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Abstract. Modern computer networks are becoming increasingly com-
plex and for dependability reasons require frequent configuration
changes. It is essential that forwarding policies are preserved not only
before and after the configuration update but also at any moment dur-
ing the inherently distributed execution of the update. We present Kaki,
a Petri game based approach for automatic synthesis of switch batches
that can be updated in parallel without violating a given (regular) for-
warding policy like waypointing and service chaining. Kaki guarantees
to find the minimum number of concurrent batches and it supports
both splittable and nonsplittable flow forwarding. In order to achieve an
optimal performance, we introduce two novel optimization techniques
based on static analysis: decomposition into independent subproblems
and identification of switches that can be collectively updated in the
same batch. These techniques considerably improve the performance of
our tool, relying on TAPAAL’s verification engine for Petri games as its
backend. Experiments on a large benchmark of real networks from the
topology Zoo database demonstrate that Kaki outperforms the state-of-
the-art tool FLIP as it provides shorter (and provably optimal) concur-
rent update sequences at similar runtime.

1 Introduction

Software defined networking (SDN) [7] delegates the control of a network’s rout-
ing to the control plane, allowing for programmable control of the network and
creating a higher degree of flexibility and efficiency. If a group of switches fail, a
new routing of the network flows must be established in order to avoid sending
packets to the failed switches, resulting ultimately in packet drops. While up-
dating the routing in an SDN network, the network must preserve a number of
policies like waypointing that requires that a given firewall (waypoint) must be
visited before a packet in the network is delivered to its destination. The update
synthesis problem [7] is to find an update sequence (ordering of switch updates)
that preserves a given policy.

In order to reduce the time of the update process, it is of interest to up-
date switches in parallel. However, due to the asynchronous nature of networks,
attempting to update all switches concurrently may lead to transient policy



violations before the update is completed. This raises the problem related to
finding a concurrent update strategy (sequence of batches of switches that can
be updated concurrently) while preserving a given forwarding policy during the
update. We study the concurrent update synthesis problem and provide an ef-
ficient translation of the problem of finding an optimal (shortest) concurrent
update sequence into Petri net games. Our translation, implemented in the tool
Kaki, guarantees that we preserve a given forwarding policy, expressed as a reg-
ular language over the switches describing the sequences of all acceptable hops
under the given policy.

Popular routing schemes like Equal-Cost-MultiPath (ECMP) [8] allow for
switches to have multiple next hops that split a flow along several paths to its
destination in order to account for traffic engineering like load balancing, using
e.g. hash-based schemes [1]. In our translation approach, we support concurrent
update synthesis taking into account such multiple forwarding (splittable flows)
modelled using nondeterminism.

To solve the concurrent update synthesis problem, our framework, Kaki,
translates a given network and its forwarding policy into a Petri game and
synthetises a winning strategy for the controller using TAPAAL’s Petri game
engine [9, 10]. Kaki guarantees to find a concurrent update sequence that is min-
imal in the number of batches. We provide two novel optimisation techniques
based on static analysis of the network that reduce the complexity of solving
a concurrent update synthesis problem, which is known to be NP-hard even if
restricted only to the basic loop-freedom and waypointing properties [14]. The
first optimisation, topological decomposition, effectively splits the network with
its initial and final routing into two subproblems that can be solved indepen-
dently and even in parallel. The second optimisation identifies collective update
classes (sets of switches) that can always be updated in the same batch.

Finally, we conduct a thorough comparison of our tool against the state-of-
the-art update synthesis tool FLIP [22] and another Petri game tool [4] (allowing
though only for sequential updates). We benchmark on the set of 8759 realistic
network topologies with various policies required by network operators. Kaki
manages to solve almost as many problems as FLIP, however, in almost 9% of
cases it synthesises a solution with a smaller number of batches than FLIP. When
Kaki is specialized to produce only singleton batches and policies containing only
reachability and single waypointing, it performs similarly as the Petri game ap-
proach from [4] that is also using TAPAAL verification engine as its backend but
solves a simpler problem. This demonstrates that our more elaborate translation
that supports concurrent updates does not create any considerable performance
overhead when applied to the simpler setting.

Related Work. The update synthesis problem recently attracted lots of atten-
tion (see e.g. the recent overview [7]). State-of-the-art solutions/tools include
NetSynth [17], FLIP [22], Snowcap [21] and a Petri game based approach [4].

The tool NetSynth [17] uses the generic LTL logic for policy specification
but supports only the synthesis of sequential updates via incremental model
checking. The authors in [4] argue that their tool outperforms NetSynth.
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The update synthesis tool FLIP [22] supports general policies and more-
over it allows to synthetise concurrent update sequences. Similarly to Kaki, it
handles every flow independently but Kaki provides more advanced structural
decomposition (that can be possibly applied also as a preprocessing step for
FLIP). FLIP provides a faster synthesis compared to NetSynth (see [22]) but
the tool’s performance is negatively affected by more complicated forwarding
policies. FLIP synthesises policy-preserving update sequences by constructing
constraints that enforce precedence of switch updates, implying a partial order
of updates and hence allowing FLIP to update switches concurrently. FLIP, con-
trary to our tool Kaki, does not guarantee to find the minimal number of batches
and it sometimes reverts to an undesirable two-phase commit approach [20] via
packet tagging, which is suboptimal as it doubles the expensive ternary content-
addressable memory (TCAM) [13]. To the best of our knowledge, FLIP is the
only tool supporting concurrent updates and we provide an extensive perfor-
mance comparison of FLIP and Kaki.

A recent work introduces Snowcap [21], a generic update synthesis tool al-
lowing for both soft and hard specifications. A hard specification specifies a
forwarding policy, whereas the soft specification is a secondary objective that
should be minimized. Snowcap uses LTL logic for the hard specification but it
supports only sequential updates and hence is not included in our experiments.

Update synthesis problem via Petri games was recently studied in [4]. Our
work generalizes this work in several dimensions. The translation in [4] considers
only sequential updates and reduces the problem to a simplistic type of game
with only two rounds and only one environmental transition. Our translation
uses the full potential of Petri games with multiple rounds where the controller
and environment switch turns—this allows us to encode the concurrent update
synthesis problem. Like many others [16, 15], the work in [4] fails to provide
general forwarding policies and defines only a small set of predefined policies.
Our tool, Kaki, solves the limitation by providing a regular language for the
specification of forwarding policies and it is also the first tool that considers
splittable flows with multiple (nondeterministic) forwarding.

Other recent works relying on the Petri net formalism include timing analysis
for network updates [2] and verification of concurrent network updates against
Flow-LTL specifications [6], however, both approaches focus solely on the analy-
sis/verification part for a given update sequence and do not discuss how to
synthesise such sequences.

2 Concurrent Update Synthesis

We shall now formally define a network, routing of a flow in a network, flow
policy as well as the concurrent update synthesis problem.

A network is a directed graph G = (V,E) where V is a finite set of switches
(nodes) and E ⊆ V × V is a set of links (edges) such that (s, s) /∈ E for all
s ∈ V . A flow in a network is a pair F = (SI , SF ) of one or more initial
(ingress) switches and one or more final (egress) switches where ∅ 6= SI , SF ⊆
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V . A flow aims to forward packets such that a packet arriving to any of the
ingress switches eventually reaches one of the egress switches. Packet forwarding
is defined by network routing, specifying which links are used for forwarding of
packets. Given a network G = (V,E) and a flow F = (SI , SF ), a routing is a
function R : V → 2V such that s′ ∈ R(s) implies that (s, s′) ∈ E for all s ∈ V ,
and R(sf ) = ∅ for all sf ∈ SF . We write s → s′ if s′ ∈ R(s), as an alternative
notation to denote the edges in the network that are used for packet forwarding
in the given flow.

s1 s2

s3 s4

s5ingress

egress

egress

Fig. 1: Network and a routing function
(dotted lines are links present in the
network but not used in the routing)
where R(s1) = {s3}, R(s2) = {s3, s4, s5},
R(s3) = {s2} and R(s4) = R(s5) = ∅.

Figure 1 shows a network ex-
ample together with its routing.
Note that we allow nondeterminis-
tic forwarding as there may be de-
fined multiple next-hops—this en-
ables splitting of the traffic through
several paths for load balancing pur-
poses.

We now define a trace in a
network as maximal sequence of
switches that can be observed when
forwarding a packet under a given
routing function. A trace t for a rout-
ing R and a flow F = (SI , SF ) is a finite or infinite sequence of switches starting
in an ingress switch s0 ∈ SI where for the infinite case we have t = s0s1 . . . where
si ∈ R(si−1) for i ≥ 1, and for the finite case t = s0s1 . . . sn where si ∈ R(si−1)
for 1 ≤ i ≤ n and R(sn) = ∅ for the final switch in the sequence sn. For a given
routing R and flow F , we denote by T (R,F) the set of all traces.

In our example from Figure 1, the set T (R, ({s1}, {s4, s5})) contains e.g. the
traces s1s3s2s4, s1s3s2s3s2s4 as well as the infinite trace s1(s3s2)ω that exhibits
(undesirable) looping behaviour as the packets are never delivered to any of the
two egress switches.

2.1 Routing Policy

A routing policy specifies all allowed traces on which packets (in a given flow)
can travel. Given a network G = (V,E), a policy P is a regular expression over V
describing a language L(P ) ⊆ V *. Given a routing R for a flow F = (SI , SF ), a
policy P is satisfied by R if T (R,F) ⊆ L(P ). Hence all possible traces allowed by
the routing must be in the language L(P ). As L(P ) contains only finite traces,
if the set T (R,F) contains an infinite trace then it never satisfies the policy P .

Our policy language can define a number of standard routing policies for a
flow F = (SI , SF ) in a network G = (V,E).

– Reachability is expressed by the policy (V \ SF )*SF . It ensures loop and
blackhole freedom as it requires that an egress switch must always be
reached.
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– Waypoint enforcement requires that packets must visit a given waypoint
switch sw ∈ V before they are delivered to an egress switch (where by our
assumption the trace ends) and it is given by the policy V *swV *.

– Alternative waypointing specifies two waypoints s and s′ such that at least
one of them must be visited and it is given by the union of the waypoint
enforcement regular languages for s and s′, or alternatively by V *(s+s′)V *.

– Service chaining requires that a given sequence of switches s1, s2, . . . , sn
must be visited in the given order and it is described by the policy (V \
{s1, · · · , sn})*s1(V \ {s2, · · · , sn})*s2 · · · (V \ {sn})*snV *.

– Conditional enforcement is given by a pair of switches s, s′ ∈ V such that
if s is visited then s′ must also be visited and it is given by the policy
(V \ {s})* + V *s′V *.

Regular languages are closed under union and intersection, hence the standard
policies can be combined using Boolean operations. As reachability is an essential
property that we always want to satisfy, we shall assume that the reachability
property is always assumed in any other routing policy.

In our translation, we represent a policy by an equivalent nondeterministic
finite automaton (NFA) A = (Q,V, δ, q0, F ) where Q is a finite set of states, V is
the alphabet equal to set of switches, δ : Q× V → 2Q is the transition function,
q0 is the initial state and F is the set of final states. We extended the δ function
to sequences of switches by δ(q, s0s1 . . . sn) =

⋃
q′∈δ(q,s0) δ(q

′, s1 . . . sn) in order
to obtain all possible states after executing s0s1 . . . sn. We define the language
of A by L(A) = {w ∈ V ∗ | δ(q0, w) ∩ F 6= ∅}. An NFA where |δ(q, s)| = 1 for
all q ∈ Q and s ∈ V is called a deterministic finite automaton (DFA). It is a
standard result that NFA, DFA and regular expressions have the same expressive
power (w.r.t. the generated languages).

2.2 Concurrent Update Synthesis Problem

Let Ri and Rf be the initial and final routing, respectively. We aim to update
the switches in the network so that the packet forwarding is changed from the
initial to the final routing. The goal of the concurrent update synthesis problem
is to construct a sequence of nonempty sets of switches, called batches, such
that when we update the switches from their initial to the final routing in every
batch concurrently (while waiting so that all updates in the batch are finished
before we update the next batch), a given routing policy is transiently preserved.
Our aim is to synthesise an update sequence that is optimal, i.e. minimizes the
number of batches.

During the update, only switches that actually change their forwarding func-
tion need to be updated. Given a network G = (V,E), an initial routing Ri and
a final routing Rf , the set of update switches is defined by U = {s ∈ V | Ri(s) 6=
Rf (s)}. An update of a switch s ∈ U changes its routing from Ri(s) to Rf (s).

Definition 1. Let G = (V,E) be a network and let R and Rf be the current and
final routing, respectively. An update of a switch s ∈ U results in the updated
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s1 s2
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s4

s5
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egress

ingress

(a) Initial routing (solid lines) and a
final routing (dashed lines).

s1 s2

s3

s4

s5

s6

egress

ingress

(b) Intermediate routing after updat-
ing s3 and s4 in the first batch.

Fig. 2: Network with an optimal concurrent update sequence {s3, s4}{s2, s5}

routing Rs given by

Rs(s′) =

{
R(s′) if s 6= s′

Rf (s) if s = s′.

A concurrent update sequence ω = X1 . . . Xn ∈ (2U \ ∅)* is a sequence of
nonempty batches of switches such that each update switch appears in exactly
one batch of ω. As a network is a highly distributed system with asynchronous
communication, even if all switches in the batch are commanded to start the
update at the same time, in the actual execution of the batch the updates can
be performed in any permutation of the batch. An execution π = p1p2 · · · pn ∈ U∗
respecting a concurrent update sequence ω = X1 . . . Xn is the concatenation of
permutations of each batch in ω such that pi ∈ perm(Xi) for all i, 1 ≤ i ≤ n,
where perm(Xi) denotes the set of all permutations of switches in Xi.

Given a routing R and an execution π = s1s2 · · · sn where si ∈ U for all i,
1 ≤ i ≤ n, we inductively define the updated routing Rπ by (i) Rε = R and
(ii) Rsπ = (Rs)π where s ∈ U and ε is the empty execution. An intermediate
routing is any routing Rπ

′
where π′ is a prefix of π. We notice that for any

given routing R and any two executions π, π′ that respect a concurrent update
sequence ω = X1 . . . Xm, we have Rπ = Rπ

′
, whereas the sets of intermediate

routings can be different.
Given an initial routing Ri and a final routing Rf for a flow (SI , SF ), a

concurrent update sequence ω where Rωi = Rf satisfies a policy P if R′ satisfies
P for all intermediate routings R′ generated by any execution respecting ω.

Definition 2. The concurrent update synthesis problem (CUSP) is a 5-tuple
U = (G,F , Ri, Rf , P ) where G = (V,E) is a network, F = (SI , SF ) is a flow, Ri
is an initial routing, Rf is a final routing, and P is a routing policy that includes
reachability i.e. L(P ) ⊆ L((V \ SF )*SF ). A solution to a CUSP is a concurrent
update sequence ω such that Rωi = Rf where ω satisfies the policy P and the
sequence is optimal, meaning that the number of batches, |ω|, is minimal.

Consider an example in Figure 2a where the initial routing is depicted in
solid lines and the final one in dashed ones. We want to preserve the reacha-
bility policy between the ingress and egress switch. The set of update switches
is {s2, s3, s4, s5}. Clearly, all update switches cannot be placed into one batch
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because the execution starting with the update of s2 creates a possible blackhole
at the switch s4. Hence we need at least two batches and indeed the concurrent
update sequence ω = {s3, s4}{s2, s5} satisfies the reachability policy. Any exe-
cution of the first batch preserves the reachability of the switch s6 and brings
us to the intermediate routing depicted in Figure 2b. Any execution order of
the second batch also preserves the reachability policy, implying that ω is an
optimal concurrent update sequence.

3 Optimisation Techniques

Before we present the translation of CUSP problem to Petri games, we introduce
two preprocessing techniques that allow us to reduce the size of the problem.

3.1 Topological Decomposition

The intuition of topological decomposition is to reduce the complexity of solving
CUSP U = (G,F , Ri, Rf , P ) where G = (V,E) by decomposing it into two
smaller subproblems. In the rest of this section, we use the aggregated routing
Rc(s) = Ri(s)∪Rf (s) for all s ∈ V (also denoted by the relation →) in order to
consider only the relevant part of the network.

We can decompose our problem at a switch sD ∈ V if sD splits the network
into two independent networks and there is at most one possible NFA state that
can be reached by following any path from any of the ingress switches to sD,
and the path has a continuation to some of the egress switches while reaching
an accepting NFA state. By Q(s) we denote the set of all such possible NFA
states for a switch s. Algorithm 1 computes the set Q(s) by iteratively relaxing
edges, i.e. by forward propagating the potential NFA states and storing them in
the function Qf and in a backward manner it also computes NFA states that
can reach a final state and stores them in Qb. An edge s→ s′ can be relaxed if
it changes the value of Qf (s′) or Qb(s) and the algorithm halts when no more
edges can be relaxed.

Lemma 1. Let U = (G,F , Ri, Rf , P ) be a CUSP where F = (SI , SF ) is a flow
and let (Q,V, δ, q0, F ) be an NFA describing its routing policy P . Algorithm 1
terminates and the resulting function Q has the property that q ∈ Q(si) iff
there exists a trace s0 . . . si . . . sn ∈ T (Rc,F) such that s0 ∈ SI , sn ∈ SF , q ∈
δ(q0, s0 . . . si) and δ(q, si+1 . . . sn) ∩ F 6= ∅.

Let U = (G,F , Ri, Rf , P ) be a CUSP where G = (V,E), F = (SI , SF ) and
where P is expressed by an equivalent NFA A = (Q,V, δ, q0, F ). A switch sD ∈ V
is a topological decomposition point if |Q(sD)| = 1 and for all s ∈ V \{sD} either
(i) s→* sD and sD 6→* s or (ii) s 6→* sD and sD →* s.

Let sD be a decomposition point. We construct two CUSP subproblems U ′
and U ′′, the first one containing the switches V ′ = {s ∈ V | s →* sD} and the
latter one with switches V ′′ = {s ∈ V | sD →* s}. Let G[V ] be the induced
subgraph of G restricted to the set of switches V ⊆ V .
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Algorithm 1: Potential NFA state set

input : A CUSP U = (G,F , Ri, Rf , P ) and NFA A = (Q,V, δ, q0, F ).
output: Function Q : V → 2Q of potential NFA states at a given switch.

1 Qf (s) := ∅ and Qb(s) := ∅ for all s ∈ V
2 Qf (si) := δ(q0, si) for all si ∈ SI
3 Qb(sf ) := F for all sf ∈ SF
// s→ s′ can be relaxed if it changes Qf (s′) or Qb(s)

4 while there exists s→ s′ ∈ Rc that can be relaxed do
5 Qf (s′) := Qf (s′) ∪

⋃
q∈Qf (s)

δ(q, s′)

6 Qb(s) := Qb(s) ∪ {q ∈ Q | δ(q, s′) ∩Qb(s′) 6= ∅}
7 return Q(s) := Qf (s) ∩Qb(s) for all s ∈ V

The first subproblem is given by U ′ = (G[V ′],F ′, R′i, R′f , P ′) where (i) F ′ =
(SI , {sD}), (ii) R′i(s) = Ri(s) and R′f (s) = Rf (s) for all s ∈ V ′ \ {sD} and
R′i(sD) = R′f (sD) = ∅, and (iii) L(P ′) = L(A′) ∩ L((V ′ \ {sD})*sD) where
A′ = (Q,V, δ, q0, F

′) with F ′ = Q(sD). In other words, the network and routing
are projected to only include the switches from V ′ and the policy ensures that
we must reach sD as well as the potential NFA state of sD.

The second subproblem is given by U ′′ = (G[V ′′],F ′′, R′′i , R′′f , P ′′) where (i)
F ′′ = ({sD}, SF ), (ii) R′′i (s) = Ri(s) and R′′f (s) = Rf (s) for all s ∈ V ′′, and
(iii) L(P ′′) = L(A′′) where A′′ = (Q,V, δ, q′0, F ) and {q′0} = Q(sD). The policy
of the second subproblem ensures that starting from the potential NFA state q′0
for the switch sD, a final state of the original policy can be reached.

We can now realise that a solution to U implies the existence of solutions to
both U ′ and U ′′.

Theorem 1. If ω = X1 . . . Xn is a solution to U then ω′ = (X1 ∩ V ′) . . . (Xn ∩
V ′) and ω′′ = (X1 ∩ V ′′) . . . (Xn ∩ V ′′), where empty batches are omitted, are
solutions to U ′ and U ′′, respectively.

Even more importantly, from the optimal solutions of the subproblems, we
can synthesise an optimal solution for the original problem.

Theorem 2. Let ω′ = X ′1X
′
2 . . . X

′
j and ω′′ = X ′′1X

′′
2 . . . X

′′
k be optimal solutions

for U ′ and U ′′, respectively. Then ω = (X ′1∪X ′′1 )(X ′2∪X ′′2 ) . . . (X ′m∪X ′′m) where
m = max{j, k} and where by conventions X ′i = ∅ for i > j and X ′′i = ∅ for
i > k, is an optimal solution to U .

Hence, if the original problem has a solution and can be decomposed into two
subproblems, then these subproblems also have solutions and from the optimal
solutions of the subproblems, we can construct an optimal solution for the orig-
inal problem. Importantly, since the subproblems are themselves also CUSPs,
they may be subject to further decompositions.

8



s1 s2 s3 s4 s5 s6 s7

Fig. 3: Chain structure with initial (solid) and final (dashed) routings.

3.2 Collective Update Classes

We now present the notion of a collective update class, or simply collective up-
dates, which is a set of switches that can be always updated in the same batch
in an optimal concurrent update sequence. The switches in a collective update
class can then be viewed only as a single switch, thus reducing the complexity
of the synthesis by reducing the number of update switches.

The first class of collective updates is inspired by [4] where the authors realize
that in case of sequential updates, update switches that are undefined in the
initial routing can be always updated in the beginning of the update sequence
and similarly update switches that should become undefined in the final routing
can always be moved to the end of the update sequence. We generalize the proof
of this observation also to concurrent update sequences.

Theorem 3. Let U = (G,F , Ri, Rf , P ) be a CUSP. Let ℵi = {s ∈ V | Ri(s) =
∅ ∧Rf (s) 6= ∅} and ℵf = {s ∈ V | Rf (s) = ∅ ∧Ri(s) 6= ∅}. If U is solvable then
it has an optimal solution of the form X1 . . . Xn where ℵi ⊆ X1 and ℵf ⊆ Xn.

In Figure 3 we show another class of collective updates with a chain-like
structure where the initial and final routings forward packets in opposite direc-
tions. We claim that the switches ℵc = {s3, s4, s5} can be always updated in the
same batch because updating any switch in ℵc introduces looping behaviour,
as long as the intermediate routing is passing through the switches. Once the
switches in ℵc are not part of the intermediate routing, we can update all of
them in the same batch without causing any forwarding issues. The notion of
chain-reducible collective updates is formalized as follows.

Definition 3. Let C ⊆ V be a strongly connected component w.r.t.→ such that
|C| ≥ 4. The triple (se, se′ , C), where se, se′ ∈ C, is chain-reducible whenever
(i) if s ∈ C \ {se, se′} and s′ → s then s′ ∈ C, and (ii) if s ∈ C \ {se, se′} and
s → s′ then s′ ∈ C, and (iii) for every s ∈ C \ {se, se′} if there exists a switch
s′ ∈ Rf (s) then s′ →* s using only the initial routing or Ri(s

′) = ∅.

The restriction |C| ≥ 4 is included so that reduction in size can be achieved.
Cases (i) and (ii) ensure that the switches in C \ {se, se′} do not influence or
are influenced by any of the switches not in C and can be part of a collective
update. Case (iii) guarantees that updating a reachable switch s ∈ C \ {se, se′}
induces either a loop or a blackhole.
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Theorem 4. Let U = (G,F , Ri, Rf , P ) be a CUSP and let (se, se′ , C) be chain-
reducible and let ℵc = C \ {se, se′}. If U has an optimal solution ω = X1 . . . Xn

then there exists another optimal solution ω′ = X1 \ℵc . . . Xk ∪ℵc . . . Xn \ℵc for
some k, 1 ≤ k ≤ n.

4 Translation to Petri Games

We shall first present the formalism of Petri games and then reduce the concur-
rent update synthesis problem to this model.

4.1 Petri Games

A Petri net is a mathematical model for distributed systems focusing on con-
currency and asynchronicity (see [18]). A Petri game [10, 4] is a 2-player game
extension of Petri nets, splitting the transitions into controllable and environ-
mental ones. We shall reduce the concurrent update synthesis problem to finding
a winning strategy for the controller in a Petri game with a reachability objective.

A Petri net is a 4-tuple (P, T,W,M) where P is a finite set of places, T is a
finite set of transitions such that P ∩ T = ∅, W : (P × T ) ∪ (T × P ) → N0 is a
weight function and M : P → N0 is an initial marking that assigns a number of
tokens to each place. We depict places as circles, transitions as rectangles and
draw an arc (directed edge) between a transition t and place p if W (t, p) > 0,
or place p and transition t if W (p, t) > 0. When an arc has no explicit weight
annotation, we assume that it has the weight 1.

The semantics of a Petri net is given by a labeled transition system where

states are Petri net markings and we write M
t−→ M ′ if M(p) ≥ W (p, t) for all

p ∈ P (the transition t is enabled in M) and M ′(p) = M(p)−W (p, t) +W (t, p).
Marking properties are given by a formula ϕ which is a Boolean combination

of the atomic predicates of the form p ./ n where p ∈ P , ./ ∈ {<,≤, >,≥,=, 6=}
and n ∈ N0. We write M |= p ./ n iff M(p) ./ n and extend this naturally
to the Boolean combinators. We use the classical CTL operator AF and write

M |= AF ϕ if (i) M |= ϕ or (ii) M ′ |= AF ϕ for all M ′ such that M
t−→M ′ for

some t ∈ T , meaning that on any maximal firing sequence from M , the marking
property ϕ must eventually hold.

A Petri game [10, 4] is a two-player game extension of Petri nets where tran-
sitions are partitioned T = Tctrl ] Tenv into two distinct sets of controller and
environment transitions, respectively. During a play in the game, the environ-
ment has a priority over the controller in the decisions: the environment can
always choose to fire its own fireable transition, or ask the controller to fire one
of the controllable transitions. The goal of the controller is to find a strategy in
order to satisfy a given AF ϕ property whereas the environment tries to prevent
this. Formally, a (controller) strategy is a partial function σ : MN ⇀ T , where
MN is the set of all markings, that maps a marking to a fireable controllable

transition (or it is undefined if no such transition exists). We write M
t−→σ M

′ if
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M
t−→M ′ and t ∈ Tenv ∪ {σ(M)}. A Petri game satisfies the reachability objec-

tive AF ϕ if there exists a controller strategy σ such that the labelled transition
system under the transition relation −→σ satisfies AF ϕ.

4.2 Translation Intuition

We now present the intuition for our translation from CUSP to Petri games.
For a given CUSP instance, we compositionally construct a Petri game where
the controller’s goal is to select a valid concurrent update sequence and the
environment aims to show that the controller’s update sequence is invalid. The
game has two phases: generation phase and verification phase.

The generation phase has two modes where the controller and environment
switch turns in each mode. The controller proposes the next update batch (in
a mode where only controller’s transitions are enabled) and when finished, it
gives the turn to the environment that sequentializes the batch by creating an
arbitrary permutation of the update switches in the batch (in this mode only
environmental transitions are enabled). At any moment during the batch se-
quentialisation, the environment may decide to enter the second phase that is
concerned with validation of the current intermediate routing.

The verification phase begins when the environment injects a packet (token)
to the network and wishes to examine the currently generated intermediate rout-
ing. In this phase, one hop of the packet is simulated in the network according
to the current switch configuration; in case of nondeterministic forwarding it is
the environment that chooses the next switch. A hop in the network is followed
by an update of the current state of a DFA that represents the routing policy.
These two steps alternate, until (i) an egress switch is reached, (ii) the token
ends in a blackhole (deadlock) or (iii) the packet forwarding forms a loop, which
also makes the net execution to deadlock as soon as the same switch is visited
the second time. The controller wins the game only in situation (i), providing
that the currently reached state in the DFA is an accepting state.

The controller now has a winning strategy if and only if the CUSP problem
has a solution. By restricting the number of available batches and using the bi-
section method, we can further identify an optimal concurrent update sequence.

4.3 Translation of Network Topology and Routings

Let (G,F , Ri, Rf , P ) be a concurrent update synthesis problem where G =
(V,E) is a network and F = (SI , SF ) is the considered flow. We now construct
a Petri game N(U) = (P, T,W,M). This subsection describes the translation of
the network and routings, next subsection deals with the policy translation.

Figure 4.3 shows the Petri game building components for translating the net-
work and the routings. Environmental transitions are denoted by rectangles with
a white fill-in and controller transitions are depicted in solid black; if a transi-
tion/place is framed by a dashed line then it is shared across the components.

Network Topology Component (Figure 4a). This component represents the
network and its current routing. For each s ∈ V , we create the shared places

11
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(a) Topology component for each
switch s and s′ ∈ Ri(s) ∪Rf (s).
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(b) Update mode component where n = |U |.
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{s1, . . . , sm} = Ri(s)

t(s,sm)

t(s,s′1)

...

t(s,s′
m′ )

{s′1, . . . , s′m′} = Rf (s)
tqueues

pqueueing

pupdating

(c) Switch component for each s ∈ U . Tran-
sitions t(s, s1) . . . t(s, sm) are for the initial
routing; t(s, s′1) . . . t(s, s′m′) for the final one.

p#queued

#n

p#queued

tupdates

tqueues

#n

p#updated

(d) Counter component where
n = |U | added for each s ∈ U .

pupdating tinjects ps

(e) Packet injection component
for every s ∈ SI in flow (SI , SF ).

Fig. 4: Construction of Petri game components; U is the set of update switches

ps and a shared unvisited place punvs with 1 token. The unvisited place tracks
whether the switch has been visited and prevents looping. We use uncontrollable
transitions so that the environment can decide how to traverse the network in
case of nondeterminism. The switch component ensures that these transitions
are only fireable in accordance with the current intermediate routing.

Update Mode Component (Figures 4b and 4d). These components handle the
bookkeeping of turns between the controller and the environment. A token
present in the place pqueueing enables the controller to queue updates into a
current batch. Once the token is moved to the place pupdating, it enables the en-
vironment to schedule (in an arbitrary order) the updates from the batch. The

dual places p#queued and p#queued count how many switches have been queued
in this batch and how many switches have not been queued, respectively. The
place p#updated is decremented for each update implemented by the environment.
Hence the environment is forced to inject a token to the network, latest once all
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pq ts pq′

(a) Component for each DFA transition
q

s−→ q′; if q = q0 then pq gets a token.

t(s′,s) ptracks ts

(b) Tracking component for each already
added transition t(s′,s) and each switch
s ∈ V ; creates a new transition ts.

pturn pturn pturn

tinjects
t(s,s′) ts

(c) Turn component for all created tran-
sitions tinject

s and t(s,s′) and ts.

tinjects ptracks

(d) Injection component for each s ∈ SI

in the flow (SI , SF ).

Fig. 5: Policy checking components

update switches are updated. Additionally, the number of produced batches is
represented by the number of tokens in the place pbatches.

Switch Component (Figure 4c). This component handles the queueing (by
controller) and activation (by environment) of updates. For every s ∈ V where
Ri(s) 6= Rf (s) we create a switch component. Let U be the set of all such update
switches. Initially, we put one token in pinits (the switch forwards according to its
initial routing) and plimiters (making sure that each switch can be queued only
once). Once a switch is queued (by the controller transition tqueues ) and updated
(by the environment transition tupdates ), the token from pinits is moved into pfinals

and the switch is now forwarding according to the final routing function.

Packet Injection Component (Figure 4e). The environment can at any moment
during the sequentialisation mode use the transition tinjects to inject a packet
into any of the ingress routers and enter the second verification phase.

4.4 Policy Translation

Given a CUSP (G,F , Ri, Rf , P ), we now want to encode the policy P into the
Petri game representation. We assume that P is represented by a DFA A(P )
such that L(P ) = L(A(P )). We translate A(P ) into a Petri game so that DFA
states/transitions are mapped into corresponding Petri net places/transitions
which are connected to earlier defined Petri game for the topology and routing.

Figure 5 presents the components for the policy translation.

1. DFA transition component (Figure 5a). This component creates
places/transitions for each DFA state/transition. Note that if a Petri game
transition is of the form ts then it corresponds to a DFA-transition, contrary
to transitions of the form t(s,s′) that represent network topology links.
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2. Policy tracking component (Figure 5b). For all s ∈ V , we create the place
ptracks in order to track the current position of a packet in the network.

3. Turn component (Figure 5c). The intuition here is that whenever the envi-
ronment fires the topology transition t(s,s′) then the DFA-component must
match it by firing a DFA-transition ts′ . The token in the place pturn means
that it is the environment turn to challenge with a next hop in the network
topology.

4. DFA injection component (Figure 5d). For all inject transitions tinjects to
the switch s, we add an arc to its tracking place ptracks . This initiates the
second phase of verification of the routing policy.

4.5 Reachability Objective and Translation Correctness

We finish by defining the reachability objective C(k) for each positive number k
that gives an upper bound on the maximum number of allowed batches (recall
that F is the set of final DFA states): C(k) = AF pbatches ≤ k ∧

∨
q∈F pq = 1.

The query expresses that all runs must use less than k batches and eventually
end in an accepting DFA state. Note that since reachability is assumed as a part
of the policy P and that the final switch has no further forwarding, there can
be no next-hop in the network after the DFA gets to its final state.

The query can be iteratively verified (e.g. using the bisection method) while
changing the value of k, until we find k such that C(k) is true and C(k − 1) is
false (which implies that also C(`) is false for every ` < k − 1). Then we know
that the synthesised strategy is an optimal solution. If C(k) is false for k = |U |
where U is the set of update switches then there exists no concurrent update
sequence solving the CUSP. The correctness of the translation is summarized in
the following theorem.

Theorem 5. A concurrent update synthesis problem U has a solution with k ≥ 1
or fewer batches if and only if there exists a winning strategy for the controller
in the Petri game N(U) for the query C(k).

Let us note that a winning strategy for the controlled in the Petri game can
be directly translated to a concurrent update sequence. The firing of controllable
transitions of the form tqueues indicates that the switch s should be scheduled in
the current batch and the batches are separted from each other by the firings of
the controllable transitions tconup.

5 Experimental Evaluation

We implemented the translation approach and optimisation techniques in our
tool Kaki. The tool is coded in Kotlin and compiled to JVM. It uses the Petri
game engine of TAPAAL [3, 9, 10] as its backend for solving the Petri games.
The source code of Kaki is publicly available on GitHub1.

1 https://github.com/Ragusaen/Kaki
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Fig. 6: Optimization techniques and FLIP comparison (y-axis is logarithmic)

We shall discuss the effect of our novel optimisation techniques and com-
pare the performance of our tool to FLIP [22] as well as the tool for sequential
update synthesis from [4], referred to as SEQ. We use the benchmark [5] of
update synthesis problems from [4], based on 229 real-network topologies from
the topology ZOO database [12]. The benchmark includes four update synthesis
problems for reachability and single waypointing for each topology, totalling 916
problem instances. As Kaki and FLIP support a richer set of policies, we further
extend this benchmark with additional policies for multiple waypointing, alter-
native waypointing and conditional enforcement, giving us 8759 instances of the
concurrent update synthesis problem.

All experiments (each using a single core) are conducted on a compute-cluster
running Ubuntu version 18.04.5 on an AMD Opteron(tm) Processor 6376 with a
1GB memory limit and 5 minute timeout. A reproducibility package is available
in [11] and it includes executable files to run Kaki, pre-generated outputs that
are used to produce the figures as well as the benchmark and related scripts.

5.1 Results

To compare the optimization techniques introduced in this paper, we include a
baseline without any optimisation techniques, its extension with only topological
decomposition technique and only collective update classes, and also the combi-
nation of both of them. Each method decides the existence of a solution for the
concurrent update synthesis problem and in the positive case it also minimizes
the number of batches. Figure 6 shows a cactus plot of the results where the
problem instances on the x-axis are (for each method independently) sorted by
the increasing synthesis time shown on y-axis. Both of the optimization tech-
niques provide a significant improvement over the baseline and their combination
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Total 856 916 916 844 647 916 916 916 916 916 8759 100.0%
Only Kaki 0 0 17 37 63 0 5 8 1 2 133 1.5%
Only FLIP 0 0 0 0 0 17 20 35 40 84 196 2.2%
Suboptimal 0 11 18 14 4 283 198 104 41 114 787 8.9%

Tagging 0 0 47 55 21 4 39 100 1 1 268 3.0%

Table 1: Number of solved problems (suboptimal and tagging refers to FLIP)

is clearly beneficial as it solves 97% of the problems in the benchmark in less
than 1 second.

In Figure 6 we also show a cactus plot for FLIP on the full benchmark of
concurrent update synthesis problems. As Kaki has to first generate the Petri
game file and then call the external TAPAAL engine for solving the Petri game,
there is an initial overhead that implies that the single-purpose tool FLIP is
faster on the smaller and easy-to-solve instances of the problem that can be
answered below 1 second. For the more difficult instances both Kaki and FLIP
quickly time out and exhibit similar performance.

More importantly, FLIP does not always produce the minimal number of
batches, which is critical for practical applications because updating a switch
can cause forwarding instability for up to 0.4 seconds [19]. Hence minimizing
the number of batches where switches can be updated in parallel significantly
decreases the forwarding vulnerability (some networks in the benchmark have
up to 700 switches). In fact, FLIP synthesises a strictly larger number of batches
in 787 instances, compared to the minimum number of possible batches (that
Kaki is guaranteed to find). The distribution of the solved problems for the
different policies is shown in Table 1. Here we can also notice that FLIP uses
the less desirable tag-and-match update strategy in 268 problem instances, even
though there exists a concurrent update sequence as demonstrated by Kaki.
In conclusion, Kaki has a slightly larger overhead on easy-to-solve instances but
scales almost as well as FLIP, however, FLIP in almost 12% of cases does not find
the optimal update sequence or reverts to the less desirable two-phase commit
protocol.

Comparison with SEQ from [4] is more difficult as SEQ supports only reach-
ability and single waypointing and computes only sequential updates (single
switch per batch). When we restrict the benchmark to the subset of these poli-
cies and adapt our tool to produce sequential updates, we observe that Kaki’s
performance is in the worst case 0.06 seconds slower than SEQ when measuring
the verification time required by the TAPAAL engine. We remark that SEQ
solved all problems in under 0.55 seconds, except for two instances where it
timed out while Kaki was able to solve both of them in under 0.1 second.

We also extended the benchmark with nondeterministic forwarding that mod-
els splittable flows (using the Equal-Cost-MultiPath (ECMP) protocol [8] that
divides a flow along all shortest paths from an ingress to an egress switch). We
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observe that verifying the routing policies in this modified benchmark implies
only a negligible (3.4% on the median instance) overhead in running time.

6 Conclusion

We presented Kaki, a tool for update synthesis that can deal with (i) concurrent
updates, (ii) synthesises solutions with minimum number of batches, (iii) extends
the existing approaches with nondeterministic forwarding and can hence model
splittable flows, and (iv) verifies arbitrary (regular) routing policies. It extends
the state-of-the-art approaches with respect to generality but given its efficient
TAPAAL backend engine, it is also fast and provides more optimal solutions
compared to the competing tool FLIP.

Kaki’s performance is the result of its efficient translation in combination with
optimizations techniques that allow us to reduce the complexity of the problem
while preserving the optimality of its solutions. Kaki uses less than 1 second to
solve 97% of all concurrent update synthesis problems for real network topologies
and hence provides a practical approach to concurrent update synthesis.
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This work was supported by DFF project QASNET.
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A Proofs for Section 3 (Optimisation Techniques)

Lemma 1. Let U = (G,F , Ri, Rf , P ) be a CUSP where F = (SI , SF ) is a flow
and let (Q,V, δ, q0, F ) be an NFA describing its routing policy P . Algorithm 1
terminates and the resulting function Q has the property that q ∈ Q(si) iff
there exists a trace s0 . . . si . . . sn ∈ T (Rc,F) such that s0 ∈ SI , sn ∈ SF , q ∈
δ(q0, s0 . . . si) and δ(q, si+1 . . . sn) ∩ F 6= ∅.

Proof. The algorithm terminates because in each iteration of the while loop, an
NFA state is added either to Qf or Qb . Since there are only finitely many states,
it must terminate.

We now prove that at line 7 the set Qf (s) contains the NFA states can be
reached from an initial switch to s, and afterwards, we prove that Qb(s) contains
the NFA states that can reach a final state from s. We prove by induction
on the number of hops from an initial switch, with the induction hypothesis
Hf (n) = “q ∈ Qf (s) iff from the initial state, q can be reached by a path of
length at most n from an initial switch to s”.
Base case (0 hops): This is trivially true, because the only switches reachable
with no hops is the initial switches, and Qf is are initialised to the NFA states
reached from q0.
Induction step: Assume Hf (n), we now show Hf (n + 1). (⇒) After the while
loop has terminated, there are no more edges that can be relaxed forwards.
Therefore, for switches s′ where s′ → s, if an NFA state q can be reached in
s′ with n hops, then relaxing s′ → s will ensure that δ(q, s) ⊆ Qf (s). (⇐) A
state is only added when a relaxation adds NFA states that can reached from
the initial state, therefore no superfluous states are in Qf (s).

We now prove by induction on the number of hops to a final switch, with the
induction hypothesis Hb(n) = “q ∈ Qb(s) iff from q a final state can be reached
by a path of at most n switches from s to a final switch”.
Base case (0 hops): This is trivially true, because the only switches that can
reach a final switch with no hops are final switches, and Qf is are initialised to
the final NFA states.
Induction step: Assume Hb(n), we now show Hb(n+1). (⇒) After the while loop,
for switches s′ where s→ s′, if an NFA state q can reach a final state from s′ with
n hops, then relaxing s → s′ will ensure that {q′ ∈ Q | q ∈ δ(q′, s′)} ⊆ Qb(s).
(⇐) A state is only added when a relaxation adds NFA states that can reach a
final state, therefore no superfluous states are in Qb(s).

Finally, the intersection of Qf and Qb will contain only those states that can
be reached from the initial switch and that can reach a final state. This proves
both direction.

Theorem 1. If ω = X1 . . . Xn is a solution to U then ω′ = (X1∩V ′) . . . (Xn∩V ′)
and ω′′ = (X1∩V ′′) . . . (Xn∩V ′′), where empty batches are omitted, are solutions
to U ′ and U ′′, respectively.

Proof. (Sketch) The argument is similar to Theorem 2. Since the routings of the
two subproblems do not affect the part of the policy they each are concerned
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with, delineated by the single potential NFA state of the decomposition point,
the subproblems’ updates are independent. Therefore, solutions to U ′ and U ′′
can directly be extracted from ω.

Theorem 2. Let ω′ = X ′1X
′
2 . . . X

′
j and ω′′ = X ′′1X

′′
2 . . . X

′′
k be optimal solutions

for U ′ and U ′′, respectively. Then ω = (X ′1∪X ′′1 )(X ′2∪X ′′2 ) . . . (X ′m∪X ′′m) where
m = max{j, k} and where by conventions X ′i = ∅ for i > j and X ′′i = ∅ for
i > k, is an optimal solution to U .

Proof. We first prove that ω is a solution. Trivially, Rωi = Rf because V1 ∪V2 =
V , so all switches are updated. We show that for any prefix π = sisi+1 . . . sn of
any execution of ω then Rπi satisfies the policy, and therefore that t ∈ L(P ) for
all traces t = s0s1 . . . sn ∈ T (Rπi ,F). Let π′ be the subsequence of π consisting
of updates for switches from U ′, and π′′ be those from U ′′. We then examine the
behaviour of the subproblems after the partial update. From the definition of
U ′ we know that an injected package must reach switch sD. From the definition
of U ′′ we know that an injected package in sD must reach the final switch.
Therefore, the trace must be of the form t = s0s1 . . . sD . . . sn where s0 ∈ SI and
sn ∈ SF . By the assumption that ω′ is correct, the trace t′ = s0s1 . . . sD must
end in the final state qf of the NFA for U ′. By the assumption that ω′′ is correct,
the trace t′′ = sD . . . sf starting from the state qf must end in a final state of U .
Therefore, t must also satisfy P .

We now prove by contradiction that ω is optimal. Assume there exists an
ω = X1 . . . Xk solution s.t. |ω| < |ω|. We then pick the subproblem with the
longest optimal solution, w.l.o.g let it be ω′. Notice that |ω| < |ω′|. We can then
construct a new solution for this subproblem by extracting the update switches
from the subproblem from ω, i.e. ω′ = (X1 ∩ V ′) . . . (Xk ∩ V ′). This contradicts
ω′ being an optimal solution.

Theorem 3. Let U = (G,F , Ri, Rf , P ) be a CUSP. Let ℵi = {s ∈ V | Ri(s) =
∅ ∧Rf (s) 6= ∅} and ℵf = {s ∈ V | Rf (s) = ∅ ∧Ri(s) 6= ∅}. If U is solvable then
it has an optimal solution of the form X1 . . . Xn where ℵi ⊆ X1 and ℵf ⊆ Xn.

Proof. Let ω = X1 . . . Xn be an optimal concurrent update sequence. Observe
that P must contain reachability.

The switches in ℵi and ℵf can only be updated when they are not reachable,
because otherwise they are blackholes. Additionally, updating an unreachable
switch does not violate the policy as it does not affect the traces of the current
routing. The switches in ℵi have no initial next-hop, and therefore they are
not in the initial routing; otherwise, it violates reachability. Therefore, ℵi is not
reachable in the first batch and can therefore be in the first batch. There are no
other switch in the first batch which update makes any switches in ℵi reachable,
because if a switch s ∈ S1 makes a switch in ℵi reachable, then the intermediate
routing after updating s creates a blackhole, and therefore ω is not a solution.
Similarly, ℵf cannot be reachable in the last batch, and can therefore be in the
last batch.
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Fig. 7: Network with initial and final routing. ℵi = {s3, s4, s8, s9} and ℵf =
{s1, s2, s6, s7}.

Theorem 4. Let U = (G,F , Ri, Rf , P ) be a CUSP and let (se, se′ , C) be chain-
reducible and let ℵc = C \ {se, se′}. If U has an optimal solution ω = X1 . . . Xn

then there exists another optimal solution ω′ = X1 \ℵc . . . Xk ∪ℵc . . . Xn \ℵc for
some k, 1 ≤ k ≤ n.

Proof. Let Xk be the first batch of the optimal concurrent update sequence
ω = X1 . . . Xk . . . Xn that contains a switch s ∈ ℵc, where s is routed to in both
the initial and final routing. We construct another concurrent update sequence
ω′ = X1 \ℵc . . . Xk ∪ℵc . . . Xn \ℵc and prove that it is an optimal solution to U .

Let sk ∈ ℵc ∩ Xk be one of the switches first updated in ℵc. Notice that
P always contains reachability and by (iii) that updating any switch s ∈ ℵc
introduces a loop or blackhole if ℵc is reachable, therefore, s ∈ ℵc can only be
updated when ℵc is unreachable. The UEC ℵc can only again become reachable
when it is completely updated as it transiently contains loops. By (i) (ii) only
se and se′ have incoming or outgoing routings of C, therefore, all other switches
s ∈ ℵc have no influence on any intermediate routing of ω. Therefore, all switches
of ℵc can be updated in Xk since their updates cannot change the traces of any
intermediate routing, i.e. T (Rπi ,F) = T (Rπ

′
i ,F), for all prefixes πi of π, where

π respects ω and for all prefixes π′i of π′, where π′ respects ω′.

B Proofs for Section 4 (Translation to Petri Games)

Theorem 5. A concurrent update synthesis problem U has a solution with k ≥ 1
or fewer batches if and only if there exists a winning strategy for the controller
in the Petri game N(U) for the query C(k).

B.1 Correctness of Translation

Let U = (G,F , Ri, Rf , P ) be a concurrent update synthesis problem, and let
N(U) = (P, T,W,M) be the Petri game resulting from translating U into a
Petri game using the translation process from Section 4.2. Also, let C(k) be the
query from Section 4.5.

We now want to prove that our solution terminates. This is done by proving
that there exists no infinite runs in N(U).
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Theorem 6. Given the CUSP U = (G,F , Ri, Rf , P ), the Petri game N(U) =
(P, T,W,M) never produces an infinite run.

Proof. First, observe that the update switch component transitions tqueues and
tupdates can be fired at most once. The transition tqueues is restricted by the
place plimiters , and tupdates can only be fired after tqueues has been fired. Secondly,
tinjects can be fired exactly once because it removes the token from pupdating, and
pupdating can never regain its lost token. Thirdly, any topology transition t(s,s′)
can be fired at most once. This is ensured by the limiter place punvs′ as it contains
1 token by the initial marking, and it never regains tokens.

Notice that the transitions tconup can happen at most |U | times since it
requires a token from pnum queued, and such a token indicates that a switch
update has been queued. Furthermore, tready can only fire after tconup has fired,
which can therefore also only fire a finite amount of times. Lastly regarding the
policy-component, the turn switch enforces that any DFA-transition ts can only
fire after a topology transition t(s′,s) or tinjects has fired, which both only happen
a finite amount of times.

We now prove the correctness of our translation from CUSP to Petri game
and query by proving Theorem 5. The theorem states a bi-implication; therefore,
its proof is divided into 2 separate lemmas, which are presented below. First, we
prove that if ω is a solution to a CUSP, U , then there exists a winning strategy
σ for N(U) with the query C(k).

Lemma 2. If ω is a solution to a CUSP U , where |ω| ≤ k, then there exists
a winning strategy σ for the controller player in the Petri game N(U) with the
query C(k).

Proof. Let ω = X1 . . . Xk be a concurrent update sequence, s.t. Xi =
{si1, . . . , sin}, where sij ∈ U . We now define a winning strategy σ w.r.t. C(k)
for the controller, starting with the initial marking M0.

Notice that if M(pqueueing) = 1 then only the controller can fire transitions.
After tconup is fired, the token of P queueing is moved to pupdating, and the envi-
ronment can update switches and inject a packet, and at some point move the
token back by firing tready.

The strategy of the controller is to fire all queue transitions with respect
to ω. The controller queues a batch Xi = {s1, . . . , sn} by firing the transitions
tqueues1 · · · tqueuesn tconup. This adds a token to pbatches. Notice that the order of
which the transitions tqueues are fired in is irrelevant.

During the updating phase, i.e. when M(pupdating) = 1, the environment is
able to fire transitions to verify the policy. This happens in between the queue-
ing of batches. When tqueues is fired the transition tupdates will be fired by the
environment during its following updating turn.

We now prove that M0 |= C(k) under the strategy σ. Recall C(k) from
Section 4.5, which states that for all possible runs of N(U) the number of batches
used is limited to k and tinjects has been fired and it resulted in an accepting
DFA state.
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The predicate AF (pbatches ≤ k) is assured because each batch adds a token
to pbatches and every batch is queued exactly once.

We first conclude that tinjects is guaranteed fire eventually so the updating
enters phase 2 at some point. The environment can inject in phase 1 during
its turn, or it is forced to after all switches s ∈ SI has been updated. This
enforcement is ensured by the place p#updated as it loses a token after each
update, and after all updates tready can no longer be fired, and inject is the only
option left for the environment.

We now prove that tinjects always results in M(pq) = 1 for some q ∈ F when
following the strategy σ from M0. When the Petri game enters phase 2, the
environment fires tinjects , and gives the turn to the controller; the place ptracks

gets a token. Now, the environment chooses the only available transition ts, as
all other transitions are unfireable because they lack a token in their respective
track place; this removes a token from pq0 and ptracks and puts a token into pq′ .
The environment again receives the turn to choose another transition t(s,sj) in

the topology to fire; a token is put into ptracksj . Again, the environment is forced
to match by firing a transition tsj ; and so on. Effectively, the DFA-component
matches the trace that the environment simulates in a turn-wise manner. Any
path the environment can simulate is a trace in some intermediate routing of ω,
and we know all possible intermediate routings of ω satisfies P . Therefore, any
simulation path chosen by the environment results in an accepting DFA-state
because L(P ) = L(A(P )) and no trace can violate P .

We now prove the other implication of Theorem B.1.

Lemma 3. If σ is a winning strategy for the controller in the Petri game N(U)
with the query C(k) then there exists a solution ω to the CUSP U , where |ω| = k.

Proof. Let σ be a winning strategy for the Petri Game N(U) with the
query C(k). When pqueueing = 1, σ must fire one or more queue transitions
and then the tconup transition. Therefore, the strategy must be sequences of
tqueues1 . . . tqueuesj . . . tqueuesn tconup repeated i times, where 1 ≤ i ≤ k. In between
the queuing of batches, the environment updates the queued switches along
with firing an inject transition. But because σ is a winning strategy, no inject
can violate the policy. This effectively produces a strategy describing a concur-
rent update sequence ω, where Xi = {s1, . . . , sj , . . . , sn}. Observe that there
are no other markings where controller has fireable transitions, therefore, this
constitutes the entire strategy.

We now prove by contradiction that the derived concurrent update sequence
ω satisfies the policy P . Assume that ω does not satisfy P , then there must
exist an execution of ω where a prefix π = s1s2 . . . sk yields a routing Rπi s.t.
t 6∈ P for some t ∈ T (Rπi ,F). However, such a trace cannot exist. In the Petri
game, the environment will be able to simulate Rπi by updating switches in
correspondence with π. It can then inject into si. If t is an infinite trace then
the network topology will deadlock due to the punvs places, and σ is not be a
winning strategy; if t is finite, then M(pq) 6= 1 for all q ∈ F because the DFA in
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the Petri game recognizes exactly P , but this also contradicts σ being a winning
strategy. Therefore, ω satisfies P .

Finally, |ω| ≤ k because σ |= C(k) which implies that Mi(p
batches) ≤ k for

all markings Mi of σ. Therefore, there are queued no more than k batches.
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