
P-Rex: Fast Verification of MPLS Networks
with Multiple Link Failures

Jesper Stenbjerg Jensen

Aalborg University

Denmark

Troels Beck Krøgh

Aalborg University

Denmark

Jonas Sand Madsen

Aalborg University

Denmark

Stefan Schmid
∗

University of Vienna

Austria

Jiří Srba
†

Aalborg University

Denmark

Marc Tom Thorgersen

Aalborg University

Denmark

ABSTRACT
Future communication networks are expected to be highly

automated, disburdening human operators of their most complex

tasks. However, while first powerful and automated network

analysis tools are emerging, existing tools provide only limited

(and inefficient) support of reasoning about failure scenarios. We

present P-Rex, a fast what-if analysis tool, that allows us to test

important reachability and policy-compliance properties even

under an arbitrary number of failures, in polynomial-time, i.e.,
without enumerating all failure scenarios (the usual approach today,

if supported at all). P-Rex targets networks based on Multiprotocol

Label Switching (MPLS) and its Segment Routing (SR) extension

and comes with an expressive query language based on regular

expressions. It takes into account the actual router tables, and is

hence well-suited for debugging. We also report on an industrial

case study and demonstrate that P-Rex supports rich queries,

performing what-if analyses in less than 70 minutes in most cases,

in a 24-router network with over 100,000 MPLS forwarding rules.

CCS CONCEPTS
• Networks→ Network reliability; Network algorithms;

KEYWORDS
Network Verification, MPLS, Prefix Rewriting Systems

1 INTRODUCTION
Ensuring policy compliance under failures is a challenging task

which can quickly overstrain human operators, even of small

networks. This is worrisome as already a single link failure can

lead to undesired network behaviors, which is easily overlooked,

such as datacenter traffic leaking to the Internet in unintended

ways [5]. More generally, unintended behavior after failures can

∗
Also affiliated with University of Aalborg, Denmark, and TU Berlin, Germany.

†
Also affiliated with FI MU in Brno, Czech Republic.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12.

https://doi.org/10.1145/3281411.3281432

harm the availability, security, and performance of a network [12].

The possibility ofmultiple link failures [2, 10, 21], e.g., due to shared
risk link groups [22, 27], exacerbates the problem.

Automation is an attractive alternative to today’s manual

and error-prone approach to operate communication networks,

allowing to overcome the shortcomings of current “fix it when it

breaks” approach. Accordingly, over the last years, many powerful

tools have been developed to specify and verify communication

networks, e.g. [1, 17]. Existing tools usually allow to query various

kinds of reachability properties in the network, also accounting for

the header fields in the packet and their transformations along the

route.

However, while automation allows to overcome the drawbacks

of manual network operations, verifying network configurations

can still be a complex task, even for a computer: many existing

tools have a super-polynomial runtime [1], in the worst case, and

some queries are even undecidable [16, 19]. What is more, existing

tools do not provide much support for reasoning about network

behavior under failures, a major concern of operators responsible

for the availability of the network. The few notable exceptions that

do support some kind of what-if analysis accounting for failures

share the drawback that they are highly inefficient as they mainly

resort to enumerating all possible failures scenarios, introducing a

combinatorial complexity. This may even appear unavoidable: in an

n-node network with k failed links, it may seem that all

(n
k
)
possible

failure scenarios need to be examined to verify whether a certain

network property (e.g., related to reachability or policy-compliance)

holds. Only recently has there been some effort to remedy this issue

by instead analyzing the control plane while considering multiple

data planes at the same time [3, 14], however, these methods are

not yet applicable to MPLS.

We are interested in the fast and automated verification (even

under failures) of networks based on Multiprotocol Label Switching

(MPLS). MPLS networks are widely deployed today, e.g., used by

telcos for traffic engineering or for VPNs, carrying IP and Virtual

Private LAN traffic accordingly. MPLS avoids complex routing

table lookups by forwarding packets based on short path labels
(identifying virtual links), rather than long network addresses. Such

labels can be accummulated in a label stack, e.g., during local Fast

Re-Routing (FRR): when a source to a link detects the failure, it will

reroute packets through the backup tunnel, by pushing a label onto

the stack. This operation can be performed recursively, in case of

multiple link failures.

1

https://doi.org/10.1145/3281411.3281432

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Jensen et al.

1.1 Our Contributions
We present P-Rex, a what-if analysis tool supporting the fast

verification of MPLS-based communication networks, accounting

for the possibility of failures. In particular, P-Rex allows to test a

wide range of important network properties in polynomial-time,
independently of the number of failures. The runtime of existing

tools is proportional to the number of failure scenarios which is

exponential in the number of failures.

At the core of P-Rex lies a powerful yet simple query language

based on regular expressions, both to specify packet headers as well
as paths. Specifically, queries are of the form

< a > b < c > k

where a and c are regular expressions describing the (potentially
infinite) set of allowed initial resp. final headers of packets in the

trace, b is a regular expression defining the (potentially infinite) set

of allowed routing traces through the routers, and k is a number

specifying the maximum allowed number of failed links. P-Rex

allows to test properties such as waypoint enforcement (e.g., is the

traffic always forwarded through an intrusion detection system)

or avoidance of certain countries (e.g., never route via Iceland).

P-Rex operates directly on the router tables, which enables it

to find bugs. The tool also allows to account for more complex

traffic engineering aspects, such as load-balancing, by supporting

nondeterminism, as well as more complex multi-operation chains
modelling aspects of Segment Routing (SR). Toward this end, we

present over-approximation and under-approximation techniques

to further improve performance.

Our experiments demonstrate a convincing performance of P-

Rex compared to existing tools, on different workloads. For this

comparison, we modified the HSA tool [17] in order to be applicable

to MPLS-like networks.

We also report on an industrial case study and show that P-Rex

can solve most of the complex queries in the operator’s 24-router

network contaning over 100,000 forwarding table entries in less

than an hour.

1.2 Overview of P-Rex
In a nutshell, given the network configuration, the routing tables,

as well as the query, P-Rex constructs a pushdown automaton

(PDA). This PDA is then an input for the backend tool Moped [24]

that is used for reachability analysis. P-Rex encodes the network

as a PDA which can be then queried. The initial header and final

header regular expressions of the query are each converted to first a

Nondeterministic Finite Automaton (NFA) and then to a Pushdown

Automaton (PDA). The path query is converted to an NFA, which is

used to augment the PDA constructed based on the network model.

The three PDAs are combined into a single PDA which we give to

the PDA reachability tool Moped [24]. Moped then either provides

a trace through the pushdown which witnesses the query, or says

that no such witness exists.

At the heart of P-Rex lies a novel method for combining an NFA,

generated from the query, and a pushdown automaton, into a single

PDA which then simulates the two automata running in lockstep.

This method is used to restrict the paths through the PDA emulating

the MPLS behavior. Our tool includes several optimizations to

P-Rex NetKAT HSA VeriFlow Anteater
Protocol Support SR/MPLS OF Agn. OF Agn.

Approach Autom. Alg. Geom. Tries SAT

Complexity Polynom. PSPACE Polynom. NP NP

Static ✓ ✓ ✓ χ ✓

Reachability ✓ ✓ ✓ ✓ ✓

Loop Queries ✓ ✓ ✓ ✓ ✓

What-if ✓ N/A ✓ N/A χ
Unlim. Header ✓ N/A χ χ N/A

Performance ✓ ✓ [1] ✓ ✓ ✓

Waypointing ✓ ✓ ✓ ✓ χ
Language Py., C OCaml Py., C Py. C++, Ruby

Table 1: Comparsion of related tools

further improve the performance, such as “top of stack reduction”,

which safely calculates which labels can be at the top of stack in a

given state of the PDA: the top of stack reduction technique greatly

reduces the amount of transitions in the PDA.

2 RELATEDWORK
Motivated by the complexity and frequent errors of manual network

operations, much progress has been made over the last years

towards more automated and formally verifable networks [1, 4,

13, 17, 18, 20, 28]. Another driver for studying formal methods in

networking is SDN.

Typically, network verification tools are given some model or

configuration of the control plane or the data plane, and some

properties to check. Table 1 provides an overview and comparison

of several selected tools: Some tools are specific to a certain protocol,

such as BGP [26] or OpenFlow (OF), others are protocol agnostic

(agn.) [17]. Some tools rely on automata-theoretic approaches

(autom.), others on algebra (alg.), geometric techniques (geom.),

or SAT/SMT solvers. Some tools only support basic reachability

queries, others support loop-detection and waypointing. Most

existing tools do not support arbitrarily large header sizes, which

however is required for MPLS verification.

For example, NetKAT [1] focuses on static verification of the

network configuration and allows checking for failures in terms of

reachability and forwarding loops, with a support for waypointing.

NetKAT sets itself apart from our, and other tools, particularly

in its approach to modeling and expressing the network. Header

Space Analysis (HSA) [17] is also a static verification tool. As the

name suggests, this tool is focused on utilizing the headers of

packets for the verification. HSA only covers basic reachability

and forwarding loops properties, but not more complex queries.

Unlike NetKAT, HSA generates a geometric model from the packet

headers and the network configuration. Headers are abstract in that

their protocol-specific meanings are ignored. The tool developed in

our paper removes the restriction on header sizes being bounded.

VeriFlow [18] focuses on being able to detect bugs. This tool is

effectively added to the networks configuration and acting as a

layer between the network and an SDN controller. VeriFlow models

data-plane information as boolean expressions and uses a SAT

solver algorithm to check for failures. Anteater [20] is similar to

VeriFlow in that it converts the data plane information to boolean

2

P-Rex: Fast Verification of MPLS Networks CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

functions and uses a SAT solver to check whether the invariants

are violated. Anteater focuses mainly on algorithms to detect

reachability, forwarding loops, and packet loss as invariants.

However, none of the tools mentions failures, and at best,

requires the network operator to enumerate all failure scenario

combinations, which comes at a high runtime cost. Another

strength of P-Rex is that it operates directly on the actual routing

information, and not on its logical abstraction, which allows to find

bugs.

Our earlier work [23] provides the theoretical underpinnings

upon which our tool builds. However, to apply this theory in

practice, the underlying MPLS network model has to be generalized

and a number of research challenges have to be solved. First of all,

a query language is required which strikes a balance between being

compact and yet intuitive to use. The expressiveness of the query

language has been extended by adding regular expressions over

path quantifiers and hence allowing us to ask about a routing that

e.g., avoids certain routers, a query that was impossible to verify

in [23]. Also the formalMPLSmodel has been significantly extended

to account for non-determinism (to model traffic engineering)

and multi-operation chains (motivated by the Juniper router

configurations in our case study), and parallel links between routers.

Our extensions also motivate us to introduce novel over- and

under-approximation techniques to improve performance further.

Performance is further improved through a more compact network

model with fewer transitions. P-Rex introduces a novel method

for combining the NFA generated from a query and the PDA into

a single PDA which then simulates the two automata running in

lockstep, as well as several performance optimizations necessary

to verify our case study. Despite all these extensions, we are still

able to preserve the polynomial-time complexity of our tool. Our

prototype implementation and case study demonstrate that the

runtime of P-Rex is not only of theoretical and asymptotic interest

but also relevant in practice.

3 FORMAL NETWORK MODEL
We shall first present our general model of MPLS-based networks,

including the routing tables with priorities and the definition of a

network trace. Let L be a nonempty set of MPLS labels that appear

(possibly arbitrarily nested) in headers of packets of an MPLS

network. We define the set Op of allowed MPLS operations on

a packet header byOp = {swap(ℓ) | ℓ ∈ L} ∪ {push(ℓ) | ℓ ∈ L} ∪
{pop}.

Definition 1 (MPLS Network). An MPLS network is a tuple

N = (V , I ,L,E,τ) where

• V is a finite set of routers,

• I is the finite set of all global interfaces in the network

partitioned into disjoint sets Iv of local interfaces for each

router v ∈ V such that I =
⋃
v ∈V Iv ,

• E ⊆ I × I is the set of links connecting interfaces that satisfy
if (out , in) ∈ E then (in,out) ∈ E, if (out , in), (out ′, in) ∈ E
then out = out ′, and if (out , in), (out , in′) ∈ E then in = in′,
• L = M ⊎M⊥ ⊎LIP is the set of the label stack symbols where

M is the MPLS label set,M⊥ is the set of MPLS labels with

the bottom of the stack bit set to true and LI P is a set of

labels for IP routing information, and

.

.

.

ℓ4 ∈ M

ℓ3 ∈ M

ℓ2 ∈ M

ℓ1 ∈ M
⊥

ℓ0 ∈ L
IP

Figure 1: A valid label-stack header

• τ : I × L → (2I×Op
∗

)
∗
is the global routing table. For

every incoming interface and a top-most label, it returns

a sequence (representing priorities in case of link failures)

of traffic engineering groups that contain pairs: an outgoing

interface and a sequence of MPLS operations to be performed

on the packet header. It holds that for any input interface,

the corresponding output interface must belong to the same

router and hence the global routing table can be represented

as a collection of local routing tables τv : Iv × L →

(2Iv×Op
∗

)
∗
for each router v ∈ V .

We fix a set F where F ⊆ E of failed links between interfaces.

An interface in ∈ I is active if there is an interface in′ ∈ I such
that both (in, in′) ∈ E ∖ F and (in′, in) ∈ E ∖ F . In other words,

we assume that if a link from (in, in′) fails then also the link from

(in′, in) is down.
MPLS networks often tunnel traffic containing some underlying

header (typically an IP address) which we assume belongs to the set

LIP ; the MPLS labels are stacked on top of this label. Additionally,

MPLS labels contain a stacking bit such that the first MPLS label

just above the IP-label has this bit set to true and all other MPLS

labels stacked above have this bit set to false. The structure of a

valid label-stack header is illustrated in Figure 1. This is formalized

in the following definition.

Definition 2 (Valid Header). For a given network N =

(V , I ,L,E,τ) we define the set of valid headers H ⊆ L∗ by H =
LIP ∪ {αℓ1ℓ0 | α ∈ M

∗, ℓ1 ∈ M
⊥, ℓ0 ∈ L

IP }.

The MPLS operations manipulate the label-stack header by

switching out the top-most label (letf-most symbol in our notation)

with another one, pushing a new label or removing a label from the

top of the stack. A sequence of such MPLS operations performed

on a valid header must ensure that we again obtain a valid header

(otherwise the execution of the label-update sequence fails and a

packet is dropped). This is formalized in the following definition.

Definition 3 (Header Rewrite Function). A partial header rewrite
function H : H ×Op∗ ↪→ H is defined by (where ops,ops ′ ∈ Op∗,
ℓ ∈ L, h ∈ H and ϵ is the empty sequence of operations):

H(ℓh,ops) =

ℓh if ops = ϵ and ℓ ∈ L,

H(ℓ′h,ops ′) if ops = swap(ℓ′) ◦ ops ′ and ℓ′h ∈ H ,

H(ℓ′ℓh,ops ′) if ops = push(ℓ′) ◦ ops ′ and ℓ′ℓh ∈ H ,

H(h,ops ′) if ops = pop ◦ ops ′ and ℓ ∈ M ∪M⊥,

undefined otherwise.

3

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Jensen et al.

v1

v2

v3

v4

v5

v6

v7

v8

in1

in2

out1

out2

Figure 2: A network example with a failover tunnel

We observe that for any h ∈ H and any ops ∈ Op∗ we always
have H(h,ops) ∈ H (provided that H(h,ops) is defined). In order

words the header rewrite function preserves the valid structure of

the label-stack symbols, otherwise it is undefined. As an example

let M = {10, 20, 30}, M⊥ = {10⊥, 20⊥, 30⊥} and LIP = {ip0, ip1}.
ThenH(20 ◦ 10⊥ ◦ ip1, pop ◦ swap(20⊥) ◦ push(30) ◦ push(10)) =
10◦30◦20⊥◦ip1 whereasH(20◦10⊥◦ip1, pop◦swap(30)◦push(10)
is undefined as the expected outcome 10◦ 30◦ ip1 < H is not a valid

header (a label with a bottom of the stack symbol was swapped

with a label that does not have this bit set).

3.1 Network Example
In Figure 2, we provide an example of a simple network with eight

routers V = {v1,v2,v3,v4,v5,v6,v7,v8} and depicted links: the

interfaces take the form vv
′

, denoting an interface of router v that

is connected by a link (v ′,v) ∈ E, with the interface v ′v of the

router v ′ and where the labels L = M ⊎M⊥ ⊎ LI P consist of

• M⊥ = {10, 11, 20, 21, 30, 31, 32, 40, 41},
• M = {101, 102, 201, 202, 211, 212, 221, 222}, and
• LIP = {ipout1 , ipout2 }.

The routing table τ for our example network is given in Table 2 and

there are no rules for the routers v7 and v8, as they are assumed

to belong to another network. Instead of a sequence of sets that τ
should return, we give each rule in the table a priority such that all

rules with priority 1 form the first traffic engineering group of (high

priority) rules in the τ function, and rules with the next priority 2

form the second set of (fast failover) rules. Intuitively, if at least one

rule of priority 1 is applicable and can forward the packet to some

active interface then one such rule will be (nondeterministically)

applied. If all output interfaces of rules with priority 1 are inactive

(due to failed link or links) then (and only then) we consider the

rules with the next priority 2 and so on. The semantics to the

network is given by means of network traces.

3.2 Network Traces
Let us fix a network N = (V , I ,L,E,τ) together with the set of

failed links F ⊆ E. A trace is a routing of a packet in the network

that consists of a sequence of active input interfaces (that uniquely

identify the routers that received the packet) together with the

corresponding label-stack header the packet arrived with at each

router.

Before we give the formal definition of a trace, we shall

fix some notation. Let τ (in, ℓ) = O0O1 . . .On where each

O ∈ {O0, . . . ,On } is a traffic engineering group O =

R
o
u
t
e
r

In Iv L
a
b
e
l

P
r
i
o
r
i
t
y

Out Iv O
p
e
r
a
t
i
o
n

v1 vin1

1
ipout1 1 vv3

1
push(10)

vin1

1
ipout2 1 vv3

1
push(20)

vin1

1
ipout1 2 vv2

1
push(10) ◦ push(101)

vin1

1
ipout2 2 vv2

1
push(20) ◦ push(201)

v2 vin2

2
ipout1 1 vv4

2
push(30)

vin2

2
ipout2 1 vv4

2
push(40)

vv1

2
101 1 vv4

2
swap(102)

vv1

2
201 1 vv4

2
swap(202)

v3 vv1

3
10 1 vv5

3
swap(11)

vv4

3
10 1 vv5

3
swap(11)

vv1

3
20 1 vv4

3
swap(21)

vv4

3
31 1 vv5

3
swap(32)

vv4

3
211 1 vv5

3
swap(212)

vv4

3
221 1 vv5

3
swap(222)

v4 vv3

4
21 1 vv6

4
swap(22)

vv2

4
30 1 vv3

4
swap(31)

vv2

4
40 1 vv6

4
swap(41)

vv2

4
102 1 vv3

4
pop

vv2

4
202 1 vv3

4
pop

vv3

4
21 2 vv3

4
swap(22) ◦ push(211)

vv2

4
40 2 vv3

4
swap(41) ◦ push(221)

v5 vv3

5
11 1 vout1

5
pop

vv3

5
31 1 vout1

5
pop

vv3

5
222 1 vv6

5
pop

vv3

5
212 1 vv6

5
pop

v6 vv4

6
22 1 vout2

6
pop

vv4

6
41 1 vout2

6
pop

Table 2: Routing table for the network from Figure 2

{(in1,ops1), (in2,ops2), . . . , (inm ,opsm)} consisting of output inter-
faces and sequences of MPLS operations such that the group O0

has a higher priority than O1, and O1 has a higher priority than

O2 and so on. By I (O) = {in1, in2, . . . , inm } we denote the set of
all interfaces that appear in the traffic engineering group O and

we call such a group active if there is at least one i , 1 ≤ i ≤ m,

such that the interface ini is active (i.e. there is in
′ ∈ I such that

(ini , in
′) ∈ E ∖ F).

Finally, we define a function that returns the set of all active

rules in the sequence of a traffic engineering groups. At the same

time we change the outgoing interfaces with the incoming ones in

the next hop, as follows: A(O0O1 . . .On) = {(in
′,ops) | (in,ops) ∈

O j such that in is an active interface and (in, in′) ∈ E} where j is
the lowest index such thatO j is an active traffic engineering group.

If no such j exists then A(O0O1 . . .On) = ∅.

Definition 4 (Network Trace). A trace in a network N =

(V , I ,L,E,τ)with the set F ⊆ E of failed links is any finite sequence

(in1,h1), (in2,h2), . . . , (inn ,hn) of interface-header pairs from I ×H

4

P-Rex: Fast Verification of MPLS Networks CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

where for all i , 1 ≤ i < n, we have hi+1 = H(hi ,ops) for some

(ini+1,ops) ∈ A(τ (ini , head(hi)) where head(hi) is the top-most

label of hi .

The network routing table from Table 2 encodes four label

switched paths from the interfaces in1 and in2 to either out1 and
out2, depending on the destination IP address. An example of a

trace without any failed links (F = ∅) follows.

(vin1

1
, ipout1), (v

v1

3
, 10 ◦ ipout1), (v

v3

5
, 11 ◦ ipout1), (v

v5

7
, ipout1)

In our example network there are two protected links: (v1,v3)
and (v4,v6). To protect these, for each label switching path going

through these links we need a backup tunnel. In the routing table,

the rules for the backup tunnels have a lower priority than the

preferred rules with priority 1, so that they are employed only in

case of failed links. Hence if for example the link between v1 and
v3 fails, i.e. F = {(v1,v3)}, then we get the following trace instead

(vin1

1
, ipout1),

(vv1

2
, 101 ◦ 10 ◦ ipout1),

(vv2

4
, 102 ◦ 10 ◦ ipout1),

(vv4

3
, 10 ◦ ipout1),

(vv3

5
, 11 ◦ ipout1),

(vv5

7
, ipout1)

so that the failed link is tunneled through the routers v2 and v4
after which the original label switching path is restored.

3.3 A Query Language for MPLS Networks
We now present a novel query language for verifying the presence

of network traces with certain properties. Assume a network

N = (V , I ,L,E,τ). A reachability query in the network N is of

the form

< a > b < c > k

where

• a is a regular expression defining a language over the set of

labels L, describing the (potentially infinite) set of allowed

initial label-stack headers,

• b is a regular expression defining a language over the set of

routers V , describing the (potentially infinite) set of allowed

routing traces through the network,

• c is a regular expression defining a language over the set of

labels L, describing the (potentially infinite) set of label-stack
headers at the end of the trace, and

• k is a number specifying the maximum allowed number of

failed links.

Formally, we assume the following syntax for regular

expressions.

Definition 5 (Regular Expression). A regular expression over the

alphabet Σ is given by the abstract syntax

a ::= s | . | [ˆs1, . . . , sn] | a1 + a2 | a1a2 | a
∗

where

s is a symbol from Σ,
. is a wildcard for any symbol from Σ,

[ˆs1, ..., sn] stands for any symbol s ∈ Σ∖ {s1, . . . , sn },

a1 + a2 is the choice between a1 and a2,
a1a2 is the concatenation of a1 and a2, and
a∗ is the concatenation of 0 or more occurrences of

a.

The set of all regular expressions over Σ is denoted by Reд(Σ) and
we assume a standard definition of the language Lanд(a) ⊆ Σ∗ that
is described by a regular expression a.

We now provide a formal definition of a network query.

Definition 6 (Query). A query for a network N = (V , I ,L,E,τ) is
an expression < a > b < c > k where a, c ∈ Reд(L), b ∈ Reд(V)
and k ≥ 0.

Finally, we define when a network trace satisfies a query.

Definition 7. A trace (in1,h1), (in2,h2), . . . , (inn ,hn) in a network
N = (V , I ,L,E,τ) with the set F of failed links satisfies a query

< a > b < c > k if and only if |F | ≤ k , h1 ∈ Lanд(a),
hn ∈ Lanд(c) and v1v2 . . .vn ∈ Lanд(b) such that ini ∈ Ivi for all
i , 1 ≤ i ≤ n.

The decision problem we want to solve is defined as follows.

Problem 1 (Query Satisfiability Problem). Given a network and a

query q = < a > b < c > k is there a trace in the network with

at most k failed links that satisfies q?

Considering the network from our running example defined by

the routing table in Table 2, we can notice that the query

< ipout1 > v1 (.)
∗ v7 < ipout1 > 0

is satisfied due to the existence of a trace that starts with the initial

header ipout1 in the router v1 and reaches in a number of hops the

router v7 with the header ipout1 . The trace is possible without any
failed links by visiting the routersv1,v3,v5 andv7 as demonstrated

in Section 3.2. On the other hand the query

< ipout1 > v1 (.)
∗ v4 (.)

∗ v7 < ipout1 > 0

is not satisfied, as without any failed links the traffic from the

interface vin1

1
with the header ipout1 is never routed though the

router v4, however, the same query which allows one link failure

is satisfied as shown by the second trace in Section 3.2. Another

query

< ipout1 + ipout2 > v1 [ˆv3]
∗ v7 < (.)

∗ > 2

asks whether, under the assumption that at most two links failed, a

packet with the header label ipout1 or ipout2 can, from the router

v1, reach (with arbitrary header) the router v7 while avoiding the
router v3. This query is not satisfied in our example network.

4 FROM NETWORKS TO AUTOMATA
We shall now explain how to reduce the query satisfability problem

in a network with at most k failed links into a reachability problem

in pushdown automata. We need to first introduce some standard

definitions from formal languages.

5

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Jensen et al.

4.1 Preliminaries
A nondeterministic finite automaton (NFA) is a 5-tuple N =

(S, Σ,δ , s0, sf) where S is a finite set of states, Σ is a finite input

alphabet, δ : S × (Σ ∪ {ϵ}) → 2
S
is the transition function, s0 ∈ S is

the initial state, and sf ∈ S is the accepting state. A configuration of

anNFA is a pair (s,w) ∈ S×Σ∗ of a state and a string over Σ. LetC(N)
be the set of all such configurations.We define the transition relation
(using infix notation)→δ ⊆ C(N) × C(N) by (s,w) →δ (s

′,w) if
s ′ ∈ δ (s, ϵ), and (s,aw) →δ (s

′,w) if s ′ ∈ δ (s,a) for any w ∈ Σ∗

and a ∈ Σ. By→∗δ we denote the transitive and reflexive closure

of→δ . A stringw ∈ Σ∗ is accepted by N if (s0,w) →
∗
δ (sf , ϵ). We

denote the set of all accepted strings by Lanд(N).
A pushdown automaton (PDA) is a 5-tuple P = (Q , Γ , λ,q

0
,qf)

where Q is a finite set of states, Γ is a finite stack alphabet,

λ : Q × Γ → 2
Q×Γ∗

is the transition function where we require that

the co-domain is finite, q0 ∈ Q is the initial state, and qf ∈ Q is

the final state. A configuration of a PDA is the pair (q,h) ∈ Q × Γ∗

where q is the control state and h a sequence of stack symbols with

the top of the stack being the left-most symbol. LetC(P) denote the
set of all configurations. The transition relation→λ⊆ C(P) ×C(P)
between configurations is defined by (q, ℓh) →λ (q

′,αh) whenever
(q′,α) ∈ λ(q, ℓ) and where ℓ ∈ Γ and h ∈ Γ∗. The transitive and
reflexive closure of→λ is denoted by→∗λ .

Our work relies on the fact that reachability in pushdown

automata is decidable in polynomial time.

Theorem 1 ([7, 11]). Let P = (Q , Γ , λ,q
0
,qf) be a pushdown

automaton and let (q0,h0) and (q,h) be two of its configurations.

The question whether (q0,h0) →
∗
λ (q,h) is decidable in polynomial

time.

4.2 Useful Automata Constructions
In our query language, we use regular expressions that allow the

user to define the restrictions on the desirable packet routing

through the network. In our algorithmic solution to this problem,

we shall use the standard fact that regular expressions are equivalent

with NFA (they generate the same class of regular languages).

Theorem 2. [25] Given a regular expression a ∈ Reд(Σ) we can
construct in linear time an equivalent NFA N = (S, Σ,δ , s0, sf)
such that Lanд(N) = Lanд(a).

Let w = w0w1 . . .wn be a string. The reverse of w is defined

as wR = wnwn−1 . . .w0. The reverse of a language L is given by

LR = {wR | w ∈ L}. In our constructions, we shall use the following
fact.

Theorem 3. [6] Given an NFA N = (S, Σ,δ , s0, sf), we can in

linear time construct an NFA NR
recognizing the reverse language

LanдR (N).

We can now describe a simple method of simulating the

computation of an NFA by a PDA such that the string to be read by

the NFA is initially on the stack of the PDA that accepts (with an

empty stack) if and only if the NFA accepts the given string.

Given an NFA N = (Q, Σ,δ ,q0,qf), we define the destructing
PDA Pd = (Q , Γ , λ,q0,qf) such that Γ = Σ ∪ {⊥} where ⊥ is

the symbol for the bottom of stack and the transition function λ

includes (q′, ϵ) ∈ λ(q, ℓ) for every q,q′ ∈ Q and ℓ ∈ Σ such that

q′ ∈ δ (q, ℓ), and (q′, ℓ) ∈ λ(q, ℓ) for every q,q′ ∈ Q and ℓ ∈ Γ,
such that q′ ∈ δ (q, ϵ) . It is easy to observe that the destructing

pushdown has the following property.

Theorem 4. Given an NFA N = (Q, Σ,δ ,q0,qf), the constructed
PDA Pd = (Q , Γ , λ,q0,qf) has a computation (q0,h⊥) →

∗
λ (qf ,⊥)

if and only if h ∈ Lanд(N).

We are now interested in building the constructing PDA that

allows us to push on its stack any string (though in the reverse order

as the top of the stack is on the left) that is accepted by a given NFA.

We can use an analogous construction as in the destructing PDA

but pushing the symbols instead of popping. However, as the top

of the stack is never tested but we still need an extra rule for every

possible top of the stack, this would unnecessarily create a large

number of rules (and our experiments show a large performance

penalty). So we instead suggest an alternative construction that

considerably reduces the number of needed pushdown rules. The

intuition is to push a new symbol (we use ∗ in our case) on the top

of the stack instead and in each step perform the swap operation

for the actual symbol together with pushing again the symbol ∗ on

top of the stack.

Let N be an NFA and let NR = (S, Σ,δR , s0, sf) be an

NFA that recognizes (by Theorem 3) the reverse language of N
such that Lanд(NR) = LanдR (N). The constructing PDA Pc =
(Q , Γ , λ,q

0
,qf) is defined byQ = S ∪ {q0,qf }, where q0 and qf are

unique start and end states such that q0,qf < S , Γ = Σ ∪ {⊥, ∗}
where ⊥ and ∗ are fresh stack symbols such that ⊥, ∗ < Σ, and
the transition function λ consists of the rules: (s0, ∗⊥) ∈ λ(q0,⊥),
(qf , ϵ) ∈ λ(sf , ∗), (q

′, ∗ℓ) ∈ λ(q, ∗) for every q,q′ ∈ Q and ℓ ∈ Σ

such that q′ ∈ δR (q, ℓ), and (q′, ∗) ∈ λ(q, ∗) for every q,q′ ∈ Q such

that q′ ∈ δR (q, ϵ).
Now we can formulate the expected theorem.

Theorem 5. Given an NFA N = (S, Σ,δ , s0, sf), the constructed
PDA Pc = (Q , Γ , λ,q0,qf) has a computation (q0,⊥) →

∗
λ (qf ,h⊥)

if and only if h ∈ Lanд(N).

Finally, we describe a construction that allows us to restrict the

possible executions of a pushdown automaton only to those where

the sequence of visited control states belongs to a given regular

language (represented by an NFA). The idea is to synchronize the

execution of the pushdown and the NFA via a synchronized product

of the two automata.

Definition 8 (Synchronized Pushdown). Given a PDA P =
(Q , Γ , λ,q

0
,qf) and an NFA N = (S, Σ,δ , s0, sf) where Σ = Q ,

we construct the PDA P ′ = (Q ′, Γ′, λ′,q′
0
,q′f) where

• Q ′ = (Q × S) ∪ ({start} × S) such that start < Q ,
• Γ′ = Γ,
• q′

0
= (start , s0) is the initial state,

• q′f = (qf , sf) is the final state, and

• λ′ : Q ′ × Γ′ → 2
Q ′×Γ′∗

is the transition function defined by

the following three rules.

For every (q, s), (q, s ′) ∈ Q ′ and ℓ ∈ Γ′

6

P-Rex: Fast Verification of MPLS Networks CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

a) P ′ contains the rule

((q, s ′), ℓ) ∈ λ′((q, s), ℓ)

whenever s ′ ∈ δ (s, ϵ),
b) P ′ contains the rule

((q′, s ′),α) ∈ λ′((q, s), ℓ)

whenever (q′,α) ∈ λ(q, ℓ) and s ′ ∈ δ (s,q′), and
c) P ′ contains the rule

((q0, s
′), ℓ) ∈ λ′((start , s), ℓ)

for every s, s ′ ∈ S such that s ′ ∈ δ (s,q0).

Rule a) allows us to perform ϵ-steps in the NFA without affecting

the PDA configuration. Rule b) encodes that if the PDA has a

transition that changes the state from q to q′ and the NFA in the

state s can read the symbol q′ and reach the state s ′, then both

automata can perform this move in a lockstep. Finally, Rule c)

allows us to start the computation by reading the initial state q0
and removing the start state. The following theorem formalizes the

idea of the construction.

Theorem 6. There is a computation in the pushdown (q0,h0) →λ
(q1,h1) →λ · · · →λ (qn−1,hn−1) →λ (qf ,hn) where

q0q1 . . .qn−1qf ∈ Lanд(N) if and only if ((start , s0),h0) →
∗
λ′

((qf , sf),hn).

4.3 Removal of Redundant PDA Rules
A typical network can contain a large number of routing table

entries with many different labels. For example, the network used in

our case study produces 935,045 rules in our MPLS network model.

Once the corresponding pushdown automaton is synchronized with

even the simplest NFA representing a basic reachability query <.>

(.)∗ <.>, we end up with an automaton with 86,256,450 transitions

and a file size of 4.4 GB. However, most of these transitions will

be redundant (they cannot be applied to any reachable pushdown

configuration). In what follows, we develop an efficient technique

that will allows us to over-approximate the set of possible symbols

on top of the stack in a given control state and remove a significant

portion of redundant pushdown transition. This reduces the number

of pushdown transitions in our example to 17,847,465 and the

resulting pushdown can be stored in a file of size 875 MB.

We first compute the function find_tops(P , ℓ0) presented in

Algorithm 1 and over-approximate the top of the stack symbols

in all reachable configurations of the pushdown P starting in the

initial configuration (q0, ℓ0). The algorithm returns a function T
that satisfies the following lemma.

Lemma 1. Given a PDA P = (Q , Γ , λ,q
0
,qf) and an initial label ℓ0,

the algorithm find_tops(P ,ℓ0) terminates and returns a function

T such that whenever (q0, ℓ0) →
∗
λ (q, ℓw) then ℓ ∈ T [q].

We can now use the computed functionT that approximates the

possible symbols on the top of the stack to prune the rules of a

given pushdown automaton as follows. Let P = (Q , Γ , λ,q
0
,qf) be

a PDA, ℓ0 be a stack symbol andT the function returned by the call

find_tops(P ,ℓ0). We construct a PDA P ′ = (Q , Γ , λ′,q
0
,qf) such

that λ′(q, ℓ) = {(q′,α) ∈ λ(q, ℓ) | ℓ ∈ T [q]}. Due to Lemma 1 we

can now conclude with our pruning theorem.

1 Function find_tops(P , ℓ0)
Input :A PDA P = (Q , Γ , λ,q

0
,qf) and ℓ0 ∈ Γ.

Result :A function T : Q → 2
Γ
.

2 Rules ← {(q, ℓ,q′,α) | (q′,α) ∈ λ(q, ℓ)};

3 for q ∈ Q do T0[q] ← ∅ ;

4 T0[q0] ← {ℓ0}; n ← 0;

5 repeat
6 n ← n + 1; Tn ← Tn−1;

7 for (q, ℓ,q′,α) ∈ Rules do
8 if ℓ ∈ Tn [q] then

9 if |α | ≥ 1 then
10 Tn [q

′] ← Tn [q
′] ∪ {head(α)};

11 else
12 Tn [q

′] ← Tn [q
′] ∪ Γ;

13 end

14 end
15 end
16 until Tn = Tn−1;

17 return Tn ;

18 end
Algorithm 1: Approximation of top of the stack symbols

Theorem 7. There is a computation (q0, ℓ0) →λ (q1,w1) →λ
· · · →λ (qn ,wn) in P iff there is a computation (q0, ℓ0) →λ′

(q1,w1) →λ′ · · · →λ′ (qn ,wn) in P ′.

4.4 Encoding MPLS Reachability into PDA
We can now define the last ingredient that we need for solving the

query satisfaction problem. We shall describe how a packet routing

in an MPLS model with at most k link failures can be simulated

by a PDA. Instead of enumerating by brute-force all possible

combination of k failed links, we define an over-approximation
PDA that includes all MPLS packet routings (possibly with other

superfluous PDA executions), and an under-approximation PDA

where every computation in such a PDA has a corresponding packet

routing in MPLS network.

4.4.1 Over-approximation. Assume an MPLS network N =

(V , I ,L,E,τ) with maximum k link failures. By Ops we denote

the set of all MPLS operation sequences and all suffixes of such

sequences that appear in the routing table τ . We recall that the

routing function τ maps an interface and a label to a sequence

of traffic engineering groups τ (in, ℓ) = O0O1 . . .On where Oc =

{(in1c ,ops
1

c), (in
2

c ,ops
2

c), . . . , (in
lc
c ,ops

lc
c)} for all 0 ≤ c ≤ n. We

define a k-failure aware routing function by τk (in, ℓ) =
⋃i
j=0O j

where i the smallest index such that the cardinality of the set

{in1
1
, in2

1
, . . . , inl1

1
, in1

2
, in2

2
, . . . , inl2

2
, . . . , in1i , in

2

i , . . . , in
li
i } is larger

than k .
For the network N = (V , I ,L,E,τ) we define an over-

approximating pushdown automaton P(N) = (Q , Γ , λ,q
0
,qf)

where Q = {(in,ops) | in ∈ I ,ops ∈ Ops} ∪ {q0,qf }, Γ = L, and λ
is defined as follows:

7

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Jensen et al.

a) P(N) contains the rule

((in′,ops), ℓ) ∈ λ((in, ϵ), ℓ)

for every ℓ ∈ Γ and every (out ,ops) ∈ τk (in, ℓ) such that

(out , in′) ∈ E.
b) P(N) contains the rule

((in,ops ′), ℓ′) ∈ λ((in,ops), ℓ)

if ops = swap(ℓ′) ◦ ops ′ where ℓ, ℓ′ ∈ M or ℓ, ℓ′ ∈ M⊥ or

ℓ, ℓ′ ∈ LI P .
c) P(N) contains the rule

((in,ops ′), ℓ′ℓ) ∈ λ((in,ops), ℓ)

if ops = push(ℓ′) ◦ ops ′ where ℓ ∈ M ∪M⊥ and ℓ′ ∈ M , or

ℓ ∈ LI P and ℓ′ ∈ M⊥.
d) P(N) contains the rule

((in,ops ′), ϵ) ∈ λ((in,ops), ℓ)

if pop ◦ ops ′ and ℓ ∈ M ∪M⊥.
e) P(N) contains the rule

((in, ϵ), ℓ) ∈ λ(q0, ℓ)

for every in ∈ I and every ℓ ∈ L.
f) P(N) contains the rule

(qf , ℓ) ∈ λ((in, ϵ), ℓ)

for every in ∈ I and every ℓ ∈ L.

We can now state a key property of our encoding.

Theorem 8. Let N = (V , I ,L,E,τ) be an MPLS network model

and let k be the maximum number of link failures. Any trace

(in0,h0), (in1,h1), . . . (inn ,hn) in the network where |F | ≤ k
implies that (q0,h0) →

∗
λ (qf ,hn) in the constructed over-

approximating PDA P(N) = (Q , Γ , λ,q
0
,qf).

Proof. The proof is by noticing that in each control state of the

form (ini , ϵ) we can perform by rule a) the hop (according to the

network trace) to the next incoming interface represented by the

control state (ini+1,ops) where ops is the chain of MPLS operations

to be performed (this directly follows the definition of a next hop in

Definition 4). Notice also that the k-failure aware routing function

τk (in, ℓ) over-approximates the set of active interfaces available

for the next hop as defined by the function A(O0O1 . . .On) for a

given set of failed links F where |F | ≤ k . The application of the

header-rewrite functionH defined in Definition 3 is then naturally

implemented, step by step, by the execution of the rules b), c) and

d) until we reach the control state (ini+1, ϵ) and we are ready to

execute the next hop. The rules e) and f) simply allow us to initialize

resp. accept the pushdown execution for any available interface. □

4.4.2 Under-approximation. The over-approximating push-

downwe constructed above allows us to consider up tok failed links

at every router, however, in the actual network we consider a fixed

set F of failed links that does not change during the trace. Hence

our over-approximation allows us to select some traffic engineer-

ing groups with lower priorities than those that could be possibly

applicable for the fixed set of failed links. As a result, if there is

routing (trace) in the MPLS network then there is a corresponding

computation in the over-approximating pushdown. However, the

existence of a PDA computation does not necessarily imply the

feasibility of the corresponding routing in the network. For this

reason, we suggest now also an under-approximating pushdown

construction that can execute a subset of network traces. The intu-

ition is to reuse the over-approximating pushdown construction

where we add a third component to the control state (representing

a counter of encountered failed links during the routing), so that

the control states have the form (in,ops, i) where 0 ≤ i ≤ k such

that i is the number of failed links so far. All rules b) to d) simply

copy this number i without any change, rule e) sets the counter

((in, ϵ, 0), ℓ) ∈ λ(q0, ℓ) so that i is initialized to 0 and rule f) is appli-
cable for any control state where i ≤ k . The only rule that modifies

the value i is the updated rule a) that in the under-approximating

PDA looks as follows:

((in′,ops, i + j), ℓ) ∈ λ((in, ϵ, i), ℓ)

for every ℓ ∈ Γ and every j and (out ,ops) ∈ τ j (in, ℓ)where i + j ≤ k
such that (out , in′) ∈ E. This rule simply adds the number of failed

links needed to activate a given traffic engineering group into the

global counter, making sure that this total value does not exceed

the maximum allowed number of failed links k . The problem with

this construction is that if during the trace the same server is

visited more than once, we can actually forward a packet along a

link that we claimed as failed during the first visit of the router.

However, a repeated router in a trace can be easily detected and our

under-approximation becomes inconclusive if such a loop exists.

We say that a computation (q0,h1) →λ ((in1,ops1, i1),h1) →λ
((in2,ops2, i2),h2) →λ . . . ((inn ,opsn , in),hn) →λ (qf ,hn) in the

under-approximating pushdown has a loop if there are two indices

j1 and j2 such that 1 ≤ j1 , j2 < n and inj1 , inj2 ∈ Iv for some

v ∈ V , in other words the interfaces inj1 and inj2 belong to the

same router v .

Theorem 9. Let N = (V , I ,L,E,τ) be an MPLS network and let k
be the maximum number of link failures. If (q0,h0) →

∗
λ (qf ,hn)

is a computation without a loop in the under-approximating

pushdown P(N) = (Q , Γ , λ,q
0
,qf) then there is a trace

(in0,h0), (in1,h1), . . . , (inn ,hn) in the network for some F such that

|F | ≤ k .

4.5 Solving Query Satisfability Problem
We have now described all the necessary automata constructions

and are ready to provide a solution to the problem of query

satisfability in a given MPLS network model (that is obtained

automatically from the network topology and routing tables).

Assume a given MPLS network model N and a query <a> b <c> k .
We shall describe a construction of a final pushdown automaton

Pfinal together with a reachability question that answers the query

satisfability problem. First, we construct (either using over- or

under-approximation) the pushdown P(N)with the property stated
in Theorem 8 resp. Theorem 9. This pushdown P(N) is then using

the synchronized product construction in Definition 8, and paired

with the NFA that describes the allowed router sequences given

by the regular expression b in our query. Let us call the resulting

pushdown as P route and recall that it satisfies Theorem 6. For the

regular expression a we create a constructing PDA Pc that satisfies

the property in Theorem 5 and for the expression c we construct

8

P-Rex: Fast Verification of MPLS Networks CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

the destructing PDA Pd with the property in Theorem 4. Finally,

we combine P route , Pc and Pd into a single pushdown by running

first Pc and once it enters its accepting state, we continue with

the execution of P route and once it accepts we run Pd as the last

pushdown in this sequential composition. Let us call the resulting

pushdown Pfinal . Building on the theorems presented earlier in this

section, we can conclude with the main result of our paper.

Theorem 10. Let N = (V , I ,L,E,τ) be an MPLS network and let

q = <a> b <c> k be a query on N . Let Pfinal = (Q , Γ , λ,q0,qf)

be the pushdown constructed from N and q.

• Let Pfinal be a pushdown constructed above using the over-

approximation. If there is a trace in the network N that

satisfies the query q for a set of failed links F such that

|F | ≤ k then (q0,⊥) →
∗
λ (q

f ,⊥) in the automaton Pfinal .

• If (q0,⊥) →
∗
λ (q

f ,⊥) is reachable by a loop-free path in

the automaton Pfinal that is constructed using the under-

approximation then there is a trace in the network N that

satisfies the query q for some set of failed links F such that

|F | ≤ k .

We can see that the problem of query satisfability in an MPLS

network is reduced to a reachability problem in the automaton Pfinal ,
and thanks to Theorem 1, this problem can be solved in polynomial

time. A negative answer to the reachability problem in the over-

approximating pushdown Pfinal implies that the given query is

not satisfied in the network. A positive and loop-free answer to

reachability in the under-approximating pushdown implies that

the given query is satisfied in the network. Otherwise the answer

to the query satisfability problem is inconclusive.

5 IMPLEMENTATION AND EVALUATION
We have implemented a prototype of P-Rex in Python 3.6. In the

following, we will report on our experiences and experiments with

our prototype, both in synthetic scenarios (in order to be able

to compare P-Rex to existing tools) as well as in an industrial

case study in collaboration with a network operator NORDUnet.

The source code of our tool is available at www.github.com/

p-rexmpls and released under an open-source non-commercial

license, including the data (in anonymized form) collected during

our case study. All our experiments were executed on a 4 CPU

NUMA architecture (AMDOpteron Processor 6376), with each CPU

having 16 physical cores running at 2.3 Ghz, and a total of 1 TB

of memory. We note that our implementation is single threaded

but we used the 64 available cores to run several computations

concurrently.

5.1 Comparing HSA and P-Rex
We compare the performance of P-Rex to HSA [17], in a series of

scalable instances by considering the simple network from Figure 3

on the left and repeatedly replacing the link between v1 and v3 by
the same subnetwork. This increases both the number of routers as

well as the nesting of labels inMPLS headers, as each nesting creates

an additional MPLS tunnel. In the other dimension, we scale the

number of failed links in the network from 0 to up to 3 failed links.

The HSA tool simply enumerates all possible sets of failed links

and performs a reachability analysis for each such configuration,

v1

v2

v3

v5

v4

v1

v2

v3

v5

v4

v11

v12

v13

v15

v14

Figure 3: Scaling of our synthetic network

P-Rex

HSA

k = 0 k = 1 k = 2 k = 3

Nesting: 0

Routers: 5

0.6

0.2

0.6

0.1

0.6

0.1

0.6

0.2

Nesting: 1

Routers: 10

0.6

0.1

0.6

0.1

0.6

0.4

0.6

3.7

Nesting: 2

Routers: 15

0.6

0.1

0.6

0.3

0.6

1.9

0.6

55.9

Nesting: 3

Routers: 20

0.6

0.1

0.6

0.3

0.6

6.8

0.6

335.6

Nesting: 4

Routers: 25

0.6

0.1

0.6

0.6

0.6

16.4

0.6

567.2

Nesting: 5

Routers: 30

0.6

0.1

0.6

1.0

0.6

34.6

0.6

1901.1

Nesting: 6

Routers: 35

0.6

N/A

0.6

N/A

0.6

N/A

0.7

N/A

Table 3: P-Rex vs HSA runtime (in seconds)

whereas P-Rex uses the over-approximation approach: the concrete

query is <.> v1(.)
∗v5 <..> which is not satisfied and hence our

answer is conclusive. In Table 3 we can see the runtime in seconds

for P-Rex (top part of each entry) vs. HSA (bottom part of each

entry). A gray box shows the situation where P-Rex is not faster

than HSA and white boxes are the instances where we perform

better than HSA.We can see that once we scale the number of failed

links or the size of the network (and in particular the nesting depth

of MPLS labels), the performance of HSA deteriorates significantly.

We also note that HSA cannot handle the network with 35 routers

due to its internal limitations.

In conclusion, this experiment demonstrates the our tool scales

significantly better both in the nesting depth of the MPLS labels as

well as the number of considered failed links.

5.2 Industrial Case Study
We next report on a case study we performed on a real-world

MPLS network operated by NORDUnet. NORDUnet is a regional

service provider and its network consists of 24 MPLS routers,

geographically distributed across several countries. The routers

are primarily Juniper, running JunOS and their MPLS network uses

more than 30,000 labels. In total, the number of forwarding rules

collected from this network amounts to almost one million in our

model. The forwarding tables format is documented in depth at [15].

9

www.github.com/p-rexmpls
www.github.com/p-rexmpls

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Jensen et al.

P-Rex consists of a fully automated toolchain. In addition to

the forwarding tables, to obtain topological adjacency information,

we also use the Intermediate System to Intermediate Systems (IS-IS)
database. To extract the information from the routers, we run the

following commands on each router in the network:

• show route forwarding-table family mpls extensive
| display .ml
• show isis adjacency detail | display .ml

As JunOS only matches on the incoming top label whereas in

our network model we match on the incoming interface as well as

the incoming top label, P-Rex adds the forwarding entries for all

interfaces. After retrieving this information, an automatic script is

run to generate the XML code which is the input to the next stage of

constructing the MPLS model. The resulting pushdown automaton

before the synchronization contains 1.8 million transitions. After

the lockstep construction, the number of transitions can grow to

20 million and this input is forwarded to Moped tool.

5.2.1 Reachability Matrix. In order to check the feasibility of

our approach on the network provided by NORDUnet, we use

our cluster to compute the whole reachability matrix between any

pair of routers (router names are anonymized by using letters A

to X) in the network as showed in Table 4. The verified query

<.> Y (.)∗ Z <.> 2 asks whether a packet with some IP-label only

on the top of the stack can be forwarded from one router to another,

assuming at most 2 link failures. It took the average time of 1 hour

and 1 minute to answer such a query for a given pair of routers and

the table documents that in almost all cases we are able to provide

a conclusive answer (we use ✓ for the positive answer and . for

the negative one). Only in three cases the answer was inconclusive

(denoted by the question mark).

The reader may observe that only five routers are connected in

the reachability matrix. The reason is that the operator implements

IP-based routing only on a few selected ingress routers. Most of

the traffic from other networks is forwarded though a number

of MPLS service labels that are on top of the IP-address when a

packet arrives from a neighbouring network. For this reason, we

run another experiment with the query <..> Y (.)∗ Z <(.)∗> 2

that allows the input header contain two labels (the service label

followed by the IP label). The resulting reachability matrix for this

case is shown in Table 5. We can notice a significant increase in the

connectivity among the routers and this confirms the information

we got fromNORDUnet about the heavy use of service labels in their

network. We notice a slight increase in the number of inconclusive

answers, likely due to the fact that the routers are reachable but

exhibit a looping behavior for which our under-approximation

does not provide a conclusive answer. Nevertheless, the number

of inconclusive answers is below 3% of all asked queries and we

evaluate the performance and applicability of our tool to this case

as convincing.

5.2.2 Operator SpecificQueries. During our in-person meetings

with NORDUnet, we identified the following relevant queries that

served as a test case for our workload. The operator was interested

in the question, whether a packet arriving with the service label

234 on top of some IP-label at router A, can be routed to router B

while visiting router F such that the service label is popped. The

Table 4: Reachability matrix for <.> Y (.)∗ Z <.> 2

A B C D E F G H I J K L M N O P Q R S T U V W X

A .

B .

C ✓

D ? ✓

E .

F .

G .

H .

I .

J .

K . . . ✓ ?

L .

M .

N .

O .

P .

Q ✓

R .

S . . ? ✓ .

T .

U .

V .

W .

X .

Table 5: Reachability matrix for <..> Y (.)∗ Z <(.)∗> 2

A B C D E F G H I J K L M N O P Q R S T U V W X

A ? ✓ ✓ ✓ ✓ . . ✓ ✓ . ✓ . . . ✓ . ✓ . ✓ ✓ ✓ ✓ . .

B ✓ ? ✓ ✓ ✓ ✓ . ? ✓ . ✓ . . . ✓ . ✓ . ✓ . ✓ ✓ . .

C ✓ ✓ ? ✓ ✓ ✓ . ✓ ✓ . ✓ . . . ✓ . ✓ . ✓ ✓ ✓ ✓ . .

D ✓ ✓ ✓ ? ✓ . . ✓ ✓ . ✓ . . . ✓ . ✓ . ✓ ✓ ✓ ✓ . .

E ✓ ✓ ✓ ✓ ? . . ✓ ✓ . ✓ . . . ✓ . ✓ . ✓ ✓ ✓ ✓ . .

F . ✓ ✓ ? ? ? . . . ✓ . . . ?

G ✓

H ✓ ✓ ✓ ✓ ✓ . . . ✓ . ✓ . . . ✓ . ✓ . ✓ ✓ ✓ ✓ . .

I ✓ ✓ ✓ ✓ ✓ . . ✓ ? . ✓ . . . ✓ . ✓ . ✓ ✓ ✓ ✓ . .

J .

K ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ . ? . . . ✓ . ✓ . ✓ ✓ ✓ ✓ . .

L .

M ✓ . . . ✓

N .

O ✓ ✓ ✓ ✓ ✓ ✓ . ✓ ✓ . ✓ . . . ? . ✓ ✓ ✓ ✓ ✓ ✓ . .

O .

Q ✓ ✓ ✓ ✓ ✓ . . ✓ ✓ . ✓ . ✓ . ✓ . ? ✓ ✓ ✓ ✓ ✓ . .

R .

S ✓ ✓ ✓ ✓ ✓ . . ✓ ? . ✓ . . . ✓ . ✓ . ? ✓ ✓ ✓ . .

T ✓ ✓ ✓ ✓ ✓ . . ✓ ✓ . ✓ . . . ✓ . ✓ . ✓ . ✓ ✓ ✓ .

U ✓ ✓ ✓ ✓ ✓ . . ✓ ✓ . ✓ . . . ✓ . ✓ . ✓ ✓ . ✓ . .

V ✓ ✓ ✓ ✓ ✓ . . ✓ ✓ . ✓ . . . ✓ . . . ✓ ✓ ✓ . . .

W ✓

X .

P-Rex query is formulated as

< 234 . > A (.)∗ F (.)∗ B <> 0

and in case of no failed links, out tool was able to conclude in

38m 26s while using 7.00 GB of memory that this is not the case.

However, the same query with k = 1 holds as a packet from A to

B can indeed be routed through the router F, in case of one link

failure, and our tool returns in 91m 14s a trace demonstrating such

a routing. Another interesting question is whether it is possible

that a packet arriving to some router with the service label 234 will

do 3 or more hops in the network. The corresponding query

< 234 . > . . . (.)∗ <> 0

10

P-Rex: Fast Verification of MPLS Networks CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

does not hold (the answer was computed in 48m 44s using 6.01 GB

of memory) as there are at most two hops for every such packet.

However, in case of one link failure, it is possible that the packet

makes at least 5 hops as showed by the query

< 234 . > (.)∗ <> 1

that was answered by our tool positively in 109m 32s using 14.18

GB of memory, while at the same time returning a valid network

trace. Finally, the network operator claims that the service label

800 is never popped as it is supposed to define a tunnel through

the network and this is indeed the case as the corresponding query

< 800 . > (.)∗ < [ˆ800] . > 1

has a negative answer (computed in 28m 9s using 5.04 GB of

memory), even in the case of one failed link. These examples

demonstrate a wide applicability of our technique that allows us to

answer a variety of complex network questions.

6 CONCLUSION
While there is wide consensus in the network community that

networks should become more automated, it is less clear how

to achieve this efficiently. Our work shows that, for the specific

case of MPLS networks, there exist techniques that allow for a

fast, polynomial-time analysis, even accounting for a seemingly

exponential number of possible failure configurations. In particular,

we presented a what-if analysis tool P-Rex that significantly

outperforms existing tools, and we reported on a case study in

collaboration with a network operator.

We understand our work as a first step towards an industrial

employment of our method, and believe that this paper opens

several interesting directions for future research. In particular, we

plan to explore the use of the CEGAR (counter-example guided

abstraction) approach to further improve the performance P-Rex,

and to add quantitative attributes like bandwidth and delay, by using

a weighted extension of our automata-theoretic technique. Another

interesting direction for future research regards the synthesis [8, 9]

of correct-by-design network configurations.

ACKNOWLEDGMENTS
Wewould like toMagnus Bergroth, Markus Krogh, Henrik Thostrup

Jensen, and Dennis Wallberg from NORDUnet for answering our

questions about their MPLS deployment and for providing us with

the case study. We also thank Peter Gjøl Jensen and Mads Boye for

their assistance with getting access to AAU model checking cluster,

as well as our shepherd Hongqiang Liu.

REFERENCES
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations

for Networks. SIGPLAN Not. 49, 1 (2014), 113–126.
[2] Alia K Atlas and Alex Zinin. 2008. Basic specification for IP fast-reroute: loop-free

alternates. IETF RFC 5286.

[3] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General

Approach to Network Configuration Verification. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication ((SIGCOMM)’17). ACM,

155–168. https://doi.org/10.1145/3098822.3098834

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General

Approach to Network Configuration Verification. In Proc. ACM SIGCOMM. ACM,

155–168.

[5] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker.

2016. Don’t Mind the Gap: Bridging Network-Wide Objectives and Device-Level

Configurations. In Proc. ACM SIGCOMM. ACM, 328–341.

[6] J.A. Brzozowski. 1962. Canonical regular expressions and minimal state graphs

for definite events. Mathematical Theory of Automata 12 (1962), 529–561.
[7] J.R. Büchi. 1964. Regular canonical systems. Arch. Math. Logik u.

Grundlagenforschung 6 (1964), 91–111.

[8] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2017.

Network-wide configuration synthesis. In Proc. International Conference on
Computer Aided Verification (CAV). Springer, 261–281.

[9] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev.

2018. NetComplete: Practical Network-Wide Configuration Synthesis with

Autocompletion. In Proc. 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). USENIX Association, 579–594.

[10] Theodore Elhourani, Abishek Gopalan, and Srinivasan Ramasubramanian. 2014.

IP fast rerouting for multi-link failures. In Proc. IEEE INFOCOM. ACM, 2148–2156.

[11] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. 2000. Efficient Algorithms

for Model Checking Pushdown Systems. In Proc. 12th International Conference on
Computer Aided Verification (CAV) (LNCS), Vol. 1855. Springer, 232–247.

[12] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas

Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis

using a Succinct Control Plane Representation. In Proc. 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). USENIX Association,

217–232.

[13] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure

Thompson. 2015. A coalgebraic decision procedure for NetKAT. In ACM SIGPLAN
Notices, Vol. 50 (1). ACM, 343–355.

[14] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.

2016. Fast Control Plane Analysis Using an Abstract Representation. In

Proceedings of the 2016 ACM SIGCOMM Conference ((SIGCOMM)’16). ACM, 300–

313. https://doi.org/10.1145/2934872.2934876

[15] Juniper. 2018. Show Route Forwarding-Table. Technical Documen-

tation https://www.juniper.net/documentation/en_US/junos/topics/reference/

command-summary/show-route-forwarding-table.html.

[16] David M Kahn. 2017. Undecidable Problems for Probabilistic Network

Programming. In MFCS’17, Vol. 83. LIPIcs-Leibniz International Proceedings

in Informatics, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 1–16.

[17] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks. In Proc. 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI). USENIX Association, 113–

126.

[18] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P Brighten

Godfrey. 2013. Veriflow: Verifying network-wide invariants in real time. In Proc.
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI).
USENIX Association, 15–27.

[19] Kim G. Larsen, Stefan Schmid, and Bingtian Xue. 2016. WNetKAT: A Weighted

SDN Programming and Verification Language. In Proc. 20th International
Conference on Principles of Distributed Systems (OPODIS). Schloss Dagstuhl.

Leibniz-Zentrum für Informatik, 1–18.

[20] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P Godfrey, and

Samuel Talmadge King. 2011. Debugging the data plane with anteater. In ACM
SIGCOMM Computer Communication Review, Vol. 41 (4). ACM, 290–301.

[21] Michael Menth, Michael Duelli, Ruediger Martin, and Jens Milbrandt. 2009.

Resilience analysis of packet-witched communication networks. IEEE/ACM
transactions on Networking (ToN) 17, 6 (2009), 1950–1963.

[22] RFC 8001. 2017. RSVP-TE Extensions for Collecting Shared Risk Link Group

(SRLG). https://datatracker.ietf.org/doc/rfc8001/.

[23] Stefan Schmid and Jiří Srba. 2018. Polynomial-Time What-If Analysis for Prefix-

Manipulating MPLS Networks. In IEEE International Conference on Computer
Communications (INFOCOM’18). IEEE, 1–9.

[24] Stefan Schwoon. 2002. Model-Checking Pushdown Systems. Ph.D. Thesis.

Technische Universität München. http://www.lsv.ens-cachan.fr/Publis/PAPERS/

PDF/schwoon-phd02.pdf

[25] Ken Thompson. 1968. Programming techniques: Regular expression search

algorithm. Commun. ACM 11, 6 (1968), 419–422.

[26] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo, Jennifer

Rexford, Vivek Nigam, Andre Scedrov, and Carolyn Talcott. 2012. FSR: Formal

analysis and implementation toolkit for safe interdomain routing. IEEE/ACM
Transactions on Networking (ToN) 20, 6 (2012), 1814–1827.

[27] Dahai Xu, Yizhi Xiong, Chunming Qiao, and Guangzhi Li. 2004. Failure protection

in layered networks with shared risk link groups. IEEE Network 18, 3 (2004),

36–41.

[28] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda

Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and conquer to

verify forwarding tables in huge networks. In Proc. 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI). USENIX Association,

87–99.

11

https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/2934872.2934876
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-route-forwarding-table.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-route-forwarding-table.html
https://datatracker.ietf.org/doc/rfc8001/
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/schwoon-phd02.pdf

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of P-Rex

	2 Related Work
	3 Formal Network Model
	3.1 Network Example
	3.2 Network Traces
	3.3 A Query Language for MPLS Networks
	4 From Networks to Automata
	4.1 Preliminaries
	4.2 Useful Automata Constructions
	4.3 Removal of Redundant PDA Rules
	4.4 Encoding MPLS Reachability into PDA
	4.5 Solving Query Satisfability Problem
	5 Implementation and Evaluation
	5.1 Comparing HSA and P-Rex
	5.2 Industrial Case Study

	6 Conclusion

	Acknowledgments

	References

