
AalWiNes: A Fast andQuantitative
What-If Analysis Tool for MPLS Networks

Peter Gjøl Jensen

Aalborg University

Denmark

Dan Kristiansen

Aalborg University

Denmark

Stefan Schmid

Faculty of Computer Science

University of Vienna

Austria

Morten Konggaard Schou

Aalborg University

Denmark

Bernhard Clemens Schrenk

Faculty of Computer Science

University of Vienna

Austria

Jiří Srba

Aalborg University

Denmark

ABSTRACT
We present an automated what-if analysis tool AalWiNes for

MPLS networks which allows us to verify both logical properties

(e.g., related to the policy compliance) as well as quantitative

properties (e.g., concerning the latency) under multiple link failures.

Our tool relies on weighted pushdown automata, a quantitative

extension of classic automata theory, and takes into account the

actual dataplane configuration, rendering it especially useful for

debugging. In particular, our tool collects the different router

forwarding tables and then builds a pushdown system, on which

quantitative reachability is performed based on an expressive query

language. Our experiments show that our tool outperforms state-

of-the-art approaches (which until now have been restricted to

logical properties) by several orders of magnitude; furthermore,

our quantitative extension only entails a moderate overhead in

terms of runtime. The tool comes with a platform-independent user

interface and is publicly available as open-source, together with all

other experimental artefacts.

CCS CONCEPTS
• Networks→ Network reliability; Network algorithms.

KEYWORDS
Network Verification, Network Performance, Tools

ACM Reference Format:
Peter Gjøl Jensen, Dan Kristiansen, Stefan Schmid, Morten Konggaard

Schou, Bernhard Clemens Schrenk, and Jiří Srba. 2020. AalWiNes: A

Fast and Quantitative What-If Analysis Tool for MPLS Networks. In The
16th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’20), December 1–4, 2020, Barcelona, Spain. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3386367.3431308

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7948-9/20/12.

https://doi.org/10.1145/3386367.3431308

1 INTRODUCTION
While communication networks are a critical infrastructure of

our digital society, their correct configuration and operation is

complex, requiring operators to become “masters of complexity” [21].
As many recent network outages were caused by human errors,

e.g., [8, 13, 14], we currently witness major research efforts toward

more automated and formal approaches to operate and verify

networks [5, 7, 15, 16, 24, 25, 29, 34, 39].

A particularly critical but challenging task for human operators is

to reason about failures (in this paper referred to as what-if analysis).
In order to meet their stringent dependability requirements,

most modern communication networks come with fast recovery

mechanisms which revert traffic to alternative paths [11, 12, 28, 31].

While this is attractive, already a single link failure can lead to

unintended network behaviors which are easily overlooked and

may violate the network policy [8]. Especially multiple link failures,

which are more likely to occur in large networks and can be caused

e.g. due to shared risk link groups [6, 17, 30], may threaten network

dependability.

It is often insufficient to only ensure the logical correctness

(e.g., policy compliance) of the network behavior under failures. A

dependable network also needs to satisfy quantitative properties.

For example, traffic should be rerouted along short paths, e.g.,
regarding link latency (offering a low latency) or number of hops

(reducing load), even under a certain number of link failures.

We are particularly interested in networks based on Multipro-

tocol Label Switching (MPLS) [2]. MPLS networks are widely de-

ployed in the Internet today, especially in IP networks and for traffic

engineering purposes. The study of MPLS networks is also inter-

esting from a theoretical perspective, as the header size in these

networks is not fixed; rather, additional labels may be pushed on

the header while rerouting packets around failed links, creating

“tunnels”. This makes the employment of formal methods particu-

larly challenging as we must deal with a possibly unbounded set of

packet headers.

Our Contributions. We present a what-if analysis tool for

MPLS networks,AalWiNes
1
, which supports a fully automated and

fast verification of the network behavior under failures. In particular,

AalWiNes relies on an expressive query language and allows us

to test both logical properties (such as the policy compliance) as

1
AALborg WIen NEtwork verification Suit

1

https://doi.org/10.1145/3386367.3431308
https://doi.org/10.1145/3386367.3431308

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jensen et al.

well as quantitative properties (such as the latency, number of

hops, required label stack size resp. tunneling depth, or number

of failed links), and in polynomial-time using an over- and under-

approximation technique for an arbitrary number of link failures

(and with a low number of inconclusive answers). AalWiNes

operates directly on the dataplane forwarding tables, allowing to

debug issues not visible in the control plane.

At the heart of AalWiNes lies a weighted pushdown automaton,

a quantitative generalization of classical automata: based on the

router forwarding tables and a query (the input to the tool), we

build a weighted pushdown system and then perform a quantitative

reachability analysis. To improve performance, AalWiNes uses

novel algorithms tailored to this use case.

We offer an optimized C++ implementation of AalWiNes and

report on its platform-independent user interface. Considering

a case study in cooperation with NORDUnet, a major network

operator, we show that our tool outperforms state-of-the-art

approaches (only applicable to verification of logical properties)

by several orders of magnitude in terms of runtime. We also

demonstrate that our quantitative extension only entails a

reasonable overhead. As a contribution to the research community

and in order to ensure reproducibility, we released our tool as open

source and we also shared all our experimental artefacts [23].

Related work and novelty. The problem of how to render

networks more automated and formally verifiable has recently

received much interest, both for specific networks and protocols,

such as BGP [38], OpenFlow [5, 25], or MPLS [34] networks,

as well as for networks which are protocol agnostic [24]. The

different systems rely on different approaches, including e.g.,

algebraic approaches [5], static verification based on geometric

approaches [24], or automata-theoretic approaches [22]. We

specifically consider MPLS networks and use an automata-theoretic

approach. Whereas some recent work focus on verification of the

control plane configurations [4, 7, 18–20, 32], we directly verify the

router forwarding tables, which allows us to also catch errors in

the data plane [36].

We focus on polynomial-time verification via a suitable over-

and under-approximation, even under failures: many existing

approaches in the literature do not consider failure scenarios

explicitly (and still exhibit a super-polynomial runtime, e.g., due

to SAT solving [29]), and/or have to solve NP-hard problems when

modelling failures scenarios, e.g. SMT solving [7]. Furthermore,

most existing approaches target different network types [4, 7, 19,

20, 32] and do not support arbitrary header sizes, which however

arise in the context of MPLS networks: by representing MPLS

networks symbolically as pushdown automata, we hence achieve

an exponential speedup compared to the direct encoding of all

possible sequences of header symbols.

To the best of our knowledge, our tool is the first to consider

what-if analysis of quantitative aspects as well, and we are not

aware of any applications of weighted automata theoretical results

in this context. The few weighted solutions that exist do not

consider failure scenarios and have an exponential runtime [27].

The paper closest to ours is P-Rex [22], a polynomial-time approach

to verify logical properties of MPLS networks, also accounting

for possible failures by using approximative analysis. As we

demonstrate in our evaluation, our tool not only adds the novel

quantitative dimension, but also outperforms P-Rex by several

orders of magnitude. We further contribute an interactive user

interface and make a leap forward regarding applicability for

network operators.

Finally, we note that what-if analyses tools have been developed

also various other networking contexts, such as in CDNs, to predict

the effects of possible configuration and deployment changes [37].

2 MPLS NETWORK MODEL
This section introduces our MPLS model and query language.

2.1 Network definition
An MPLS network consists of a topology and forwarding rules.

Definition 1. A network topology is a directed multigraph

(V ,E, s, t) where V is a set of routers, E is a set of links between
routers, s : E → V assigns the source router to each link, and

t : E → V assigns the target router.

We assume that links in the network can fail. This is modelled

by a set F ⊆ E of failed links. A link is active if it belongs to E \ F .
We assume asymmetric link failures that can be caused e.g., by

congestion in one direction, resulting in packet drops that can also

appear as a link failure.

Let L be a nonempty set of MPLS labels used in packet headers.

We define the set of MPLS operations on packet headers as Op =
{swap(ℓ) | ℓ ∈ L} ∪ {push(ℓ) | ℓ ∈ L} ∪ {pop}. Given an alphabet

A, let A∗
denote the set of all finite words over the elements of A,

including the empty word ϵ .

Definition 2. An MPLS network is a tuple N = (V ,E, s, t ,L,τ)
where (V ,E, s, t) is a network topology, L = LM ⊎ L⊥M ⊎ LIP is a

finite set of labels partitioned into (1) the MPLS label set LM , (2)

the set of MPLS labels with the bottom of the stack bit (S) set to

true L⊥M , (3) a set of IP addresses LIP , and τ : E × L → (2E×Op∗

)
∗

is the routing table.

The routing table, for every link e ∈ E and a top (left-most)

packet label ℓ, returns a sequence of traffic engineering groups

τ (e, ℓ) = O1O2 . . .On where each traffic engineering group is a set

of the form {(e1,ω1), . . . , (em ,ωm)} where ej is the outgoing link
such that t(e) = s(ej) andωj ∈ Op∗ is a sequence of operations to be
performed on the packet header. In a given traffic engineering group,

the router can nondeterministically (e.g. pseudorandomly) select

any active link and forward the packet via that link while applying

the corresponding sequence of MPLS operations. This allows us

to abstract away from various routing policies that facilitate e.g.

splitting of a flow along multiple shortest paths. The group Oi has

a higher priority than Oi+1 and during the forwarding, and the

router always selects the traffic engineering group with the highest

priority and at least one active link.

2.2 Valid MPLS headers
The MPLS labels can be nested only in a specific way. For a given

network N = (V ,E, s, t ,L,τ), we define the set of valid headers

H ⊆ L∗ by H = LIP ∪ {αℓ1ℓ0 | α ∈ L∗M , ℓ1 ∈ L⊥M , ℓ0 ∈ LIP }.

Hence the on top of the IP label there can be one label with the

2

Quantitative Analysis of MPLS Networks CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

v0

v1

v2

v3

v4

e0

e2

e1

e3

e4

e5

e6

e7

(a) Network topology

Router ein Label Priority eout Operation
v0 e0 ip1 1 e1 push(s20)

e0 ip1 1 e2 push(s10)
e0 s40 1 e1 swap(s41)

v1 e2 s10 1 e3 swap(s11)
v2 e1 s20 1 e4 swap(s21)

e1 s41 1 e5 swap(s42)
e1 s20 2 e5 swap(s21) ◦ push(30)

v3 e3 s11 1 e7 pop
e4 s21 1 e7 pop
e6 s43 1 e7 swap(s44)
e6 s21 1 e7 pop

v4 e5 30 1 e6 pop
e5 s42 1 e6 swap(s43)

(b) Routing table

σ0 = (e0, ip1) (e1, s20 ◦ ip1) (e4, s21 ◦ ip1) (e7, ip1)
σ1 = (e0, ip1) (e2, s10 ◦ ip1) (e3, s11 ◦ ip1) (e7, ip1)
σ2 = (e0, ip1) (e1, s20 ◦ ip1) (e5, 30 ◦ s21 ◦ ip1)(e6, s21 ◦ ip1) (e7, ip1)
σ3 = (e0, s40 ◦ ip1) (e1, s41 ◦ ip1) (e5, s42 ◦ ip1) (e6, s43 ◦ ip1) (e7, s44 ◦ ip1)

(c) Examples of traces

Query Witness traces
φ0 = ⟨ip⟩ [.#v0] .∗ [v3#.] ⟨ip⟩ 0 σ0,σ1
φ1 = ⟨ip⟩ [.#v0] [ˆ v2#v3]

∗ [v3#.] ⟨ip⟩ 2 σ1,σ2
φ2 = ⟨s40 ip⟩ [.#v0] .∗[v3#.] ⟨smpls ip⟩ 0 σ3
φ3 = ⟨s40 ip⟩ [.#v0] .∗[v3#.] ⟨mpls+ smpls ip⟩ 1 no trace exists

φ4 = ⟨smpls? ip⟩ [.#v0]∗[v3#.] ⟨smpls? ip⟩ 1 σ2,σ3

(d) Network queries

Figure 1: A small network example

bottom of stack bit S set to true and an arbitrary number of other

MPLS labels. The MPLS operations can manipulate the label-stack

by modifying only the topmost label so that the result of operations

performed on a valid header is itself a valid header.

Definition 3. The semantics of MPLS operations is a partial header
rewrite functionH : H×Op∗ ↪→ H whereω,ω ′ ∈ Op∗, ℓ ∈ L,h ∈ H
and ϵ is the empty sequence of operations:

H(ℓh,ω) =

ℓh if ω = ϵ and ℓ ∈ L

H(ℓ′h,ω ′) if ω = swap(ℓ′) ◦ ω ′
and ℓ′h ∈ H

H(ℓ′ℓh,ω ′) if ω = push(ℓ′) ◦ ω ′
and ℓ′ℓh ∈ H

H(h,ω ′) if ω = pop ◦ ω ′
and ℓ ∈ LM ∪ L⊥M

undefined otherwise .

Let LM = {30, 31}, L⊥M = {s20, s21} and LIP = {ip1}. We use

here and in what follows the convention that all labels that are on

the bottom of the MPLS label stack (have the bottom of stack bit S
set to true) are prefixed with small s . ThenH(30 ◦ s20 ◦ ip1, pop ◦
swap(s21) ◦ push(31)) = 31 ◦ s21 ◦ ip1.

2.3 Example network
An example of a simple network topology is given in Figure 1a

together with the forwarding table described in Figure 1b. The

example defines two label switching paths for IP-packet routing

from v0 to v3, either via the links e1 and e4, or the links e2 and e3.
The respective path can be selected nondeterministically. Moreover,

packets arriving via the link e0 with the service label s40 (agreement

with the neighboring network operator) are routed via the links

e1, e5, e6 and leave the network on the link e7.
Every forwarding rule for the routerv is represented by a line in

the table and depending on the incoming link ein (where t(ein) = v)
and the top of the stack label, it determines the outgoing link eout
(where s(eout) = v) and a sequence of stack operations that replace
the top label. Each such rule has a priority that is depicted by the

priority column in the middle of the table. In our example, it is

only the routerv2 that has more than one priority group associated

to its forwarding table in order to protect the link e4. If a packet
arrives via the link e1 with label s20 on top of the stack then it is

primarily forwarded via the link e4 while the label is swapped with

s21. Only if the link e4 fails, a backup rule with priority 2 is used

so that it forwards the traffic via the link e5, first swapping the top

label with s21 and then pushing a new label 30 on top of the label

stack. The router v4 then pops the label and the packet arrives to

v3 with the same label as if the link e4 did not fail.

2.4 Network traces
We now define valid traces in an MPLS network N = (V ,E, s, t ,L,τ)
under the assumption that the links in the set F ⊆ E failed. For

a traffic engineering group O = {(e1,ω1), (e2,ω2), . . . , (em ,ωm)}

we let E(O) = {e1, e2, . . . , em } denote the set of all links in the

group. The group O is active if it contains at least one active link,
i.e. E(O) \ F , ∅. Further, we define A(O1O2 . . .On) = {(e,ω) ∈
O j | e is an active link} where j is the lowest index such that O j is

an active traffic engineering group, and we letA(O1O2 . . .On) = ∅

if no such j exists. The set A(τ (e, ℓ)) so contains all the currently

available output links and the corresponding label-stack operations

to be performed on a packet arriving on the link e with the top-

most label ℓ. A trace in a network is a routing of a packet in the

network and consists of a sequence of active links together with

the corresponding label-stack headers.

Definition 4. A trace in a network N = (V ,E, s, t ,L,τ) with a set

of failed links F ⊆ E is any finite sequence

(e1,h1)(e2,h2) . . . (en ,hn) ∈
(
(E \ F) × H

)∗
of link-header pairs where hi+1 = H(hi ,ω) for some (ei+1,ω) ∈
A(τ (ei , head (hi))) for all i , 1 ≤ i < n, where head (hi) is the top
(left-most) label of hi .

Examples of network traces for our running example are

provided in Figure 1c. The traces σ0 and σ1 describe two possible

traces for routing a packet arriving to v0 with the destination IP

3

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jensen et al.

ip1, under the assumption that F = ∅. The trace σ2 shows a failover

protection of the link between v2 and v3 in case that F = {e4}.
Finally, the trace σ4 encodes a label switching path for packets

arriving to v0 with the service label s40 and it is a valid trace for

example for the set of failed links F = {e2, e3}.

2.5 Query language
We present a powerful query language that allows us to specify

regular trace properties, both regarding the initial and final label-

stacks as well as the link sequence in the trace.

Definition 5. A reachability query for an MPLS network N =
(V ,E, s, t ,L,τ) is of the form ⟨a⟩ b ⟨c⟩ k where a and c are regular
expressions over the set of labels L, b is a regular expression over

the set of links E, and k ≥ 0 specifies the maximum number of

failed links to be considered.

We assume here a standard syntax for regular expressions and by

Lang(a), Lang(b) and Lang(c)we understand the regular language
defined by the expressions a, b and c , respectively. For specifying
labels in the regular expressions a and c we use the abbreviations:

• ip = [ip0, . . . , ipn] where LIP = {ip0, . . . , ipn },
• mpls = [ℓ0, . . . , ℓn] where LM = {ℓ0, . . . , ℓn }, and

• smpls = [ℓ⊥0 , . . . , ℓ
⊥
n] where L

⊥
M = {ℓ⊥0 , . . . , ℓ

⊥
n }.

We further use the following notation for specifying links in

the network. If v and u are routers, then [v#u] matches any link e
from v to u such that s(e) = v and t(e) = u. If in1 is an interface

on router v that uniquely identifies the outgoing link e , and in2

identifies the incoming interface on router u for the link e , then
[v .in1#u .in2] matches exactly the link e . The dot-syntax is used
to denote any link in the network and it is extended to match also

any router so that [v#·] =
⋃
u ∈V [v#u] and [·#u] =

⋃
v ∈V [v#u].

Problem 1 (Query Satisfiability Problem). Given anMPLS network

N and a query φ = ⟨a⟩ b ⟨c⟩ k , decide if there exists a trace

σ = (e1,h1) . . . (en ,hn) in the network N for some set of failed

links F such that |F | ≤ k where h1 ∈ Lang(a), e1 . . . en ∈ Lang(b),
and hn ∈ Lang(c). If this is the case, the query φ is satisfied and we

call σ a witness trace.

Examples of queries are provided in Figure 1d. The query φ0
asks about the existence of a trace that starts and ends with the

label-stack containing only the IP header, such that the first link

is incoming to the router v0, followed by zero or more hops via

unspecified links, and ending with link that leaves the router v3,
all under the assumption of no link failures. The traces σ0 and

σ1 satisfy the query, however, even though the trace σ2 has the

required form as well, it does not satisfy φ0 as it requires that the

link e4 fails. The next query φ1 expresses a similar property as

φ0 with the exception that we allow for up to 2 link failures and

the inner path may not contain any link between v2 and v3 (the

symbol ˆ stands for complement of regular expressions). The traces

σ1 and σ2 satisfy this query. The query φ2 asks about a possible

routing path between v0 and v3 where the header of the initial

packet contains the label s40 on top of an IP header and leaves the

network with an arbitrary MPLS label (where the bottom of the

stack bit is set to true) on top of the IP header. Indeed, the trace

σ3 has this property and it is a valid trace even in case of no link

failures. The next query φ3 checks the transparency of the routing

fromv0 tov3 by asking whether a packet with the service label s40
can leave our network with at least one additional MPLS label on

top of the service label. Should this be the case then our network

leaks internal MPLS labels to the neighboring networks, which

is not desirable. Even in case of one link failure, the query is not

satisfied. Finally, the query φ4 asks whether in case of one link

failure there is an IP routing, with an optional MPLS label on the

top of the IP label, with three or more hops between the incoming

and outgoing links, and this is indeed the case as documented by

the witness traces σ2 and σ3. In case of no link failures, the query

is satisfied only by the trace σ3.

3 QUANTITATIVE EXTENSION
After describing our network model and the query language used

in our tool, we now present a novel extension of the framework

which allows us to account for quantitative aspects, like latency,

number of hops, tunnels (label stack size), number of failures, and

linear combinations of these measures.

For a given network query, there can be several network traces

that satisfy the query and for some queries there exist even infinitely

many witness traces. From the user perspective, it is hence essential

that when debugging the reasons why a certain query holds, we

can impose quantitative constrains on the traces and specify what

kind of witness traces we wish to visualize. For traffic engineering

purposes we may want to find a trace that has the lowest latency

or the smallest number of hops. We may be interested in finding a

trace that minimizes tunneling depth or the number of failed links

required to execute a given trace, or we may wish to find a trace

that balances several such measures simultaneously.

We shall start by defining atomic quantiative properties of

network traces. Let N = (V ,E, s, t ,L,τ) be an MPLS network and

let F ⊆ E be the set of failed links. An atomic quantity is a function

p : ((E \ F) × H)∗ → N0 that for a given trace σ evaluates to a

non-negative integer p(σ) representing the quantitative measure of

the trace. In our tool, we support the following atomic quantities

of a network trace σ = (e1,h1) . . . (en ,hn):

• Links(σ) = n is the length of the trace,

• Hops(σ) = |{e ∈ {e1, . . . , en } | s(e) , t(e)}| is the number

of hops, where we avoid counting links that are self-loops,

• Distance(σ) =
∑n
i=1 d(ei) is the distance for any distance

function d : E → N0, e.g., the geographical distance, latency
or e.g. inverse bandwidth capacity,

• Failures(σ) =
∑n−1
i=1 |failed (i)| where failed (i) =

{e | (e,ω) ∈ Ok , 1 ≤ k < j}, where τ (ei , head (hi)) =
O1O2 . . .Om , and where j, is the lowest index such that

O j is an active traffic engineering group, and

• Tunnels(σ) =
∑n−1
i=1 max(0, |hi+1 | − |hi |) is the number of

pushes of new MPLS labels on the existing label-stack.

The atomic quantity Failures(σ) measures the minimal number

of failed links which are necessary at each router in order to enable

the feasibility of the trace σ . The function Tunnels(σ) measures

the positive increase in the label-stack height during the trace σ
that corresponds to the number of tunnels created during the trace.

Consider again the traces for our running example from Figure 1c.

We haveHops(σ0) = Links(σ0) = 4 andHops(σ3) = Links(σ3) =

4

Quantitative Analysis of MPLS Networks CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

5. We also observe that Failures(σ2) = 1 while Failures(σ3) = 0.
Finally, we can see that e.g. Tunnels(σ1) = 1, Tunnels(σ2) = 2
and Tunnels(σ3) = 0.

We can now combine the atomic quantities in order to define

composed criteria for trace weight specification, by constructing

linear expressions of the form

expr ::= p | a * expr | expr1 + expr2

where p is an atomic quantity and a ∈ N. A vector of linear

expressions (expr1, expr2, . . . , exprn) allows us to specify trace

properties by priorities, so that expr1 has a higher priority than

expr2 etc. For a trace σ , there is a natural evaluation of linear

expressions to nonnegative integers and for a vector of linear

expressions, we assume the lexicographical ordering ⊑ on vectors

of nonnegative integers, by abuse of notation extended to traces.

Problem 2 (Minimum Witness Problem). For a network, a query

that is satisfied in the network and a vector of linear expressions

(expr1, expr2, . . . , exprn), we want to find a witness trace σ such

that σ ⊑ σ ′
for any other witness trace σ ′

.

Consider the query φ4 in our running example from Figure 1

where we want to find witness traces that will minimize the vector

(Hops,Failures + 3 · Tunnels). The query has two witness traces

σ2 and σ3 and when we evaluate them on the minimization vector,

we get the pair (5, 1+3·2) = (5, 7) for σ2 and (5, 0+3·0) = (5, 0) for
σ3. As lexicographically (5, 0) ⊑ (5, 7), the answer to the minimum

witness problem is the trace σ3. In general, there can be several

minimum witness traces, and we may return any of those, or add

another minimization criterion to the vector of linear expressions.

4 TOOL IMPLEMENTATION
We now give an overview of the tool architecture, its theoretical

foundation and integration with the dataplane configuration. The

front end of our tool provides a web-browser based visualization.

The graphical interface allows us to load a number of predefined

networks from the Internet Topology Zoo [1], the operator’s

network used in the experiments as well as the running example

used in this tool paper. In the interface we can specify the query,

including an online help for router names with interfaces as well as

the sets of labels tested at each router. In options, we can set different

parameters for the tool and graphically create the vector of linear

expressions for the minimum trace specification. If a witness trace

is discovered, the GUI visualizes the trace including the operations

performed at each router. A screenshot in Figure 2 shows how to

specify the minimization vector (Hops,Failures+3 ·Tunnels) and
the corresponding witness trace. The GUI is written in JavaScript

and the source code is available under the GPL3 license. The

backend verification engine is running on a web server at https:

//demo.aalwines.cs.aau.dk/ and there is also a packaged version of

the tool that can be run locally without the use of a web server (and

allows to input additional MPLS networks created by the user).

4.1 Verification methodology
Our tool is based on automata-theoretic approach that leverages a

translation from the query satisfiability (in an MPLS network) to a

reachability analysis of a pushdown automaton (with potentially

infinitely many reachable configurations). As reachability in

Figure 2: Running example loaded in the AalWiNes GUI

pushdown automata is decidable in polynomial time [9, 10], this

approach has the potential of scaling to large networks.

The connection between MPLS networks and pushdown

automata was first noticed in [22, 34] where the authors

provide a command-line prototype implementation in Python with

encouraging experiments showing the feasibility of the approach.

They use a state-of-the-art pushdown model checker Moped [3, 35]

for reachability checking on pushdown automata and show that

they can verify complex network queries on network topologies

with 20-30 routers in a matter of hours. However, the work in [22]

is a purely qualitative approach and does not provide any support

for quantitative analysis. In order to deal with quantitative aspects,

we extend the approach from [22] and suggest a novel translation

from the query satisfiability problem with minimization criteria

for witness traces, into the framework of weighted pushdown

automata [26]. The theoretical foundations for the verification of

weighted pushdown automata have been developed in the area

of dataflow analysis [33] where polynomial-time algorithms are

known even for the weighted extension. The basic observation

behind this automata-theoretic approach to reachability analysis

of weighted pushdown automata is that the set of all reachable

configurations in a pushdown system forms a regular language

that can be effectively represented by a nondeterministic finite

automaton (of polynomial size) with transitions annotated by

weights. The length of the shortest path to reach a pushdown

configuration then corresponds to the shortest accepting path in

the finite automaton under that configuration. As the Moped tool

employed in [22] cannot handle weighted pushdown automata,

we develop a new weighted pushdown automata C++ library

AalWiNes (available at https://github.com/DEIS-Tools/AalWiNes)

to replace Moped. Our experiments show a significant (several

orders of magnitude) speedup due to the novel translation method

with optimized reduction methods as well as due to our efficient

implementation of the backend engine.

5

https://demo.aalwines.cs.aau.dk/
https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jensen et al.

GUI

Translation module
MPLS
network

Query

Our solver

post*

pre*

Over-
approximation

Library

Reduction

Moped

post*

pre*

Binary

Satisfied

Network
trace

PDA

Weight

Unsatisfied
ResultSuccessful

FailedSuccessful

Trace-
reconstruction

PDA
trace

Failed
Under-

approximation

Inconclusive

Figure 3: Tool Architecture

4.2 Tool architecture
The details about the architecture of our tool are given in Figure 3.

First we obtain a dataplane snapshot of the routing forwarding

tables (including the failover rules) as described in Appendix A.

If the network configuration changes, we need to obtain a new

dataplane snapshot. The graphical user interface allows us to load

the MPLS network, a query and possibly also a weight expression.

The tool then constructs a pushdown automaton by means of

over-approximation as the exact analysis requires to enumerate

all of the (exponentially many) failure scenarios. Intuitively, over-

approximation assumes that up to k links can fail at any router.

This clearly includes all failure scenarios of up to k globally failed

links but it may include additional traces that contain more than k
failed links in total.

After this, the tool performs a series of reductions (based on static

analysis that overapproximates the possible top-of-stack symbols in

every given control state) on the constructed (weighted) pushdown

automaton by removing redundant rules in order to decrease its

size. The reduced pushdown is then sent either to the Moped engine

(possible only if the weight requirements are not specified) or to

our solver that accepts both weighted and unweighted pushdown

automata. If the verification result says that the query is not satisfied,

we achieve a conclusive answer and report it to the GUI. Otherwise,

the produced network trace must be verified for its feasibility

and the fact that it does not exceed in total k link failures (for

a fixed trace this can be done in polynomial time). If the trace

reconstruction succeeds, we have a witness trace (possibly one of

the minimal ones in case the weight objective is given) and we

can report that a query is satisfied. Otherwise, our tool constructs

an under-approximating pushdown automaton where we add a

global failed link counter and use this counter to guarantee that

the total number of failed links is not exceeded. This produces only

an under-approximation as in case of traces with loops, we may

count the same failed link twice. If a valid trace is generated by the

under-approximation, we can return it as a witness trace. Otherwise

the answer is inconclusive. In our experiments on a real operator

network, the answer was inconclusive for 8 out of 6,000 queries

(0.13% of the total)—a more expensive analysis is then needed.

5 PERFORMANCE EVALUATION
We evaluate the performance of our tool on a real-world network

operator NORDUnet (http://www.nordu.net/) with 31 routers and

Query Moped Dual Failures
⟨smpls ip⟩ [· #R6] ·∗ [· #R4] ⟨smpls ip⟩ 1 9.57 0.82 41.23

⟨smpls ip⟩ [· #R2] ·∗ [· #R18] ⟨(mpls∗ smpls)? ip⟩ 1 9.29 0.86 31.76

⟨ip⟩ [· #R0] ·∗ [· #R4] ⟨ip⟩ 0 0.88 0.01 0.02

⟨[$449550] ip⟩ [· #R0] ·∗ [· #R5] ·∗ [· #R1] ⟨ip⟩ 0 1.66 0.02 0.03

⟨[$449550] ip⟩ [· #R0] ·∗ [· #R5] ·∗ [· #R1] ⟨ip⟩ 1 6.08 0.05 0.06

⟨smpls? ip⟩ ·∗ ⟨· smpls ip⟩ 0 89.37 14.73 432.66

Table 1: Query verification time (in seconds)

4000 4200 4400 4600 4800 5000 5200 5400 5600
Instances

100

101

102

103

V
er

ifi
ca

tio
n

tim
e

Moped
Dual
Failures

Figure 4: Comparison on Topology Zoo networks

more than 250.000 forwarding rules. The operator uses an advanced

MPLS routing in its network, including numerous service labels

by which it communicates with neighboring networks. In order to

increase the variety of different types of networks, we create several

variants of networks from Internet Topology Zoo [1] (having on

average 84 routers and 240 routers at the largest instance) with

label switching paths between any two edge routers and with

local fast failover protection by introducing tunnels based on

shortest paths; the queries are like in Table 1 and in our running

example. The experiments were run on our cluster with AMD EPYC

7551 processors running at 2.55 GHz with boost disabled, using

16GB memory limit and 10 minutes timeout. A reproducibility

artifact [23] includes the specific queries used in our experiments.

The operator asked us to verify a number of specific queries,

including those in Table 1. The table shows the verification time for

using Moped as the backend engine, our own engine (called Dual as

it combines the over- and under-approximation approach) and our

weighted verification engine that uses theFailures atomic quantity.

Both the unweighted (Dual) and weighted (Failure) engine is a part

of our AalWiNes verification suite. The results show that for three

queries our weighted engine is on average about 4 times slower

that Moped and for other three queries it is about 70 times faster

than Moped. Our unweighted engine is always faster and has a 53

times speed up on average compared to Moped. The overhead

of performing quantitative analysis is hence reasonable as the

performance is comparable with the state-of-the art unweighted

tool. Noticeably, the last query in the table takes significantly more

verification time for all three engines. The reason is that its path

constraint is very unspecific (allows for any sequence of routers)

6

http://www.nordu.net/

Quantitative Analysis of MPLS Networks CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

and the created pushdown system hence becomes significanly larger.

We also note that [22] reports that the unweighted verification of

similar queries on a network of comparable size took between 28

minutes (for the simpler queries) and up to 109 minutes (for the

more complex ones). This shows an improvement of several orders

of magnitude and makes it possible to perform MPLS verification

interactively for human operators, in particular in combination

with our GUI ([22] is a command-line tool).

Finally, the plot in Figure 4 shows a comparison (note the

logarithmic scale) of the verification times (in seconds) between

Moped, our Dual unweighted approach and our weighted engine

with the quantity Failures (we also run the experiment for the

other quantitative measures and the verification times did not differ

significantly). The plot includes over 5602 experiments on different

queries on the networks from the Internet Topology Zoo database,

ordered by their verification times. As the input format of all three

engines is the same, all experiments were run with the same set of

network topologies and the same queries. Again, we outperform

Moped by almost an order of magnitude by using our unweighted

engine. An interesting phenomenon can be observed for our

weighted engine that behaves similarly as Moped on the smaller

instances; however, on the difficult instances it is able to verify 6

more cases than our unweighted implementation. This is due to

the fact that the guided search for shortest traces, that minimize

the number of failures, allows us to find witness traces that are

otherwise not discovered by the unweighted search; this highlights

the benefits of quantitative analysis. This is further confirmed by

the percentage of inconclusive answers that corresponds to 0.57%

(32 inconclusive answers out of 5568) for the Dual unweighted

approach and only 0.04% (2 inconclusive answers out of 5574) for

the weighted engine optimizing the number of failures. In vast

majority of cases we can hence use our approximation approach

that is guaranteed to run in polynomial time.

6 CONCLUSION
We presented an MPLS what-if analysis tool that not only provides

an unprecedented performance in theory but also in practice, as

demonstrated in our case study with a major network operator.

We regard our contribution concerning the automated analysis of

quantitative aspects as a first step, and believe that our paper opens

interesting avenues for future research. We are currently improving

the expressiveness of the query language.

Acknowledgements. We thank Henrik T. Jensen from NORDUnet

for providing us with configuration data. The research is supported

by DFF project QASNET and WWTF project ICT19-045.

REFERENCES
[1] The Internet Topology Zoo. http://www.topology-zoo.org/. Visited: 19/04/2020.

[2] Introduction to MPLS. https://www.cisco.com/c/dam/global/fr_ca/training-

events/pdfs/Intro_to_mpls.pdf. Visited: 19/05/2020.

[3] Moped - A Model-Checker for Pushdown Systems. http://www2.informatik.uni-

stuttgart.de/fmi/szs/tools/moped/. Visited: 03/03/2020.

[4] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020.

Tiramisu: Fast Multilayer Network Verification. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI). USENIX, 201–219.

[5] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations

for Networks. SIGPLAN Not. 49, 1 (2014), 113–126.
[6] Alia K Atlas and Alex Zinin. 2008. Basic specification for IP fast-reroute: loop-free

alternates. IETF RFC 5286. (2008).

[7] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. 2017. A General Approach to

Network Configuration Verification. In ACM SIGCOMM. ACM, 155–168.

[8] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. 2016. Don’t Mind

the Gap: Bridging Network-Wide Objectives and Device-Level Configurations.

In Proc. ACM SIGCOMM. ACM, 328–341.

[9] Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability analysis of

pushdown automata: Application to model-checking. In International Conference
on Concurrency Theory. Springer, 135–150.

[10] J Richard Büchi. 1964. Regular canonical systems. Archiv für mathematische
Logik und Grundlagenforschung 6, 3-4 (1964), 91–111.

[11] Marco Chiesa, Andrzej KamisiÅĎski, Jacek Rak, GÃąbor RÃľtvÃąri, and Stefan

Schmid. 2020. Fast Recovery Mechanisms in the Data Plane. (5 2020). https:

//doi.org/10.36227/techrxiv.12367508.v1

[12] Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrović, Andrei Gurtov, Aleksander

Madry, Michael Schapira, and Scott Shenker. 2016. On the resiliency of static

forwarding tables. IEEE/ACM Transactions on Networking 25, 2 (2016), 1133–1146.
[13] Richard Chirgwin. 2017. Google routing blunder sent JapanâĂŹs Internet dark

on Friday. In https://www.theregister.co.uk/2017/08/27/google_routing_blunder_
sent_japans_internet_dark/ .

[14] Duluth News Tribune. 2018. Human error to blame in Minnesota 911

outage. In https://www.ems1.com/911/articles/389343048-Officials-Human-error-
to-blame-in-Minn-911-outage/ .

[15] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2017.

Network-wide configuration synthesis. In Proc. International Conference on
Computer Aided Verification (CAV). Springer, 261–281.

[16] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev.

2018. NetComplete: Practical Network-Wide Configuration Synthesis with

Autocompletion. In Proc. 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association, 579–594.

[17] Theodore Elhourani, Abishek Gopalan, and Srinivasan Ramasubramanian. 2014.

IP fast rerouting for multi-link failures. In Proc. IEEE INFOCOM. ACM, 2148–2156.

[18] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas

Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis using

a Succinct Control Plane Representation. In Proc. 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). USENIX, 217–232.

[19] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd Millstein. 2015. A General Approach to Network

Configuration Analysis. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association, 469–483.

[20] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.

2016. Fast Control Plane Analysis Using an Abstract Representation. In

Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 300–313.

[21] Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas Wundsam,

Hongyi Zeng, Sam Whitlock, Vimalkumar Jeyakumar, Nikhil Handigol, James

McCauley, et al. 2013. Leveraging SDN layering to systematically troubleshoot

networks. In Proc. ACM SIGCOMMWorkshop HotSDN. ACM, ACM, 37–42.

[22] Jesper Stenbjerg Jensen, Troels Beck Krøgh, Jonas Sand Madsen, Stefan Schmid,

Jiří Srba, and Marc Tom Thorgersen. 2018. P-Rex: Fast Verification of MPLS

Networks with Multiple Link Failures. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies (CoNEXT).
ACM, 217âĂŞ227. https://doi.org/10.1145/3281411.3281432

[23] P.G. Jensen, D. Kristiansen, S. Schmid, M. Konggaard Schou, B.C. Schrenk, and J.

Srba. 2020. Artifact for "AalWiNes: A Fast and Quantitative What-If Analysis

Tool for MPLS Networks". (Oct. 2020). https://doi.org/10.5281/zenodo.4056504

[24] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI). USENIX Association, 113–126.

[25] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten

Godfrey. 2013. Veriflow: Verifying network-wide invariants in real time. In Proc.
USENIX NSDI. 15–27.

[26] Werner Kuich and Arto Salomaa (Eds.). 1985. Semirings, Automata, Languages.
Springer-Verlag, Berlin, Heidelberg.

[27] Kim G. Larsen, Stefan Schmid, and Bingtian Xue. 2016. WNetKAT: A Weighted

SDN Programming and Verification Language. In Proc. 20th International
Conference on Principles of Distributed Systems (OPODIS). LIPICS.

[28] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, and S. Shenker. 2013. Ensuring

connectivity via data planemechanisms. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). USENIX Association, 113–126.

[29] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Godfrey, and

Samuel Talmadge King. 2011. Debugging the data plane with anteater. In ACM
SIGCOMM Computer Communication Review, Vol. 41 (4). ACM, 290–301.

[30] Michael Menth, Michael Duelli, Ruediger Martin, and Jens Milbrandt. 2009.

Resilience analysis of packet-witched communication networks. IEEE/ACM
transactions on Networking (ToN) 17, 6 (2009), 1950–1963.

[31] P. Pan, G. Swallow, and A. Atlas. 2005. Fast Reroute Extensions to RSVP-TE for

LSP Tunnels. In Request for Comments (RFC) 4090.

7

http://www.topology-zoo.org/
https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf
https://www.cisco.com/c/dam/global/fr_ca/training-events/pdfs/Intro_to_mpls.pdf
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://doi.org/10.36227/techrxiv.12367508.v1
https://doi.org/10.36227/techrxiv.12367508.v1
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://www.ems1.com/911/articles/389343048-Officials-Human-error-to-blame-in-Minn-911-outage/
https://doi.org/10.1145/3281411.3281432
https://doi.org/10.5281/zenodo.4056504

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jensen et al.

[32] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and

Matthew Caesar. 2020. Plankton: Scalable network configuration verification

through model checking. In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI). USENIX Association, 953–967.

[33] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. 2005. Weighted

pushdown systems and their application to interprocedural dataflow analysis.

Science of Computer Programming 58, 1-2 (2005), 206–263.

[34] Stefan Schmid and Jiří Srba. 2018. Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks. In IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 1–9.

[35] Stefan Schwoon. 2002. Model-Checking Pushdown Systems. Ph.D. Thesis.

Technische Universität München. http://www.lsv.ens-cachan.fr/Publis/PAPERS/

PDF/schwoon-phd02.pdf

[36] A. Shukla, S.J. Saidi, S. Schmid, M. Canini, T. Zinner, and A. Feldmann. 2020.

Towards Consistent SDNs: A Case for Network State Fuzzing. In IEEE Transactions
on Network and Service Management (TNSM). 668–681.

[37] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and

Mostafa Ammar. 2008. Answering what-if deployment and configuration

questions with wise. In Proceedings of the ACM SIGCOMM 2008 conference on
Data communication. 99–110.

[38] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo, Jennifer

Rexford, Vivek Nigam, Andre Scedrov, and Carolyn Talcott. 2012. FSR: Formal

analysis and implementation toolkit for safe interdomain routing. IEEE/ACM
Transactions on Networking (ToN) 20, 6 (2012), 1814–1827.

[39] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda

Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and conquer to

verify forwarding tables in huge networks. In Proc. 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI). USENIX, 87–99.

A APPENDIX
By default, our tool accepts a generic and vendor agnostic XML

input format for a network. The input is split into a topology
definition and a routing definition and examples are given below.

topo.xml

<network>
<routers>
<router name="R0">

<interfaces>
<interface name="ae1.11"/>
<interface name="ae5.0"/>
...

</interfaces>
</router>
...

</routers>
<links>
<sides>

<shared_interface interface="et-3/0/0.2"
router="R0"/>

<shared_interface interface="et-1/3/0.2"
router="R3"/>

</sides>
</links>
...

</network>

route.xml
<routes>
<routings>
<routing for="R0">

<destinations>
<destination from="ae1.11" label="$300292">

<te-group>
<routes>

<route to="et-1/1/0.0">
<actions>

<action arg="$300050"
type="swap"/>

<action arg="496505"
type="push"/>

</actions>
</route>

</routes>
</te-group>
...

</destination>
...

</destinations>
</routing>
...

</routings>
</routing>

A.1 IS-IS input
Our tool accepts topological description and routing tables exported

directly from an IS-IS system; to do so we run the following

commands on each router in the network:

show isis adjacency detail | display xml
show route forwarding-table family mpls extensive |\

display xml
show pfe next-hop | display xml

To correctly reconstruct the network configuration, an additional

mapping file has to be constructed. Each line in the mapping file

corresponds to a single logical routing entity and is given in the

form <aliases>:<adj.xml>:<route-ft.xml>:<pfe.xml>. Edge
routers can also be defined by omitting the xml-files. In the case of

edge routers, the routing-table is assumed empty, and such routers

will act as sink-nodes in the network. An example of such amapping

file is given below.

192.0.0.1,R1:R1-adj.xml:R1-route.xml:R1-pfe.xml
192.0.0.2,10.10.0.2,E1
...

A network given as an extract from an IS-IS system can

be turned into the vendor agnostic format by calling directly

our binary and providing the --write-topology topo.xml and

--write-routing route.xml options.

A.2 Location data
To correctly visualize the network in the GUI, an additional location

mapping has to be provided giving latitude and longitude to each

router. This information is also used for computing the physical

distance between routers used in the minimum trace specification.

An example is given below.

{ "R0": { "lat": 46.5,"lng": 7.3}, ... }

8

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf

	Abstract
	1 Introduction
	2 MPLS Network Model
	2.1 Network definition
	2.2 Valid MPLS headers
	2.3 Example network
	2.4 Network traces
	2.5 Query language
	3 Quantitative Extension
	4 Tool Implementation
	4.1 Verification methodology
	4.2 Tool architecture

	5 Performance Evaluation

	6 Conclusion

	References
	A Appendix
	A.1 IS-IS input
	A.2 Location data

