PTries. The HAT-tries [1] enforce the use of hashes for elements in buckets, which
is not necessary in our data structure. Moreover, neither [13] nor [1] provide a
formal definition of their algorithms or the semantics, and they do not present
the delete-operation (or “inverse burst”), which we provide. Also Bagwells work
on HAMT [2] is mostly using trie-structures in combination with hashes of data
and comes with added memory-footprint rather than memory reduction. In our

experiments, we compare the PTrie performance only with Google’s densehash /s-
parsehash implementations as other popular trie libraries [20, 25, 5] are not com-
petitive with Google hash libraries for the model checking application domain
that relies on fast and memory efficient implementation of sets.

Various forms of trees (Red/Black trees, binary trees, heaps) are conven-
tionally also used for implementing sets and map-like data structures but such
implementations are generally regarded inferior in terms of performance [7,6].
Binary Decision Diagrams (BDD) [3] are another efficient way of storing binary
strings, however with a very high average computational cost (as documented
e.g. in [15]) for the basic single-element operations such as insert and delete.

In the domain of model-checking, Laarman et. al. [17] introduced a tree-
style compressing data-structure for multi-core model checking, a method that
compresses inserted data on-the-fly by utilizing sub-string sharing between in-
teger strings, encoded into a tree structure. A similar technique has been used
by the tool DIVINE [21], leading to great memory reductions, however, at the
cost of performance. While both papers demonstrate promising results, we ar-
gue that these works are orthogonal as they both rely on efficient map and set
implementations. Furthermore, these methods come with a number of restric-
tions making them less suitable as general set and map implementations. Other
model checking specific compression-techniques like Delta-compression [9] have
been proposed but suffer from even a greater impact on running-time as well as
lacking general applicability. The explicit-state model checker LoLa [24] imple-
ments a basic prefix sharing scheme for the state-compression, but has yet to
provide this as a stand-alone library with accompanying benchmarks and does
not include the essential performance enhancements used in PTrie.

2 Definition of PTrie

Let B = {0,1} be a binary alphabet and let B* be the set of all binary strings
over B where € is the empty string. If w = bybs...b, and w’ = bib, ... b, then
wow' = biby...bybibs ... b, is the concatenation of the two strings (we shall
often write just ww’ instead of w o w’). For a binary string w = b1bs ...b,, the
length of w is defined as |w| = n where by definition || = 0, and we use the
substring notation Wi, 4] where 1 < 4,7 < n such that Wi 5] = bibiy1...b;ife < j
and wy; ;) = € if i > j.

Let B™ be the set of all binary strings of length n and let O™ = {ww' | w €
B*,w' € {o}* |ww'| = n} be the set of all extended binary strings of length
n, i.e. binary strings that can be suffixed with a sequence of wild characters e.
The semantics of an extended binary string w is the set of all binary strings it
represents [w] and it is inductively defined as follows (where b € B U {e} and
w e (BU{e})).

[e] ={e}

_JH{bow | w' € [w]} itbe B
oo _{{Oow',low'|w'€ [w]} ifb=e

In the rest of this paper, we assume an implicitly given integer constant ¢ > 0
called the byte size and an integer constant x > 2 called the bucket size.

Definition 1 (PTrie Syntax). A PTrie is a tuple P = (F,L,E, T, X\, 3) where

1. F is a finite set of forwarding vertices,
2. L is a finite set of leaf vertices such that FNL =0,
3. ECF x (FUL) is a finite set of edges such that (FU L, E) is a tree,
4. T € F is the root vertex of the tree (F UL, E),
5 AN : E — 6" is a labeling function assigning an extended binary string of
length ¢ to each edge such that
(a) [A(w,v)] N [A(w,v")] =0 for all (u,v), (u,v') € E where v # v, and
(b) Mu,v) € B* for all (u,v) € E wherev € F,
6. B: LUF — 28 s a bucket function such that
(a) 0 < |B(u)] <k forallu e L,
(b) |w| > ¢ for all w € B(u) where u € L,
(c) wp, € [Mu,v)] for all w € B(v) where (u,v) € E and v € L, and
(d) |w| < ¢ for allu € F and all w € f(u).

A PTrie example is given in Figure la. We note particularly the difference
between forwarding and leaf vertices. The bucket at a forwarding vertex contains
the suffix of the string to be appended to the labels on the path from the root to
the vertex (for example vertex ¢ contains the bucket with the suffixes {1, 00} that
represent the strings 010 o 1 and 010 o 00). However, the bucket at a leaf vertex
must first specify the concrete binary string that matches the extended binary
string on its incoming edge, followed by the suffix of the string (for example the
vertex b represents the strings 111 and 11100 as the first three bits of each string
in the bucket of b must match the extended binary string 11e).

Before we introduce the main algorithms of the data structure, let us formally
define the semantics of a PTrie as a set of strings that the PTrie represents.

Definition 2 (PTrie Semantics). Let P = (F,L,E, T, \,8) be a PTrie. The
semantics of P, denoted by [P] C B*, is defined inductively as follows in the
height of the tree so that [P] = [T] and

[ue L] = B(u)
[u€ F] = B(u)U U {Mu,v)ow |w e [v]} U U [v] -

(u,v)EE, vEF (u,v)€E, vEL

3 Operations on PTrie

Let us assume a given PTrie P = (F,L, E, T, \,) and a binary string w. We
shall now explain the algorithms for the basic set operations

— Member(P, w) for checking the existence of w in P,
— Insert(P,w) for adding w into P, and
— Delete(P, w) for removing w from P.

B(b) = {111,111 0 0}

B(c) = {1,00} B(g) ={0,1,01,11}

e @B(d) — {000 0 01,110}

B(e) = {100,100 0 10} B(f) = {101 0 101}

(a) A PTrie P = (F, L, E, T, \, 8) with byte size « = 3 and maximal bucket size Kk = 2
containing the binary strings [P] = {000 o 100,000 o 100 o 10,000 o 101 o 101,010 o
1,010000,0100000001,0100110,10000,10001,100001,100011,111,11100}. Squares
indicate forwarding vertices and circles indicate leaf-vertices. We let the labeling (\)
be implicitly indicated by the labeling on the edges. The path and suffix of the binary
string 000 o 101 o 101 is highlighted.

b |80) = {e0}

B(c) = {1,00} Iz'

B(g) ={0,1,01,11}

(9)8) = {110}

8(d) = {000001, 0000111} e
B(h) = {011}

(b) The PTrie from Figure la after inserting {01000000 111,111 0011} and removing
{000 0 100,000 o 100 o 10}.

Fig. 1: Running Example

The algorithms will use the following functions for manipulating PTries:
Find(P, u,w) for searching from the vertex u for the binary string w, Split(PP,v)
for subdividing a vertex once its bucket size becomes larger than k, and its in-
verse Merge(IP, v) for reducing the size of the PTrie by merging two vertices. We
also define the parent function (used by the Split and Merge algorithms) as
P:FUL — F such that P(v) = u where v € V is the unique vertex such that
(u,v) € E and by agreement P(T) =T.

Algorithm 1: Find(P, u, w)
Data: A PTrie P = (F,L,E, T,), 3), a vertex u € V and a binary string w
Result: (v,w’) where w' is a suffix of w that cannot be any further matched by
a (unique) path starting from w and labeled with the longest possible
prefix of w and v € V is the vertex where this mismatch happens

1 begin
2 if |w| < ¢ then

3 | return (u,w)

4 E. = {(u,v) € E|wp,,) € [Mu,v)]};

5 if £, =0 then

6 | return (u,w)

7 else

8 Let {(u,v)} = E. // note that |E,| < 1 due to Definition 1, case 5a
9 if v € L then

10 ‘ return (v, w)

11 else

12 | return Find(P, v, w},41,w|)

Algorithm 2: Member (PP, w)
Data: A PTrie P = (F,L, E, T, \,) and a binary string w
Result: t¢ if w € [P], else ff
1 begin
(v,w") < Find(P, T, w);
if w’ € B(v) then
‘ return ¢t
else
‘ return ff

D Gk W N

3.1 Member Algorithm

The algorithm for checking whether a binary string is already stored in a PTrie
is presented in Algorithm 2 which is based on Algorithm 1 that searches for
the presence of a binary string in a PTrie. This algorithm is also used for the
insertion and deletion algorithms.

Algorithm 1 implements a search from a given vertex u following a given
binary string as long as possible, until either a leaf-vertex is reached or no further
match is possible and the algorithm returns the reached vertex and the suffix of
the string w that could not be uniquely matched in the PTrie. This algorithm
closely mimics the inductive definition of the semantics of PTrie in Definition 2.

Theorem 1. Algorithm 2 run on an input PTrie P and a binary string w ter-
minates and returns tt if and only if w € [P].

Algorithm 3: Insert(P,w)

Data: A PTrie P = (F,L, E, T, \,3) and a binary string w
Result: P’ where [P'] = [P] U {w} and P’ satisfies all conditions of Definition 1.

1 begin

2 (v,w") + Find(P, T, w);

3 if w’ € B(v) then

4 ‘ return P

5 else

6 if v € F then

7 if |w'| < then

g B(v) B) U {w'};

9 return (F,L,E, T,\,)
10 else
11 l

{o if Jue FUL st. [(]N[ANo,u)] # 0
arg max , .
/€0t where wi, €[] [[¢]] otherwise

12 Make a fresh leaf vertex u;
13 L+ LU {u};
14 E+— EU{(v,u)};
15 Ao, u) + ¢
16 B(u) « {w'};
17 return (F,L,E, T,\,)

18 else

19 B(v) B) U {w';
20 if |3(v)| < k then
21 ‘ return (F,L,E, T,\,)
22 else
23 ‘ return Split((F, L, E, T, A, 3),v)

3.2 Insert Algorithm

We shall now focus on inserting a binary string w into a PTrie P as described in
Algorithm 3. We start by matching the prefix of w from the root of the PTrie
(line 2) to the vertex v from which we cannot follow the prefix of w any further.
Either the vertex v is a forwarding vertex and if the unmatched suffix w’ of w
is shorter than ¢, we insert it into the bucket of v at line 8 and we are done. If
w’ is on the other hand longer than ¢, we need to create a new leaf vertex u and
store w’ in its bucket at line 16. The point is to label the edge (v,u) with the
most general and non-conflicting label ¢ selected at line 11. In the second case
where v is a leaf vertex, we add the suffix w’ of w into the bucket at line 19 and
should the size of the bucket exceed the maximum size k, we call the function
Split at line 23 to balance the PTrie.

An example of inserting two strings is given in Figure 1b. The insertion of
the string 010 o 000 causes the creation of the sibling g for the vertex d and
splitting of the label eee into Oee and lee. The insertion of 111 o 011 implies

Algorithm 4: Split(P,v)
Data: A PTrie P = (F,L, E, T, \,3) and a vertex v € L such that 8(v) > .
Result: P’ such that [P] = [P'] and P’ satisfies all conditions of Definition 1

1 begin

2 if |[A(P(v),v)]| =1 then

3 F + FU{v}; L+ L\{v};

4 B() = {wpt1,jw) | w € B(v) and |w| < 2t};

5 B« {wp41,jw)) | w € B(v) and |w| > 2};

6 if B=10 then

7 ‘ return (F,L,E, T, \,)

8 else

9 Make a fresh leaf vertex u;
10 L+ LU{u}; E<+ EU{(v,u)}; A(v,u) < o; B(u) «+ B;
11 if |B(u)| < k then
12 ‘ return (F,L,E, T, \,B)
13 else
14 ‘ return Split((F, L, E, T, \, B3),u)
15 else

16 Let w o o™ = A(P(v),v) such that w € {0,1}* and m > 0.
17 lo +— wl0oe™ 1 f1 « wloe™ 1:

18 Bo = {w € 5(’()) | w1, € Moﬂ}; B = {w S ﬁ(’U) | W1, € [[flﬂ};
19 if Bo # 0 and B1 # () then
20 Make a fresh leaf vertex u;
21 L+ LU{u}, E+ EU{(P(v),u)};
22 A(P(v),v) + Lo; A(P(v),u) < £1;
23 B(v) < Bo; B(u) + Bu;
24 return (F,L,E, T, \,)
25 else
26 if By # 0 then
27 | A(P(v),v) « Lo;
28 else
29 | A(P(v),v) + b
30 return Split((F, L, E, T, A, 3),v)

that the leaf vertex b turns into a forwarding vertex while we create a fresh leaf
vertex h and adjust the buckets accordingly.

Theorem 2. Algorithm 8 run on an input PTrie P and a binary string w ter-
minates and returns a PTrie P’ such that [P'] = [P] U {w}.

3.3 Delete Algorithm

We here discuss the algorithm for removing a binary string w from a PTrie P as
described in Algorithm 5. As with the insertion algorithm, the Delete algorithm
may call the function Merge defined in Algorithm 6—a function that attempts
to revert divisions previously made by the Split algorithm.

Algorithm 5: Delete(P, w)

Data: A PTrie P = (F,L, E, T, \,3) and a binary string w
Result: P’ where [P'] = [P] \ {w} and P’ satisfies all conditions of Definition 1

1 begin

2 (v,w'") - Find(P, T, w);

3 if w' ¢ B(v) then

4 ‘ return P

5 else

6 B(v) « B(0) \ {w'};

7 if v € F then

8 if v has no children then

9 if v =T then
10 | return (F,L,E, T,\,f)
11 if |8(v)| > K then

12 ‘ return (F,L,E, T,)\, 3)

13 L+ LU{v}; F+ F\{v}

14 Bw) «+ {A(P(v),v)ow | w € B(v)};
15 return Merge((F, L, E, T, A\, 8),v)
16 else

17 if v has exactly one child u and u € L then
18 ‘ return Merge((F, L, E, T,)\, 8),u)
19 else
20 ‘ return (F, L, E, T, \,)
21 else
22 ‘ return Merge((F, L, E, T, A, 8),v)

Initially we try to match the prefix of w to a unique path from the root of
the PTrie (line 2 of Delete) and we let v be the vertex reached at the end of this
prefix and w’ be the unmatched suffix of w. If w did not exist in the PTrie, we
return the unaltered PTrie at line 4. Otherwise we remove w’ from the bucket
of v. Either v € L, and we attempt to reduce the PTrie (line 22), or we are in
the more complex situation where v € F. If v € F and v has no children (as
illustrated by vertex g in Figure 1a) then we can turn v into a leaf node (line 13)
and attempt to reduce the size of the PTrie (line 15). However, as T has to stay
in F, we return P if v = T (line 10). If |3(v)| > & then turning v into a leaf-node
would violate condition 6a in Definition 1 and we therefore return the PTrie as
it is (line 12). If v € F' and v has only a single child such that this child is not
a forwarding vertex, and merging v with its child will not violate condition 6a
in Definition 1, then we also attempt to merge (line 18). Otherwise just return
PTrie without further modifications (line 20).

An example of removing two different strings from our running example is
presented in Figure 1b. The removal causes the leaf vertex e to get an empty
bucket implying that it gets removed. This change in turn propagates to the
vertex a that is also removed and its bucket content is merged with that of f.

Algorithm 6: Merge(P, v)

Data: A PTrie P = (F,L,E, T,), 3) and a vertex v € L
Result: P’ s.t. [P] = [P'] and P’ satisfies all conditions of Definition 1

begin

if A(P(v),v) = o' then

if |8(v)] =0 and |B(P(v))| > k then
E+ E\{(P(),v)}; L « L\ {v}
return (F,L,E, T, \,3)

if P(v) =T then

‘ return P

else

u P(v); £+ AMu,v);

if [B(v)| + [B(u)| < k then

AP (u),v) < ¢
B) + {low|we Bv)UpB(u)};
return Merge((F,L,E, T, \,),
else
‘ return (F,L,E, T, \,)

)

else

Let by ...bpe™ = A(P(v),v);

Lbi...bp_re™T

Vi {(P(v),u) € B |u# v and [A(P(v),w)] N [€] # 0};

if V =0 then

A(P(v),v) + ¢

return Merge((F, L, E, T, X, 3),v)

else

if V = {u} for some uw € L and |B(v)| + |B(u)| < k then
A(P(v),v) + ¢
B(v) « B(v) U B(u);
E+ E\{(P(u),u)}; L+ L\ {u};
return Merge((F, L, E, T, X, 3),v)

else

| returnP

Theorem 3. Algorithm 5 given a PTrie P and a binary string w terminates

and returns a PTrie P’ such that [P'] = [P] \ {w}.

4 Implementation

The PTrie interface is implemented as an open source C++ library and it is avail-
able at https://github.com/petergjoel/ptrie under the GPL version 3 license.
Apart from the implementation of all the basic set operations on PTries as de-
scribed in this paper (implemented in ptrie: :set), two other flavors of PTries
exist: one providing unique and non-changing identifiers for inserted elements

10

E— (EU{(P(w),0)) \{(P(u),u), (u,v)}; F F\{u};

000 000 000 000 000

R e e e I e I e e O O R CE
001 001 001 001

T} T T T (D = oo

Fig.2: A worst-case scenario for PTries with « = 3 and x = 2 containing 4 binary
strings {000 o 000 o 000 o 000 o 000 o 000 o 000, 000 o 000 o 000 o 000 o 000 o 000 o
111,100 0 100 o 100 © 100 o 100 o 100 o 000, 100 © 100 0 100 0 100 0 100 0 100 0 111}

(ptrie::stable_set) and one providing the functionality of a map, combined
with non-changing identifiers (ptrie: :map)!. The source code provides further
documentation and information.

Let us now settle some implementation details. We currently use the bucket
size k = 64 and the byte size « = 8, following conventions for standard byte-sizes.
As modern architectures do not support addressing nor allocation of memory
areas of less than a single byte, our implementation of PTries allows only the
insertion of binary strings with bit-lengths that are a multiple of ¢. Further-
more, to avoid frequent splits and re-merging of PTries, the Delete and Merge
algorithms initiate the balancing of PTrie only once the buckets become smaller
than %, as opposed to the constant x used in the pseudocode. The experimental
evaluations point towards a slightly worse memory utilization at the exchange
of less frequent re-balancing of the PTrie.

Regarding the memory for storing vertices of a PTrie, forwarding vertices are
implemented as directly indexed tables with 64-bit indexes and with some ad-
ditional book-keeping information they occupy 2064 bytes. Leaf vertices are, on
the other hand, lightweight constructions taking up only 16 bytes. The current
implementation of PTrie prefixes all inserted binary strings with their length
(using two additional bytes). In our experience, such an addition generally im-
proves the performance and reduces memory-consumption. Moreover, as we aim
at making the PTries fast, the speed optimization can occasionally imply an
increased memory consumption for some very specific sets of binary strings, as
demonstrated in Figure 2, where just a few strings create a long sequence of
memory-demanding forwarding vertices. This implies that long, almost similar,
binary strings which differ only at the beginning and at the end will make the
PTrie perform badly in terms of memory.

Hence, depending on the specific application domain, the concrete encoding
of the states into binary strings can have an effect on the PTrie performance.
As a heuristic attempt to improve prefix-sharing of Petri net markings (an ex-
periment discussed in detail in the next section), we first statically order places
in the models by the number of incoming and outgoing arcs. Each such mark-
ing is then encoded according to a number of schemes in order to minimize its

! Both these extension come with a smaller overhead in run-time and memory. Also,
currently neither of these extensions support Delete.

11

length. The schemes all fall in one of three categories: either only non-empty
places are stored (with the least amount of bits), or a bit-vector is used to
represent non-empty places in the fixed ordering of places, or we use a com-
bination of the two previous schemes. To determine which way a marking was
encoded, we prefix the encoding with a 8-bit header describing the exact encod-
ing scheme that is employed. Details of the encoding-scheme can be found at
https://bit.ly/AlignedEncodercpp.

5 Experimental Evaluation

We conducted two series of experiments comparing our PTrie implementation
against google: :sparse_hash_set and google::dense_hash_set by Google?,
generally regarded as the state-of-the-art [22, 23] space-efficient and time-efficient,
respectively, implementations of sets based on hashing. We employ jemalloc [10]
for memory allocation and MurmurHash64A® as hash-function for the hash-map
implementations. In our evaluation we omit the std: :unordered_set implemen-
tation from the standard library of C++14 as it was consistently outperformed
by the Google implementations (see [22, 23] for further benchmarks).

In the first round of experiments, we test the speed and memory requirements
of insertion, deletion and lookups, simulating a workload using pseudo-random
64-bit integers (with the same seed so that the same sequence of numbers is
inserted /deleted /checked in all test setups). In the second round of experiments,
we modify the verification-tool verifypn [14]* that is distributed as a part of
the Petri net verification tool TAPAAL [8,4], and we conduct an exhaustive
exploration of the full state-space of large Petri net models used at the MCC’16
competition [16]. All experiments were conducted on AMD Opteron 6376 Pro-
cessors and limited to 120GB of RAM and 4 days of computation.

5.1 Simulated Workload

We conduct three sets of experiments called Insert, Insert+50%Delete and In-
sert+50%Member, all scaled by the number 2F of pseudorandomly generated
and inserted elements into the set implementation. In the Insert experiment,
we iteratively insert 2 binary numbers encoded as 64-bit unsigned integers. In
the Insert+50%Delete and Insert+50%Member experiments, after each inser-
tion, we choose with 50% probability whether to execute a Delete or Member
operation, respectively. In Insert+50%Delete, we randomly draw for deletion an
element that was previously inserted, but we do not check whether the element
was already removed or not. This implies that with 33% probability it tries to
remove a nonexisting element. In Insert+50%Member, we randomly select an
element for which we do an Member operation, such that about one half of the
existence checks are with a positive answer.

2 Both available at https://github.com/sparsehash/sparsehash.
3 Available at https://github.com/aappleby/smhasher/wiki/MurmurHash2.
4 Available at https://code.launchpad.net /verifypn.

12

l E l ptriel dense lsparselptrie/denselptrie/sparse‘

Insert
28 437.2] 386.0 | 569.1 113% 7%
29 869.0] 757.1 | 1111.3 115% 78%
30 1749.2] 1540.2 | 2326.7 114% 75%
31 3572.0/ 3081.7 | 4785.6 116% 75%

32 | 7184.6] 6126.6 | 9963.6 117% 72%
[average[2762.4] 2378.3[3751.2] 115% | 75% |
Insert+50%Delete
28 751.5] 744.1 | 7427 101% 101%

29 1516.8] 1494.3 | 1461.9 102% 104%

30 | 3038.5]3032.1 [2997.8 100% 101%

31 | 6392.3]5837.4 | 6150.1 110% 104%

32 |[13356.1[11701.0]13115.5 114% 102%
laverage| 5011.1] 4561.8[4893.6| 105% | 102% |
Insert+50%Member
28 709.6] 591.2 [771.0 120% 92%

29 1468.4] 1219.3 | 1583.8 120% 93%

30 | 2829.1]2363.0 | 3195.4 120% 89%

31 | 5839.8]4707.6 | 6597.3 124% 89%

32 [12244.2] 9473.2 [13676.5 129% 90%
[average| 4618.2[3670.8 [5164.8[123% [90% |

Table 1: Time in seconds for the simulated workload experiments

The results measuring the speed of operations are presented in Table 1. For
pure insertions, PTries are on average about 15% slower than dense_hash but
25% faster than sparse_hash. When we add deletions, PTries are only about 5%
slower than dense_hash and essentially comparable with sparse_hash (on aver-
age just 2% slower). In the last experiment where we add frequent queries on the
presence of a string in the set, dense_hash becomes 23% faster but on the other
hand PTries are by 10% faster than sparse_hash. In summary, sparse_hash is
in general slower or equal in speed with PTrie, while dense_hash is the fastest
of the three data structures.

However, we can see in Table 2 a significant reduction of the memory-
footprint in all of the experiments (Insert+50%Member is not included as its
memory usage is identical with pure inserts). PTries deliver about 70% of the
memory reduction compared to dense_hash and between 42%-57% reduction
compared to sparse_hash (depending on whether deletions are included or not).

In conclusion, PTrie is the most memory efficient data structure that is faster
or at worst equal in speed with sparse_hash. The fastest set implementation is
dense_hash, however, at the cost of a large memory overhead. We remark that
the drop in relative memory-reduction in the Insert experiment when E = 32 is

13

l E l ptriel dense lsparselptrie/denselptrie/sparse‘
Insert and Insert+50%Member

28] 2033.6] 6151.7 | 4239.6 33% 48%
29 | 3197.6]12295.7| 8455.9 26% 38%
30 | 6115.7|24583.7(16923.0] 25% 36%
31 [10827.6]49159.7[33908.2] 22% 32%

32 [37839.6|9831L.7/67757.7] 39% 56%
|average[12002.8[38100.5[26256.9] 29% | 42% |
Insert+50%Delete

28 [1935.8] 6157.7 [3032.3 31% 64%

29 | 3383.8]12301.6] 5966.5 28% 57%

30 | 6960.7|24589.6/12057.8] 28% 58%

31 [13488.9]49165.6[24914.0] 27% 54%

32 [37493.6]98317.6/68195.0] 38% 55%
laverage[12652.6]38106.4[22833.1] 31% [57% |

Table 2: Memory in megabyte for the simulated workload experiments

due to the creation of a large number of forwarding vertices—this occurs with
high probability for truly random strings when F is a multiple of 8.

5.2 Real Workload by Petri Net Model Checking

In order to test the PTrie performance on a realistic scenario, we integrate PTrie
as a part of a Petri net model checker. We replace the state-storage of the
verification algorithm used by verifypn with the respective set implementations
(by using an encoding of Petri net markings to binary strings as discussed in the
implementation section). We then conduct an exhaustive state-space search on
the P/T nets from the MCC’16 competition. To reduce the impact of auxiliary
datastructures used by the algorithm, we conduct the search with two different
search-strategies (breadth first and depth first), and we report the minimum of
the memory and time-consumption from either of these searches. We consider in
total 94 Petri nets with a nontrival but feasible state-space size. More concretely,
we selected all nets with more than 10° and less than 10'° reachable markings.
Out of these 94 nets, PTrie-based variant completed 89 test-cases, ran out of
memory on 4 models and timed out on a single instance. The dense_hash-based
model checker completed only a subset of the test-cases solved by PTrie and
exceeded the memory-bound for additional 9 nets. A similar performance was
achieved by sparse_hash that also completed only a subset of problems solved
by PTrie but exceeded the memory for 7 additional nets. In the summary tables
we consider so only 80 state-space searches that were completed by all three
set-implementations.

In Table 3 we can see that PTries are on average as fast as the fastest hash-
map implementation via dense_hash with only a 3% overhead on average, while

14

Model| ptrie| dense[sparse|ptrie/dense|ptrie/sparse|[10° states[10%operations
a 408.7] 517.8] 680.5] 79% 60% 42.7 486.9
b 12882.8]15888.919163.1] 81% 67% 693.8 2151.2
c 2337.9] 2839.3] 3693.7] 82% 63% 131.1 5553.7
d 244.6] 292.3] 526.6] 84% 46% 113.3 863.5
e 589.2] 693.6] 1141.2[8% 52% 261.2 2010.6
f 69451.0[68601.0[70879.3] 101% 98% 320.6 22339.6
g 16.4] 16.1] 20.6] 102% 79% 3.0 24.9
h 318.7] 3128 389.7] 102% 82% 48.9 354.4
i 5011.5| 4917.2 5812.8] 102% 86% 406.0 3051.2
] 69.5] 67.9] 783] 102% 89% 115 66.8
k 25.7] 204] 21.3[126% 121% 1.7 6.7
1 41.4] 328 33.8[126% 123% 2.8 13.2
m 439.9] 345.7] 647.9] 127% 68% 164.4 1047.5
n 78.3[609 1124 129% 70% 32.2 199.3
o 263.9] 163.6] 185.2] 161% 143% 174 108.4
lavg | 4608.4] 4482.2] 5380.0] 103% [86% [289.3] 3195.2]

Table 3: Time in seconds for the 5 best, 5 median and 5 worst Petri net
models, ordered by the performance of ptrie relative to dense hash. Leg-
end for the models: a=Angiogenesis-PT-05, b=PolyORBNT-PT-S05J20,
c¢=Diffusion2D-PT-D05N010, d=SmallOperatingSystem-PT-MT0128DC0032,
e=SmallOperatingSystem-PT-MT0128DC0064, f=ARMCacheCoherence-
PT-none, g=TCPcondis-PT-05, h=AutoFlight-PT-01b, i=SimpleLoadBal-
PT-10j=ResAllocation-PT-R020C002, k=ParamProductionCell-PT-5,
|I=ParamProductionCell-PT-0, m=SwimmingPool-PT-04, n=SwimmingPool-
PT-03 and o=I0TPpurchase-PT-C05M04P03D02.

PTries provide significant 14% speedup compared to sparse_hash. There seems
to be no correlation between the number of states/markings (equivalent to the
number of insert operations) and the relative performance achieved. With re-
spect to memory usage, the experiments confirm the effectiveness of PTrie as
seen in Table 4. In general we observe a significant memory footprint reduction
by up to 81% compared to sparse_hash and on average by 53%. The reduc-
tions in the case of dense hash are as expected even higher. We can notice
that higher relative memory reduction occurs when we use PTries for models
with a larger number of reachable states/markings, confirming that PTries are
particularly beneficial for memory demanding applications like model checking.
We can observe that for some instances of prefix-sharing, PTries are particu-
larly effective as demonstrated by the “DNAwalker”-cases (using less than 7
bytes per stored marking versus 36 for sparse_hash), while ineffective for the
“ParamProductionCell”-cases (using more than 64 bytes per marking versus 49
for sparse_hash). Here we experience the situation described in Figure 2 caused
by the ordering of places in the binary encoding of markings and by the fact that

15

[Model| ptrie| dense|sparse|[ptrie/dense[ptrie/sparse[10° states[10%operations

a 2815.6[16481.6[15063.5] 17% 19% 435.3 2983.9
b 2817.6[16481.5[15063.6] 17% 19% 432.9 2961.9
c 2855.6[16481.6/15063.6] 17% 19% 432.9 2961.9
d 2883.6[16481.6/15063.6] 18% 19% 435.3 2983.9
e 14707.6]65901.4/60223.4] 22% 24% 1885.4 15271.5
f 16579.6[35751.6]3397L.6] 46% 49% 1005.9 12032.2
g 21283.5[44344.2[43515.5| 48% 49% 896.3 3363.7
h 7539.6(20667.6[15373.6] 37% 49% 347.6 1271.7
i 7541.6(20667.5[15375.5] 37% 49% 347.6 1271.7
] 1463.6] 5203.6] 2965.6] 28% 49% 68.2 1286.2
k 133.7] 169.6] 129.6] 79% 103% 2.8 13.2
1 879.7| 1303.6] 763.6] 68% 115% 174 108.4
m 105.7] 91.6] 816 115% 130% L7 6.7
n 93.6] 875 71.6] 107% 131% 15 5.9
o 147.7] 169.6] 111.6] 87% 132% 2.4 9.8
lavg [5150.6]13339.3[11056.9] 39% [47% [289.3] 3195.2]

Table 4: Memory in megabytes for the 5 best, 5 median and 5 worst Petri net
models, ordered by the perforamce of PTrie relative to sparse_hash. Legend for
the models: a=DNAwalker-PT-06track28RL, b=DNAwalker-PT-04track28LL,
c=DNAwalker-PT-07track28RR, d=DNAwalker-PT-05track28LR,
e=DNAwalker-PT-12ringLLLarge, f=Kanban-PT-0010, g=BridgeAndVehicles-
PT-V50P50N20, h=BridgeAndVehicles-PT-V50P20N10, i=BridgeAndVehicles-
PT-V50P50N10, j=AutoFlight-PT-05a, k=ParamProductionCell-PT-0,
1=I0TPpurchase-PT-C05M04P03D02, m=ParamProductionCell-PT-5,
n=ParamProductionCell-PT-3 and o=ParamProductionCell-PT-4.

there is large number of places where the number of tokens hardly ever changes
during the computation.

6 Conclusion

We presented PTrie, a novel data structure for compressing sets of binary strings
while providing fast operations for element addition/removal and containment
checks. Compared to the state-of-the-art alternatives that either trade memory
savings for time (google: :sparse_hash_set), or focus on optimizing the speed
of operations (google: :dense_hash_set), our data structure improves the per-
formance of sparse_hash both in terms of memory as well as time. Compared
to dense_hash, we are on average 5-23% slower on random strings, while only
3% slower when storing strings coming from a real application domain, and at
the same time we provide 60-70% of memory reduction.

In the future work, we plan to provide an efficient parallelization of the PTries
for the use in multi-core architectures, and extend the set of basic operators

16

with intersection, union and difference. Even though these additional operations
are not necessary for explicit model checking applications, they may find other
application domains and tree-based design of PTries seems to be suitable for this
purpose. Finally, a research of tree-walking algorithms for PTries, facilitating
complex searches through the elements of the set, are of high interest too.

Acknowledgements. We acknowledge the support from Sino-Danish Basic Re-
search Center IDEA4CPS, the Innovation Fund Denmark center DiCyPS, and
the ERC Advanced Grant LASSO. The third author is partially affiliated with
FI MU in Brno.

References

1. Nikolas Askitis and Ranjan Sinha. HAT-trie: A cache-conscious trie-based data
structure for strings. In Proceedings of the thirtieth Australasian conference on
Computer science-Volume 62, pages 97-105. Australian Computer Society, Inc.,
2007.

2. Phil Bagwell. Ideal hash trees. Fs Grands Champs, 1195, 2001.

3. R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, 1986.

4. J. Byg, K.Y. Jgrgensen, and J. Srba. TAPAAL: Editor, simulator and verifier
of timed-arc Petri nets. In Proceedings of the 7th International Symposium on
Automated Technology for Verification and Analysis (ATVA’09), volume 5799 of
LNCS, pages 84-89. Springer-Verlag, 2009.

5. Daniel C. Jones. HAT-trie implementation. https://github.com/dcjones/hat-trie.
Accessed: 2017-04-19.

6. cplusplus.com. CH++ map implementation reference.
http://www.cplusplus.com/reference/map/map/. Accessed: 2017-01-20.
7. cplusplus.com. C++ set implementation reference.

http://www.cplusplus.com/reference/set /set/. Accessed: 2017-01-20.

8. A. David, L. Jacobsen, M. Jacobsen, K.Y. Jgrgensen, M.H. Mgller, and J. Srba.
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In
TACAS’12, volume 7214 of LNCS, pages 492-497. Springer, 2012.

9. Sami Evangelista and Jean-Frangois Pradat-Peyre. Memory efficient state space
storage in explicit software model checking. In Model Checking Software: 12th
International SPIN Workshop, volume 3639 of LNCS, pages 43-57, Berlin, Heidel-
berg, 2005. Springer Berlin Heidelberg.

10. Jason Evans. A scalable concurrent malloc (3) implementation for freebsd. In
Proc. of the BSDCan Conference, Ottawa, Canada, 2006.

11. Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490-499, 1960.

12. Gernot Gwehenberger. Anwendung einer bindren verweiskettenmethode beim auf-
bau von listen/use of a binary tree structure for processing files. it-Information
Technology, 10(1-6):223-226, 1968.

13. Steffen Heinz, Justin Zobel, and Hugh E. Williams. Burst tries: A fast, efficient data
structure for string keys. ACM Transactions on Information Systems, 20:192-223,
2002.

14. J.F. Jensen, T. Nielsen, L.K. Oestergaard, and J. Srba. TAPAAL and reachability
analysis of P/T nets. LNCS Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC), 9930:307-318, 2016.

17

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Peter Gjgl Jensen, Kim Guldstrand Larsen, Jifi Srba, Mathias Grund Sgrensen,
and Jakob Haar Taankvist. Memory efficient data structures for explicit verification
of timed systems. In Julia M. Badger and Kristin Yvonne Rozier, editors, NASA
Formal Methods, volume 8430 of Lecture Notes in Computer Science, pages 307—
312. Springer International Publishing, 2014.

F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, G. Chiardo, A. Hamez,
L. Jezequel, A. Miner, J. Meijer, E. Paviot-Adet, D. Racordon, C. Rodriguez,
C. Rohr, J. Srba, Y. Thierry-Mieg, G. Trinh, and K. Wolf. Complete Results for the
2016 Edition of the Model Checking Contest. http://mcc.lip6.fr/2016 /results.php,
June 2016.

Alfons Laarman, Jaco van de Pol, and Michael Weber. Parallel recursive state com-
pression for free. In Model Checking Software: 18th International SPIN Workshop,
volume 6823 of LNCS, pages 38-56. Springer, 2011.

Donald R Morrison. Patriciapractical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM (JACM), 15(4):514-534, 1968.

Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky.
Concurrent tries with efficient non-blocking snapshots. In Acm Sigplan Notices,
volume 47 (8), pages 151-160. ACM, 2012.

Matt Renaud. Trie (aka. prefix tree). https://github.com/m-renaud/trie. Accessed:
2017-04-19.

Petr Rockai, Vladimir Still, and Jif{ Barnat. Techniques for Memory-Efficient
Model Checking of C and C++ Code, volume 9276 of LNCS, pages 268-282.
Springer, Cham, 2015.

Timonk. Big memory, part 3.5: Google sparsehash!
https://research.neustar.biz/2011/11/27 /big-memory-part-3-5-google-
sparsehash/, 2011. Accessed: 2017-01-20.

Nick Welch. Hash table benchmarks. http://incise.org/hash-table-
benchmarks.html. Accessed: 2017-01-20.

Karsten Wolf. Running LoLA 2.0 in a model checking competition. LNCS Trans-
actions on Petri Nets and Other Models of Concurrency (ToPNoC), 9930:274-285,
2016.

Jianing Yang. An implementation of two-trie and tail-trie using double array.
https://github.com/jianingy/libtrie. Accessed: 2017-04-19.

18

A Proof for Theorem 1

Proof. Let us first analyse the algorithm Find. Given a current vertex u and
the currently unmatched binary string w, it will either return this pair in case
the length of w is strictly less than the number of bits ¢+ by which the PTrie
is parameterized, or try to see whether the prefix of the first ¢ bits of w can
match with some of the extended binary strings on the edges outgoing from wu.
If this is not the case, the pair (u,w) is returned, otherwise either there is an
edge to a leaf vertex v € L which we then return together with w, or there is a
unique (by Definition 1 condition 5a) edge (u,v) that matches wy; ,j leading to a
forwarding vertex, and we follow this edge in the further search while stripping
of the first ¢ bits of the string w. The algorithm clearly terminates as PTrie has
a tree structure and hence contains no cycles (condition 3 of Definition 1). By
comparing the test in Algorithm 2 with Definition 2, we can now easily see the
validity of the theorem. O

B Proof for Theorem 2

Proof. The algorithm Insert contains no loops and no recursion but it makes
one call to Find (that we already know that it terminates) and it can also make
one call to Split. The Split algorithm can possibly make several recursive calls
but the call at line 14 decreases the length of strings in the bucket of u by ¢ bits
compared to the length of strings in the bucket of v and hence it can be executed
only finitely many times. The recursive call at line 30 decreases the cardinality
of A(P(v),v) and for this reason it can happen only finitely many times after any
recursive call at line 14. Hence the algorithm Split terminates and this implies
the termination of Insert.

We shall now argue that [P] C [P’]. Consider the algorithm Insert. By
adding a string to the bucket S(v) at line 8 or at line 19, as well as by creating a
bucket for a newly created leaf vertex u at line 16 we clearly did not remove any
strings from [P]. Let us now consider the modification to the PTrie P done in
Split. At lines 3 to 14 we change a left vertex into a forwarding vertex and adjust
the buckets accordingly and possibly create a new leaf vertex u too, however, in
all cases no strings are removed from the PTrie. This argument holds inductively
also for the call at line 14. The situation where we have to split one leaf vertex
into two at lines 20 to 24 can be by analysis considered safe too as it does not
change the set of strings represented by the PTrie. Finally, at line 27 to 29 we
narrow the set of labels on an edge but only in the case where this is safe to do
so, and by applying the same inductive argument on the call at line 30, we can
conclude that [P] C [P'].

Finally, we show that [P’] \ [P] = {w}, i.e. that w is the only string that
is added to [P]. This can be shown in a rather straightforward manner for all
changes to P done in the function Insert, under the assumption that Split
does not change the set of strings stored in the PTrie, which requires a slightly
deeper analysis. In case that B =) (line 6 in Split), we immediately return the

19

PTrie at line 7 and clearly 5(b) was not modified by the assignment at line 4
which together with the simple change of v from leaf to forwarding vertex did not
influence the semantics of the PTrie. In the situation when a new leaf vertex is
created and added to the PTrie at lines 9 to 14, we notice that the strings added
to the bucket of u were stripped of the first « bits and because the assigned label
o' the semantics of the PTrie did not change, and in case the bucket became too
large, an inductive argument applies also for the call at line 14. In the else branch
of the main if statement, we first divide the label A(P(v),v) into two disjoint
labels ¢y and ¢; such that [A(P(v),v)] = [€o] U[¢1] and we split the bucket S(v)
accordingly into the buckets By and Bj. If both By and By are nonempty, we
finish the split of v into two siblings which clearly does not change the semantics
of the PTrie. Should either By or By be empty (notice that both of them cannot
be empty at the same time), then changing the label on the incoming edge to v
(line 27 or 29) does not change the semantics and this is preserved also under
the recursive call at line 30. This concludes the correctness proof for the insert
operation. O

C Proof for Theorem 3

Proof. Let us start by proving termination. Clearly, if Merge terminates for a
given P and w, so will Delete as no recursion or looping occurs in this algorithm.
Let us therefore argue that any call to Merge terminates for a given vertex v. In
the true part of the branch (when A\(P(v),v) = o), we only call Merge recursively
after removing a vertex from the PTrie. As both V' and F' are finial, this can only
occur a finite number of times before we will reach the cases in lines 6 - 7. In
the false part of the branching done at line 2 we require that the label between
v and its parent is different from e*. We can see that every time we enter this
branch, we replace one bit in the label with a e (line 19). As a label is of finite
length, this branch can only be taken finitely often after the recursive call at
line 14. This concludes our proof of termination.

We will now prove that [P'] = [P] \ {w}. Clearly, if w’ & 8(v), we can safely
return at line 4 of Delete as w was not present in [P] and there is nothing to
do. As we only remove the suffix w’ of w, the operation at line 6 is also safe. By
comparing the transformation of v from a forwarding vertex to a leaf vertex at
lines 11-15 with the semantics of a PTrie, we can see that also this operation is
safe. What remains to be proved is that [Merge(IP,v)] = [P] (used on lines 15
and 18) as we have otherwise concluded that the modifications done by Delete
are safe.

Let us now argue that Merge is safe under the assumption that the recursive
calls satisfy the property that they do not modify the semantics of the PTrie.
Let us investigate the first branch of the if-statement at line 2. If the bucket of
v is empty, we can safely remove it. If the parent of v is the root, then we know
that L = {v} and F = {T} and no further merging can be done (this follows as
a combination of A(T,v) = e* and Definition 1 condition 5 and that v has to be
a leaf vertex). If neither of the above cases apply, we can remove the parent of

20

v from the path to v by mergin the buckets of v and v — but only if doing so
does not violate condition 6b in Definition 1. One can verify via the semantics of
PTries that [u] before the transformation is equal to [v] after the transformation
at lines 10-13 - and hence the transformation is safe and our inductive property
hold for this branch of the if-statement at line 2.

In the false-branch of the if-statement at line 2 we can see that no change the
semantics of P happens as labels to leaf-vertices have no semantical meaning.
Further more, the bucket-merge on line 27 is directly equivalent to the semantical
union [v] U [u] and thus removing u does not affect the contents of P after line
27. We have therefore concluded our proof of correctness. O

D Comparison with Other Existing Tries

We shall now provide experimential data supporting that PTrie is outperforming
other prominent trie-based datastructures mentioned in the related work section,
and argue that our PTrie library is (to the best of our knowledge) the only one out
of other tree-based datastructures that is competitive with Google denseshash
and sparsehash implementations for the domain of set-based model checking
applications. The experiments in this appendix include the comparison with the
mrr::trie [20], libtrie [25] and HAT-trie [5] libraries and where run on the same
benchmarks from the MCC’16 competition as the experiments in the main text
of the paper. The results are listed in Tables 5, 6, 7 and 8. Notice that Table 5
and Table 6 consider the same set of models as Table 3 and Table 4 in the main
text (80 tests). Table 7 and Table 8 with the remaining trie-implementations
consider smaller sub-set (58 tests)—as these trie-implementations were not able
to complete the same tests within the given resources—hence, the average (even
for ptries, sparse and dense) is over these 58 tests. In a summary, all alternative
trie implementation completed only a subset of tests completed using PTries,
which completed 89 of 94 tests:

— mrr::trie is almost consistently slower and more memory-consuming than
sparsehash (and hence also PTrie)—completing only 58 tests,

— libtrie (in all variants) are consistently slower than densehash, and in the
majority of cases (and clearly demonstrated by the average) more memory-
consuming than sparsehash (and hence also PTrie)—completing 71 tests,
and

— HAT-trie is almost consistently slower than densehash (and indeed also on
average) and only slightly more restraint, but slightly reducing the memory-
consumption compared to sparsehash. Compared to PTrie, HAT is only
slightly slower than PTrie, however, more importantly, HAT uses on av-
erage almost twice as much memory compared to our PTrie data structure.
HAT-tries completed 85 tests.

21

lModel[ptrie[dense[sparse[hat[/dense[/sparse[/hat [states [operations

a 244.6] 292.3] 526.6] 341.6] 84% [46% [72%[113.3 863.5
b 589.2] 693.6] 1141.2] 827.1] 85% | 52% |71% [261.2| 2010.6
c 2337.9] 2839.3] 3693.7] 2751.6] 82% | 63% |85% |131.1| 5553.7
d 43 47 61l 47 91% | 0% [91% | 1.2 7.2
e 223.0] 242.7] 300.3] 2745] 92% | T4% [81% | 3338 350.6
f 15254.3[14879.2]21483.1[17585.7] 103% | 71% [87% [1860.9] 15025.2
g 1760.7] 1704.1] 1978.5] 1793.6] 103% | 89% |98% [108.6| 1213.4
h 12882.8[15888.9/19163.112433.5] 81% | 67% [104%|693.8[2151.2
i 240.1] 230.4| 233.8] 241.5] 104% | 103% [99% | 4.1 13.0
] 29.9] 287 3200 314[104% | 93% [95% | 34 13.6
k 25.7] 20.4] 21.3[21.8] 126% [121% [118%] 1.7 6.7
1 41.4] 32.8] 33.8[35.3]126% | 123% [117%| 2.8 13.2
m 439.9] 345.7] 647.9] 556.7| 127% | 68% [79% |164.4| 10475
n 78.3] 60.9] 1124[96.1[129% | 70% |81% [322 199.3
o 263.9] 163.6] 185.2[178.0] 161% | 142% |[148%| 174 108.4
l[avg [4608] 4482] 5380] 4738] 103% [86% [97% | 289 | 3195]

Table 5: Time in seconds for the 5 best, 5 median and 5 worst Petri net models,
ordered by the performance of ptrie relative to HAT-Tries. The columns in
percentage is the relative time-consumption of PTries. Legend for the models:
a=SmallOperatingSystem-PT-MT0128DC0032, b=SmallOperatingSystem-
PT-MT0128DC0064, c=Diffusion2D-PT-D05N010, d=HouseConstruction-
PT-005, e=Raft-PT-03, f{=DNAwalker-PT-15ringRRLarge, g=DES-PT-
0la, h=PolyORBNT-PT-505J20, i=PhilosophersDyn-PT-20, j=Peterson-
PT-3, k=ParamProductionCell-PT-5, |I=ParamProductionCell-PT-0,
m=SwimmingPool-PT-04, n=SwimmingPool-PT-03 and o=IOTPpurchase-PT-
C05M04P03D02 .

22

lModel[ptrie[dense[sparse[hat[/dense[/sparse[/hat [states [operations

a 2818[16482] 15064[10234] 17% [19% [28% [432.9] 2961.9
b 2816|16482] 15063[10188| 17% [19% [28% [435.3[2983.9
c 2884|16482] 15064]10304[17% [19% [28% [435.3[2983.9
d 2856|16482] 15064]10156] 17% [19% [28% [432.9[2961.9
e 125] 458] 380[370] 27% | 33% [34% | 16.1 214.0
f 38] 76] 70[70[50% [54% [54%[2.0 16.3
g 1658035752 33972[30582] 46% | 49% |[54% [1005.9] 12032.2
h 214] 657| 404] 392] 32% [53% |[55% | 9.1 31.8
i 962| 3115 2092 1742| 31% | 46% |55% | 354 265.2
] 44] 134] 76| 82[33% | 58% [53% | 2.5 24.5
k 134] 170 130[124 79% [103% [108%] 2.8 13.2
1 880] 1304| 764] 818] 67% | 115% |108%]| 174 108.4
m 106 92 82] 88[115% | 129% [120%| 1.7 6.7
n 94 87| 72[80| 107% | 131% [117%[L5 5.9
o 148] 170[112] 124[87% | 132% [119%] 2.4 9.8
[avg [5151]13339] 11057] 9009] 39% [47% [57% | 289 | 3195]

Table 6: Memory in megabytes for the 5 best, 5 median and 5 worst Petri
net models, ordered by the preformance of PTrie relative to HAT-Tries.
The columns in percentage is the relative memory-consumption of PTries.
Legend for the models: a=DNAwalker-PT-04track28LL, b=DNAwalker-
PT-06track28RL, c=DNAwalker-PT-05track28LR, d=DNAwalker-PT-
07track28RR, e=Solitaire-PT-SqrNC5x5, f=Railroad-PT-010, g=Kanban-
PT-0010, h=BridgeAndVehicles-PT-V20P10N50, i=TokenRing-PT-015,
j=Kanban-PT-0005, k=ParamProductionCell-PT-0, 1=IOTPpurchase-PT-
C05M04P03D02, m=ParamProductionCell-PT-5, n=ParamProductionCell-
PT-3 and o=ParamProductionCell-PT-4 .

23

9TI]79TQNOP :: 9TIIqTIT = 9TYNOP PUB STIF STIUTS :: 8TIAQTIT = oT3uTS
‘8TI770TSBQ :: 8TIIQTT = OTSBQ ‘T3 I IIW = IJIW SOLIRIQI[I0] PUSSST Z0ALOdFOINGOD-Ld-°seyomdd [O[=0 pue
€0-TLd-To0J3uruuimg=u ‘pO-IJ-[00J3umumImg=ur ‘O~ J-TPQuononpoiquered=[‘¢-LJ-{POUonInNpoIJurRIR =Y
‘020-Ld-1oPa=[‘q10-Ld-SAOMY =T ‘G0-Ld-SIPUIDI=1 ‘2€00DATI00LIN-Ld-wesdgdureradoremg=3
‘GXGONIDS-Td-01reo8=] ‘0ZNOTJOZA-LI-SOPIPAPUYISpLIg=> ‘0TONGOA-Ld-AZUOsNPIa=p ‘¥9000ASZTOLIN-Ld
-we)sAgIurperadrews=>2 ‘Ze00DASZT0LIN-Ld-weIsdgsurnersdremig=q ‘GO-I,J-SISouaS0Isuy=e :S[epouw oY} I0J Puasar|
"SOLIT,J 031 pareduwod wordWINSUOd-oUIT) SAIIR[OI S} 2J0USP Ssofejuediod Ul SUWN[O)) dAIjRILId[R Suluriojad 1s9q 03 LAIjR[DI
a111d jo oouewrioprod oy} Aq PoIOPIO ‘SOPOW 10U LI19J 1SIOM G PUR URIPOW G ‘4s9q G 9Yj) JIOJ SPUOIDS UI SWIL], :) 9[qR],

[t6rpr [os9 | w8 | %86 | %8 [%98] %6 | %ot [7069z [6°016z [8°€092[9 079z]g 8eve [a81ag]z c9ze| Sae]

¥'80T VLT %19 %E0T | %8S | %Ee8| %TVl | %I9T |T'SEV |€99C |9'9SY |6°61€ |C'S8T |9°€9T |6°€9C o
€661 (49 %12 %18 %68 | %LE| %0L | %6CT [0°96C [8°96 |S°29C |L°60C |V'CIT [6°09 |€'8L u
gLy01 TVIT | %SC %8 %3E | %9E| %89 | %LTT |0°69LT |3°CCS |T'99€T|R0TTT|6°LY9 [L'GVE |6°6ET w
GEl 8'C %LL %88 %08 | %L6| %ETT | %9¢T |[T'PS |69F |P'IS |8CF |8'€E [8CE VIV [
L9 LT %92 %56 %89 | %T6| %ITT | %921 [8°€E |0°LC |6, |6°4C |€T¢ |[¥'0C |L'SC R
€91¢1 g1r %€6 %C0T | %06 |%S8| %86 | %IOT |0°S¥CT [0°9ETT |6°68CT|E LIET |V LBTT [O°LVTT|6°8STT [

I

Vvee 6°87 %SS %62 %65 | %0L| %T8 | %c0T |9°GLS |0°T0F |S°CPS |SFSP |L'68E [8'CIE |L'8IE

672 0 | %9e | %IL | %6V [%09] %6L | %eol |scr |oee |gee |12z (902|191 |¥91 q
8'L9 16 | %9e | %eL | %ie |%ve| %9 [%001 [129 |voe |60L [TV | |gae |€G 3
071z 191 | %99 | %98 | %9 [%19] %6L | %001 [¢'29z [110z |6'9¢z |1'€8e |9'61z |8'€LT |T'€LL J
81¢ 16 | %09 | %8L | %as [%eL] %L | %88 [9€2l [6'€6 |1°621 [z'001 |0'TOT [1'¥8 [9°€L 0
L69s |TIET| %68 | %98 | %WL |%ES| %9 | %e8 [67166¢ |SG1LT |COVIE|P OIVP|L €69€ [€°668¢2[6°L66T] P
9]
q
153
N

9°0102 ¢'19¢ | %1€ %99 %8¢ | %V¥| %cs %S98 [8°€68T |9°068 |9 TVIC|C STET|C IVIT |9°€69 |C68S
G'€98 CeIT | %ce %¢€9 %LT | %EV| %I %¥8 |0°69L |€°L8¢ |Z'C68 [9°69S [9°9¢S |£°C6C |9 FTCT
6°98¥ LTV %19 %LL %EY | %LV | %09 %6L |€°86L [0°€ES |€°LV6 |S°698 |S°089 |8'LTS [L'S0F
m:oﬁmpwmo_mougm_w._”ndov_meE.”m_UHmmn_Hma_memmm_mmnmv_mﬁndov_mﬁwﬁm_UHmma _Hne _wmnmmm_wmﬁwv _wﬁﬁa :@wo _

24

"9TI] 9TQNOP i OTIFTT = STYNOP pPu® STIF STJUTS i 8TIAQTIT = oT3uTS
‘9TI970TSBQ 1 9TIQQTT = OISeq ‘OTI] I IIW = IIW SOLIRIQI] I0] PUASeT ‘f-IJ-[[oDuolonporijurered=0 pue ¢-T.d
-[[PQUOTINPOIJUIRIR=U ‘G-T J-[[PQU0nINpoIJuRIRJ=1 ‘0¢00-LJ-ATPUR[dIy=] ‘Z0A&0dV0ING0D-Ld-osepmdd0I=)
‘OINOTAOZA-LJ-SPPIPAPUYSPLg=l ‘0TIN0ZI0TA-Ld-SOPIPAPUYIBpLIg=T ®I0-LJ-SHA=U ‘GI0-LJ-8UryueyoL=3
‘020-Ld-PPA=] ‘2€00DASTTOLIN-Ld-wosAgdunendoewg=s “YI8GPRNGO-LI-EAYNA=P “HI8TPeNL0-Ld
SI[EMYNA=" “TISGPRIV0-Ld-1[EAYNA=] ‘THSEIPLIIY)-LJ-ON[EMYNJ="® :S[Epoul Y} I0} PuUsSeT 'SAULJ 0}
poreduwod uoI}dWNSUOI-AIOWSW SAIJR[OL 9} 9J0USP soFejusdtod Ul suWN(o)) ‘dAljeunId)e Suruniojiod 3soq 03 dAje[ol otxad
jo oouruIojiod oY) AQ PoIoplo ‘S[EpPOUW JoU 1119 JSIOM G PUR URIPOW G ‘159q G oY)} I0] SolAqeldowt Ul AIOWSJN :§ 9[qe],

lretvt 989 [%er | %ve | %St | %v | %ie | %Sz [ec09 [990¢ [988z [gesit9res |18z [poL | Sae]

86 Ve %89 %8L %YL | %S | %CET | %L8 |VST 06T 10¢ |OI8T |CTT 0LT |8FI o
6°S a1 %99 %99 %06 | %8 | %IET | %LOT |C¥T 44! ¥OT |8STT |2l 18 76 u
L9 LT %04 %SL %EG | %8 | %6TT | %STT |2ST (44! 10¢ |00€T |28 6 90T w
86T v %6¢ %Vl | %8TT [%9T| %2L8 %09 [86¢ 06T 661 |98VI |CLT 96€ |9€¢C [
¥'80T VLT %Ss€ %Ee %8G | %V | WSTT | %29 |PISC |90 [880€ |0¥8TG|¥9L YOET 1088 b
RYY 29 %8¢ %9¢€ %y | %S | %Ly %87 1009 84V C6E |CEEE |6VE Sve 991 (

R4 L9 %8¢ %9¢ %V | %S | %lv %8V |86¢ 84¥ ¢6€ |9CEE |6T€ Sre 991
y'eret 980T | %91 %Le %LV | %SG | %8E %S€E |L8¢6 |L8ES |6L0€ |006LG|VLLE |9CTV |TVVI
G'99¢ v'ge %S¢ %Se %1€ | %E | %I¥ %1€ |PT6E |998€ |[¥80E |F¥6EE(|260C |STIE |296
€91¢1 ! %ET %91 %0C | %T | %S¥ %0€ |T6IT 086 98L |¥E€8L |0S€ 1€G |LST

1
q

3

3

G'e98 €EIT | %al %5C | %IT | %e | %9¢ | %¥C |0T6L [¥98€ |P919 |908LE|6LLE |OVIV |8L6 °
6°€86C €Gey | %L %TC | %ET | %S | %61 %L1 |T9G8€ |CLOET |96€CT |0SLE9|VI0ST |C8YIT | V88T P
o)

q

®

N

6'196¢ 6°Ccey %2 %¢T %ET | %G | %61 %LT |OT¥8¢ |TLOST |96TCT|90TE9|¥90ST |G8VIT [9S8¢C
6'T96¢C 6°CEY %9 %¢T %ET | %V | %61 %LT |78¢9¥ |CLOST |96CCT|0TTIL|F90ST |GSVIT|SIST
6°686¢ £'Gey %6 %CT %ET | %V | %61 %LT [T99¢¢ |CLOST |96TCT |PSETLIE90ST |GSTIT |9T8CT
m:oﬁﬁwao_m@uf@_w.mnzov_w._”mﬁ.”m_UHmmn\THE_memmm_wmnmu_m._”nsov_mamﬁﬂm_oﬂmmn_hna _wmnmam_wmﬁwv_mﬁmpm:ovo

25

