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Abstract

We investigate the open synthesis problem in a quantitative game theoretic
setting where the system model is annotated with multiple nonnegative weights
representing quantitative resources such as energy, discrete time or cost. We
consider system specifications expressed in the branching time logic CTL ex-
tended with bounds on resources. As our first contribution, we show that the
model checking problem for the full logic is undecidable with already three
weights. By restricting the bounds to constant upper or lower-bounds on the
individual weights, we demonstrate that the problem becomes decidable and
that the model checking problem is PSPACE-complete. As a second contribu-
tion, we show that by imposing upper-bounds on the temporal operators and
assuming that the cost converges over infinite runs, the synthesis problem is
also decidable. Finally, we provide an on-the-fly algorithm for the synthesis
problem on an unrestricted model for a reachability fragment of the logic and
we prove EXPTIME-completeness of the synthesis problem.

Keywords: synthesis, model checking, quantitative, temporal logics,
dependency graphs

1. Introduction

Complex systems are an integral part of everyday life and the correctness
of these systems is an area of great interest. For several safety-critical ap-
plication areas the cost of unexpected behaviour in the system can be very
high, thus creating the demand for a more thorough verification. One way of
achieving increased assurance of correctness is by using formal methods such
as model checking [5, 19] and more recently synthesis [16].

While model checking can verify whether an implementation (or model
thereof) satisfies a given specification, synthesis is the effort to automatically
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generate a satisfying implementation directly from a specification. This im-
plementation can either be thought of as an isolated system where we only
consider the specification, or an open system where we have to interact with
an environment [8].

In the setting of an open system, the synthesis problem consists in con-
structing a control program P that together with the environment E satisfies
the given specification [18]. While the resulting system is deterministic, it
creates a computation tree. The branching corresponds to external nondeter-
minism, caused by the uncontrollable environment. For a given linear time
specification we must verify that it holds in all paths of the resulting computa-
tion tree. However, in order to express possibility properties, one needs to use
branching temporal logics, which enable both universal and existential path
quantification.

In this paper, we deal with the (open) synthesis problem in the setting
where both the behaviour of the system contains quantitative aspects (e.g.
energy, time, resource usage, etc.) and the specification may (or may not)
contain hard constraints on these. To this end, we consider the synthesis
problem in a branching setting, where specifications may simultaneously pose
requirements both on possibilities and necessities. Such specifications are not
expressible in a linear time view.

1.1. Motivating Example

To motivate the investigation of model checking and synthesis in a multi-
weighted setting, we shall introduce a small example. Consider Figure 1
which models an investment scheme. In this model the investor begins in
the initial state s0. She can then move to the state s1 from which the choices of
making some investment or liquidating all assets are possible. If the investor
wants to make a low risk investment she follows the transitions to the state s2.
The transition is annotated with the time in months it takes to evaluate such
an investment. From this state the result of the investment is determined and
the investor is back at s1. A similar situation occurs when choosing to make a
high risk investment. The last possibility is to liquidate, and thus ending this
round of investments. In this model only one investment can be ongoing at
any given time.

The transition between these states are depicted as arrows, each annotated
with a vector. In this model the vector represent loss of funds, earnings and
the passage of time in months. When the transition from one state to another
is affected by something beyond our control, we depict it as a dashed arrow.
In this example we model market influence in the transitions leading from a
high or low risk investment, and show that this affect the loss or earnings of
a particular investment.

Based on this model, we can now ask questions about the feasibility of
certain objectives. An example can be: Within a year, can we achieve earnings
of at least 600 units, while never experiencing a loss of more than 30 units over a
period of 6 months. In general, the answer to this type of question depends
on two things: the choices we make and the role the environment plays. The
choices we make often reflect trade-offs. For example it is more time efficient
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Figure 1: Model of investment scheme

and possibly more rewarding to go for a high risk investment, but it also
carries the danger of suffering a loss of funds. The right choice to make then
depends on the situation and the goal we wish to achieve. In this example the
objective can only be met if we always go for a high risk investment and the
environment never causes us to loose funds.

We will investigate problems of this nature. Specifically deciding whether
an objective is realizable or not within given cost bounds, and in the situation
where it is realizable, we want to determine a strategy to achieve the goal.

1.2. Our Contributions

We introduce a multi-weighted extension to Kripke structures and pro-
vide a multi-weighted extension of Computation Tree Logic (CTL). We ini-
tially prove that the model checking problem is undecidable on a finite struc-
ture with three weights. However, by restricting the form of the bounds we
find a decidable subset and show that the complexity of model checking is
PSPACE-complete. We then extend the multi-weighted formalism to a game
theoretic setting and formally define the synthesis problem. We show that for
an upper-bounded specification and a cost-convergent game graph, the syn-
thesis problem is decidable. Finally we investigate the synthesis problem for
a fragment of the logic which focuses on reachability. We provide an on-the-
fly algorithm by reducing the synthesis problem to the problem of calculating
the fixed-point assignment of a dependency graph and show that the synthe-
sis problem for the reachability subset is EXPTIME-complete.

1.3. Related Work

In a recent paper [14] Larsen et al. studies a multi-weighted extension of
the alternation-free µ-calculus and show that the satisfiability problem is de-
cidable for the class of weighted transition systems extended with nonnega-
tive reals on the transitions. However no complexity characterization is given.
While we consider a subset of the logic presented in [14] (the weighted CTL
subset) we provide tight complexity results for the model checking problem
for this subset.
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When considering model checking for quantitative formalisms, we find
some related results for models with a single weight. A discrete time extension
of CTL with the possibility to set bounds on clocks and with the possibility to
reset clocks is studied in [13]. It is shown that in their case the reset operator
causes the complexity to go from PTIME to PSPACE. In our work we consider
a weighted extension of CTL with a syntax close to the one presented in [13],
however while they consider a discrete timed extension of Kripke structures
we consider a multi-weighed extension. In [9] an on-the-fly algorithm was
suggested and implemented for a weighed extension of CTL without negation
and with upper-bounds on the temporal operators (e.g. EX≤k ϕ). In contrast to
their work we do not have bounds attached to the temporal operators, instead
they can be expressed and used as propositions. Additionally we consider
multiple weights.

For the model checking problem of temporal logics in multi-weighted set-
tings, effort has been made to identify the largest possible decidable logic
fragments. In [2] temporal specifications on quantitative Kripke structures
with both negative and nonnegative weights are considered. They show that
the model checking problem for a fragment of CTL without the EG and EU
operator but with bounds on the cost is decidable and 2NEXPTIME-hard. It
is easy to see that allowing the EG and EU operators while having both neg-
ative and positive weights on transitions would result in undecidability. We
limit ourselves to nonnegative weights and are thus able to represent the full
CTL while still providing a decidability result. Furthermore we show that the
complexity for the model checking problem is then PSPACE-complete.

In a multi-weighted setting, formalisms like energy games are often con-
sidered. While originally presented in a real-time setting for a single clock [3]
it was later considered in a discrete multi-weighted setting [10, 12, 7, 4]. While
we only work with nonnegative weights, we consider more expressive branch-
ing time winning conditions where we are able to specify multiple lower-and
upper-bounds on the accumulated cost at any point of the computation. Fur-
thermore we consider reset operators which can locally reset the cost of a
number of specified weights for a subformula.

For the problem of synthesis for multi-weighted formalisms less work has
been done. In [1] Almagor et al. look at LTL model checking and synthesis
where they measure the quantitative aspects. In contrast our approach is
based on CTL and focus on branching time properties.

2. Preliminaries

We present the n-Weighted Kripke Structure (n-WKS), and we write N0 =
N∪ {0} and N∞ = N0 ∪∞.

Definition 2.1 (n-Weighted Kripke Structure) An n-Weighted Kripke Struc-
ture (n-WKS) is a tuple K = (S, s0,AP , L, T) where:

• S is a set of states,

• s0 ∈ S is the initial state,
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• AP is a finite set of atomic propositions,

• L : S→ P(AP) is a labelling function, and

• T ⊆ S×Nn
0 × S is a transition relation, with a weight vector of n dimen-

sions.

When (s, c, s′) ∈ T, where s, s′ ∈ S and c ∈ Nn
0 is a vector, then we write

s c−→ s′. When s′ is reachable from s, by at least one transition, we write
s→+ s′ and when s has no outgoing transitions we write s 6→.

An n-WKS K = (S, s0,AP , L, T) is finite whenever S is a finite set of states and
T is a finite transition relation.

Let w ∈Nn
0 then we denote the ith component of w by w[i], where 1 ≤ i ≤

n. To set the ith component of w to a specific value k ∈ N0 we write w[i → k]
and to set multiple components I ⊆ {0, . . . , n} to a specific value k ∈ N0 we
write w[I → k].

Definition 2.2 (Ordering on Vectors) Let w = (w[1], . . . , w[n]) ∈Nn
0 and w′ =

(w′[1], . . . , w′[n]) ∈Nn
0 . We write w ≤ w′ iff w[i] ≤ w′[i] for all 1 ≤ i ≤ n.

We define a run ρ in the n-WKS K to be an infinite or finite sequence of
states and transitions:

ρ = s1
c1−→ s2

c2−→ s3
c3−→ . . .

where si
ci−→ si+1 for all i ≥ 1. Given a position i ∈N along ρ, let ρ(i) = si, and

Last(ρ) be the state at last position along ρ, if ρ is finite. We also define the

concatenation operator ◦, s.t. if (ρ = s1
c1−→ s2

c2−→ . . .
cn−1−−→ sn) then ρ ◦ (sn

cn−→
sn+1) = (s1

c1−→ s2
c2−→ s3 . . . sn

cn−→ sn+1). We denote the set of all runs ρ in the

n-WKS K of the form (ρ = s1
c1−→ s2

c2−→ . . . ) as ΠK. Furthermore we denote

the set of all finite runs ρ in the n-WKS K of the form (ρ = s1
c1−→ . . .

cn−1−−→ sn)

as Π f in
K . Lastly, we define ΠMax

K as the set of all runs ρ s.t. ρ is infinite or
Last(ρ) is in a deadlock i.e. Last(ρ) 6→.

Definition 2.3 (Cost) Let K = (S, s0,AP , L, T) be an n-WKS and (ρ = s1
c1−→

s2
c2−→ . . . ) be a run in K. The cost of ρ, at position i ∈N, is then defined as:

costρ(i) =





0n if i = 1
i−1
∑

j=1
cj otherwise.

If ρ is finite, we denote cost(ρ) as the cost of the last position along ρ.

To gain familiarity with the notation, Example 1 presents the formal definition
of the informal example presented in Section 1.1.
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Figure 2: n-WKS illustrating working on a set of tasks

Example 1 (Notation around the n-WKS)
Consider the n-WKS presented in Figure 2, which illustrates a process completing a

set of tasks. The loop transition s0
(1,5)−−→ s0 represents the completion of a single task,

while the transition s0
(0,5)−−→ s1 represents stopping the process.

An example of a finite run ρ ∈ Π f in
K could be the following

ρ = (s0
(1,5)−−→ s0

(0,5)−−→ s1
(0,0)−−→ s0

(1,5)−−→ s0
(0,0)−−→ s2)

where costρ(2) = (1, 10) and costρ(5) = cost(ρ) = (2, 15). From the total cost of
the run we see that two tasks have been completed and that 15 seconds have gone by.

2.1. Logic

Based on this weighted extension of Kripke structures we define an exten-
sion of CTL which includes bounds specified as properties.

Definition 2.4 (Weighted Computation Tree Logic) We define a weighted ex-
tension of CTL, Weighted Computation Tree Logic (WCTL), in relation to an
n-WKS K = (S, s0,AP , L, T) s.t.

ϕ :=true | false | a | e1 ./ e2 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 ⇒ ϕ2 | ϕ1 ⇔ ϕ2 |
AXϕ | EXϕ | AGϕ | EGϕ | AFϕ | EFϕ | Eϕ1Uϕ2 | Aϕ1Uϕ2 | reset #i in ϕ

e :=c | #i | e1 ⊕ e2

where a ∈ AP , ./ ∈ {<,≤,=,≥,>}, ⊕ ∈ {+,−, ·}, c ∈ N0, and 1 ≤ i ≤ n is
a component index of a vector.

Intuitively the notation #i then refers to the cost of the i-th component. Given
a WCTL formula ϕ, we define the set of all subformulae in ϕ as Sub(ϕ).

We define the semantics for a minimal set of operators. Let s ∈ S be a state
and w ∈ Nn

0 . We then write K, s �w ϕ when K satisfies the formula ϕ in the
state s with the cost w.
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K, s �w true

K, s �w a iff a ∈ L(s)

K, s �w ¬ϕ iff s 2w ϕ

K, s �w ϕ1 ∨ ϕ2 iff s �w ϕ1 or s �w ϕ2

K, s �w Eϕ1Uϕ2 iff there exists (ρ = s1
c1−→ s2 . . . ) ∈ ΠMax

K where s = s1

and a position i ≥ 1 such that K, ρ(i) �w+costρ(i) ϕ2 and

K, ρ(j) �w+costρ(j) ϕ1 for all j < i

K, s �w Aϕ1Uϕ2 iff for all (ρ = s1
c1−→ s2 . . . ) ∈ ΠMax

K where s = s1

there is a position i ≥ 1 such that K, ρ(i) �w+costρ(i) ϕ2

and K, ρ(j) �w+costρ(j) ϕ1 for all j < i

K, s �w EX(ϕ) iff there is a state s′ such that s c−→ s′, and K, s′ �w+c ϕ

K, s �w reset #I in ϕ iff K, s �w[I→0] ϕ

K, s �w e1 ./ e2 iff evalw(e1) ./ evalw(e2)

The evaluation of e is:

evalw(c) = c

evalw(#i) = w[i]

evalw(e1 ⊕ e2) = evalw(e1)⊕ evalw(e2)

The remaining operators, from the syntax, can be derived from the minimal
set, and likewise can their semantics. The derived operators are defined as:

AF ϕ ≡ A(true)U(ϕ) EF ϕ ≡ E(true)U(ϕ)

AG ϕ ≡ ¬EF¬ϕ EG ϕ ≡ ¬AF¬ϕ

AX(ϕ) ≡ ¬EX(¬ϕ) ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2 ϕ1 ⇔ ϕ2 ≡ (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1)

Remark 1
Another minimal set of operators can be found by replacing Aϕ1Uϕ2 with EGϕ as
Aϕ1Uϕ2 ≡ ¬(EG(¬ϕ2) ∨ E¬ϕ2U(¬(ϕ1 ∨ ϕ2)))). This set will be used Theorem
4.

Given an n-WKS K = (S, s0,AP , L, T) and a WCTL formula ϕ the model
checking problem is the question of whether K, s �w ϕ where s ∈ S and
w ∈ Nn

0 . When the n-WKS K is obvious from context and the vector w is 0n

we simply write s � ϕ.

Example 2 (Reset example)
Consider again the n-WKS presented in Example 1. To demonstrate the reset syntax
we consider the following query: ”Can we construct a schedule where 10 tasks are
completed within 60 seconds while guaranteeing that we can always stop the process
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within 5 seconds”. To concisely express this we construct two subformula. First we
specify that we are either working and able to stop within 5 seconds or are stopped
and can return to work,

ϕ1 = (working∧ reset #2 in (EF(stopped∧ #2 ≤ 5)))∨ (stopped∧EF(working)).

The reset timing component ensure that the bound is not affected by time spend
on any previous tasks.

Second we expresses the required final state, where all tasks are done (indicated by
the proposition {done} and the bound on component one) and the total time is within
60 seconds.

ϕ2 = ({done} ∧ #1 = 10∧ #2 ≤ 60).

By combining these into the existential until Eϕ1Uϕ2 we can express the full query.
We find that the query is satisfied, and an example of a satisfying run can be found by

repeating the cycle s0
(1,5)−−→ s0 10 times and then taking the final transition s0

(0,0)−−→
s2. By using the reset operator we also know that the process could have been stopped
while it was working within the time limit.

s0
(1,5)−−→ s0

(1,5)−−→ s0
(1,5)−−→ . . .

(1,5)−−→ s0
(0,0)−−→ s2

3. Model checking

In this section we show that the model checking problem for WCTL is
undecidable on a finite n-WKS. We then modify the logic and prove it to be
PSPACE-complete.

3.1. Undecidability of WCTL
We begin by looking at decidability of the model checking problem for

WCTL. First we show that the model checking problem for WCTL is undecid-
able on a finite 3-WKS.
Theorem 1 (Undecidability of WCTL)
The model checking problem for WCTL is undecidable on a finite 3-WKS.

Proof. We use reduction from the halting problem for two-counter Minsky
machines [17]. Let M be a two-counter-machine (2CM) with two nonnegative
counters C1 and C2 and a finite set of instructions where each instruction Insi
is either

• e: Halt

• Increment i: Cj := Cj + 1; Goto(l)

• Decrement i: If Cj > 0 then (Cj := Cj − 1; Goto(l)) else Goto(m)

where j ∈ (1, 2) and 1 ≤ l, m ≤ e. To simulate the machine, let K be a finite
3-WKS where whenever K is in state si then M is in Insi. We use the vector of
length three to increase and decrease the value of the counters, by the cost of
a run ρ ∈ Π f in

K s.t.
C1 = Costρ(i)[1]−Costρ(i)[3],
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sh {halt}

(a) Halt.

si sl

(
1, 0, 0

)

(b) Increment for C1.

si sl

(
0, 1, 0

)

(c) Increment for C2.

si

s′ sl

s′′ sm

(
0, 1, 1

)
(
0, 0, 0

)

(
0, 0, 0

) (
0, 0, 0

)

{not zero 1}

{is zero 1}

(d) Decrement for C1.

si

s′ sl

s′′ sm

(
1, 0, 1

)
(
0, 0, 0

)

(
0, 0, 0

) (
0, 0, 0

)

{not zero 2}

{is zero 2}

(e) Decrement for C2.

Figure 3: 3-WKS simulation of a 2CM

C2 = Costρ(i)[2]−Costρ(i)[3],

where 0 ≤ i is the position of si in the run ρ. In the simulation, the instruc-
tions are translated as seen in Figure 3 s.t. Halt is illustrated in Figure 3a,
Increment in Figure 3b and 3c and Decrement in Figure 3d and Figure 3e.

We then construct the formula,

ϕ = E(A ∧ B)U(halt)

where

A :=((not_zero_1)⇒ #1 > #3) ∧ ((not_zero_2)⇒ #2 > #3)

B :=((is_zero_1)⇒ #1 = #3) ∧ ((is_zero_2)⇒ #2 = #3)

We now want to show that M will halt for the empty input (C1 = 0, C2 = 0)
iff s0 � ϕ.

⇒ If M halts, then K, s0 �0n ϕ. We know that when running M the n-WKS
K can simulate the exact same instructions, so that if M will halt, then
a state sh is reached in K by a run ρ s.t. Last(ρ) = sh and for all 0 ≤ i
s.t. ρ(i) 6= Last(ρ) it holds that K, ρ(i) � A ∧ B, hence if M halts, then
K, s0 �0n ϕ.

⇐ If K, s0 �0n ϕ then M will halt. The formula ϕ ensures that M is simu-
lated faithfully, as the counters are calculated in ϕ. When encountering
the decrement rules, ϕ enforces that the correct choice is taken, as the
next state of the path will never satisfy both pre-conditions A and B if
it is not allowed in M. To simulate the empty input, the weight vector
w = 0n. As M is faithfully simulated, we have that if K, s0 �0n ϕ then M
will halt.

Hence M will halt for the empty input (C1 = 0, C2 = 0) iff s0 � ϕ and
therefore we can conclude that WCTL is undecidable on a finite 3-WKS. �
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We note that this result holds for a sublogic which only uses existential
until (EU) and either subtraction of vector components and comparison with
constants (#i− #j ./ c) or simply comparison of components (#i ./ #j).

3.2. Decidability of Constant Bound WCTL

As comparison of vector components and subtraction plays a key part in
encoding a two-counter Minsky machine, we remove these from the logic.
These changes result in the following logic where every bound is specified
with a nonnegative constant.

Definition 3.1 (Constant Bound WCTL (cb-WCTL)) We define cb-WCTL as
WCTL where bounds are now of the form (e ./ c) where

e :=c | #i | e1 ⊕ e2

and ./ ∈ {<,≤,=,≥,>}, ⊕ ∈ {+, ·}, c ∈ N0, and 1 ≤ i ≤ n is a component
index in a vector.

We observe that as the cost of a run is nondecreasing and bounds are
specified by some positive constant, then at some point the cost of a run no
longer affects the satisfiability of a cb-WCTL formula.

Definition 3.2 (Boundary vector) Let K be an n-WKS and ϕ be a cb-WCTL
formula. Recall that Sub(ϕ) is the set of all subformula in ϕ. Then given the
largest bound gb = max{c | (e ./ c) ∈ Sub(ϕ)} we define the boundary vector
of ϕ as b = gbn.

We say the boundary b is derived from ϕ. With this we can define a function
used to limit the amount of vectors represented in K, allowing us to finitely
unfold K. We call this function cut and define it as:

Definition 3.3 (cut) Given an n-WKS K a cb-WCTL formula ϕ and let b be the
bound derived from ϕ. We then define the function cut : Nn

0 →Nn
0 s.t. for all

1 ≤ i ≤ n:

cut(w)[i] =

{
w[i] if w[i] ≤ b[i]
b[i] + 1 otherwise.

Observe that given a vector w ∈Nn
0 , it holds that evalw(e) ≥ evalcut(w)(e).

Lemma 2
Let K = (S, s0,AP , L, T) be an n-WKS and let ϕ be a cb-WCTL formula. Then given
a state s ∈ S and a vector w ∈Nn

0 , it holds that K, s �w ϕ iff K, s �cut(w) ϕ.

Proof. The proof goes by structural induction on ϕ. First we show that if
K, s �w ϕ then K, s �cut(w) ϕ for ϕ = e ./ c. All remaining cases follow trivially
as no other operators depend on the cost.

ϕ = e ≤ c: Then evalw(e) ≤ c and as evalw(e) ≥ evalcut(w)(e) we have that
evalcut(w)(e) ≤ evalw(e) ≤ c.
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ϕ = e ≥ c: This case goes by structural induction on the expression e. If e is a
constant c′ then evalw(c′) = evalcut(w)(c′) ≥ c as the cost of the run does
not affect the evaluation of a constant. If e = #i then either evalw(#i) ≥
evalcut(w)(#i) = b[i] + 1 ≥ c or evalw(#i) = evalcut(w)(#i) ≥ c. Otherwise
e = e1 ⊕ e2 and if evalw(e1 ⊕ e2) ≥ c then evalw(e1) ≥ c1 and evalw(e2) ≥
c2 s.t. c1 ⊕ c2 = c. By induction hypothesis then evalcut(w)(ei) ≥ ci for
i ∈ {1, 2} and thus evalcut(w)(e1 ⊕ e2) ≥ (c1 ⊕ c2).

Second we show that if K, s �cut(w) ϕ then K, s �w ϕ for ϕ = e ./ c. Again,
all remaining cases follow trivially as no other operators depend on the cost.

ϕ = e ≤ c: This case goes by structural induction on the expression e. If e is a
constant c′ then again we have that evalcut(w)(c′) = evalw(c′) ≤ c. If e =
#i then evalcut(w)(#i) = evalw(#i) ≤ c ≤ b[i] + 1. Otherwise e = e1 ⊕ e2
and if evalcut(w)(e1 ⊕ e2) then evalcut(w)(e1) ≤ c1 and evalcut(w)(e2) ≤ c2
s.t. c1⊕ c2 = c. By induction hypothesis then evalw(ei) ≤ ci for i ∈ {1, 2}
and thus evalw(e1 ⊕ e2) ≤ (c1 ⊕ c2).

ϕ = e ≥ c: Then evalcut(w)(e) ≥ c and as evalw(e) ≥ evalcut(w)(e) we have that
evalw(e) ≥ evalcut(w)(e) ≥ c.

Thus we can conclude that K, s �w ϕ iff K, s �cut(w) ϕ. �
Lemma 3
The model checking problem for cb-WCTL on a finite n-WKS is PSPACE-hard.

Proof. We show this by reduction from the totally quantified boolean formula
(TQBF) problem, which is PSPACE-complete [21]. The TQBF problem is to
decide whether a fully quantified formula Φ is true or false. Given the formula
Φ ranging over n boolean variables, we construct a n-WKS and encode the
variables as weights s.t. the value of xi is determined by the value of the i-
th component #i. Given a formula with 3 variables we construct the n-WKS
illustrated in Figure 4.

s0 s2 s3s1

Legend = (x1, x2, x3)

(1, 0, 0)

(0, 0, 0)

(0, 1, 0)

(0, 0, 0)

(0, 0, 1)

(0, 0, 0)

Figure 4: Encoding of variable assignment

We encode the quantifiers s.t. ∃ is encoded as EX and ∀ as AX. Further-
more the formula is encoded as bounds where xi becomes #i ≥ 1 and ¬xi
becomes #i ≤ 0. To illustrate consider the following formula:

Φ = ∃x1∀x2∃x3(x1 ∨ x3) ∧ (¬x1 ∨ x2) ∧ (¬x3 ∨ ¬x1).

This translate to the corresponding cb-WCTL formula:

ϕ = EX(AX(EX((#1 ≥ 1∨ #3 ≥ 1) ∧ (#1 ≤ 0∨ #2 ≥ 1) ∧ (#3 ≤ 0∨ #1 ≤ 0))))
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Clearly we have that there exist an assignment of variables s.t. Φ is true iff
K, s0 �0n ϕ. �
Theorem 4
The model checking problem for cb-WCTL on a finite n-WKS is PSPACE-complete.

Proof. To show that the problem is PSPACE-complete we must show that the
problem is PSPACE-hard and that it can be solved in PSPACE. By Lemma 3
we have that the model checking problem for cb-WCTL on a finite n-WKS is
PSPACE-hard.

To show that the problem belongs to PSPACE, we construct an algorithm
which solves the model checking problem for a minimal set of cb-WCTL op-
erators in polynomial space. Given the n-WKS K = (S, s0,AP , L, T) and the
cb-WCTL formula ϕ we have by Lemma 2 that all vectors strictly greater than
the formula derived boundary vector b are unnecessary to consider. By Def-
inition 3.2 and 3.3 it follows that the set of cut configurations is included in
the set S× {0, . . . , gb}n and has a size of at most k = |S| × |{0, . . . , gb}n|. The
algorithm now takes the input ((s, w), ϕ) where (s, w) ∈ S× {0, . . . , gb}n and
returns a Boolean value corresponding to whether the formula is satisfied. It
is defined as a recursive procedure Verify and is presented in Algorithm 1.

Algorithm 1 Deterministic polynomial space model checking algorithm

1: procedure Verify((s, w), ϕ)
2: if ϕ is a or (e ./ c) or true then
3: return s �w ϕ

4: else if ϕ is ¬ϕ′ then
5: return !Verify((s, w), ϕ′)
6: else if ϕ is Reset #R in ϕ′ then
7: return Verify((s, w[R→ 0]), ϕ′)
8: else if ϕ is ϕ1 ∨ ϕ2 then
9: for all i ∈ {1, 2} do

10: if Verify(((s, w), ϕi) then return true

return false

11: else if ϕ is EXϕ′ then
12: for all (s′, w′) ∈ {(s′, cut(w + c)) | (s, c, s′) ∈ T} do
13: if Verify((s′, w′), ϕ′) then return true

return false

14: else if ϕ = EGϕ′ then
15: for all (s′, w′) ∈ S× {0, . . . , gb}n do
16: if Verify((s′, w′), ϕ′) then
17: if s′ 6→ and Path((s, w), (s′, w′), k, ϕ′, true) then return true

18: else if Path((s, w), (s′, w′), k, ϕ′, false) then return true

return false

19: else if ϕ is Eϕ1Uϕ2 then
20: if Verify((s, w), ϕ2) or Verify((s, w), ϕ1) then
21: for all (s′, w′) ∈ S× {0, . . . , gb}n do
22: if Verify((s′, w′), ϕ2) then
23: if Path((s, w), (s′, w′), k, ϕ1, true) then return true

return false

In Algorithm 1 we utilize the Path algorithm presented in Algorithm 2
which is a boolean function that attempts to find a path between two configu-
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rations in m steps while satisfying a formula ϕ. The algorithm returns true

if such a path exists and false otherwise. The Path algorithm is based on
the method presented in Savitch’s Theorem [20] which finds a path between
an exponential number of nodes in a directed graph using polynomial space.
The algorithm essentially works by trying to find a middle point of a path
between the two nodes of m steps, and then constructing each half of the path
by recursively calling itself while cutting the length required in half.

Algorithm 2 Find path of length m (or shorter) between two configurations
(s, w), (s′, w′) while satisfying ϕ

1: procedure Path((s, w), (s′, w′), m, ϕ, shorter)
2: if m = 1 then
3: if there exist (s, c, s′) ∈ T s.t. Cut(w + c) = w′ then return true

4: else if shorter and (s, w) = (s′, w′) then return true

5: else
6: for all (st, wt) ∈ S× {0, . . . , gb}n do
7: if Verify((st, wt), ϕ) then
8: if Path((s, w)(st, wt), f loor(m/2), ϕ, shorter) then
9: if Path((st, wt), (s′, w′), ceil(m/2, ϕ, shorter) then return true

10: return false

As input the Path algorithm takes two configurations, a constant m speci-
fying the length of the path, a formula ϕ which should hold on each interme-
diate configuration and a boolean signal shorter which is used to determine
whether the path is allowed to be shorter than the specified m steps. The
signal is used in Line 4 in Algorithm 2 where we also accept a path between
two identical configurations even if there is no transition between them, thus
allowing the path to be shorter than defined in the input. Whenever we try
a new configuration (st, wt) for the middle position we call Verify((st, wt), ϕ)
to verify that the formula ϕ is satisfied for each intermediate configuration.

Recall that k = |S| × |{0, . . . , gb}n|. We assume that a new configuration
can be stored in O(log(k)). As the algorithm has a recursion level of O(log(k))
and each level uses O(log(k)) space to store the stack frame, local variables
and the new middle configuration, we reach a space use of O(log(k)2) plus
the space used by the call to Verify.

All that remains now is to show that for each case presented in Verify we
use at most polynomial space and that the depth of the recursion is bounded
by the size of input. We go through each case below.

ϕ = a or ϕ = (e ./ c) or ϕ = true First we have that for propositions and
bounds we can simply evaluate the formula directly.

ϕ = ¬ϕ′ For negation we reuse the space and call the procedure again on the
subformula formula ϕ′. We then flip the result.

ϕ = Reset #R in ϕ′ For the reset operator we reuse the space and overwrite
the configuration and call the procedure again on the subformula ϕ′.

ϕ = ϕ1 ∨ϕ2 For disjunction we reuse the space and call the procedure again
on each subformula.
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ϕ = EXϕ′ For the existential next we reuse the space and call the procedure
on each of the possible successors for the subformula ϕ′. Here we only
have to remember the currently explored configuration.

ϕ = EGϕ′ For the existential global operator we search for a configuration
(s′, w′) where ϕ′ holds and attempt to find some maximal path from the
input configuration (s, w) to (s′, w′) where all intermediate configura-
tions satisfy ϕ′. We rely on Lemma 2 and thus look though at most k
configurations to establish the existence of a maximal path.

If s′ 6→ we simply need to find some path to that configuration. We do
so by calling the Path algorithm with the configurations (s, w), (s′, w′),
the constant k, the subformula ϕ′ and the boolean flag set to true.

If s′ → we need to ensure that s and s′ are part of some infinite path on
which ϕ′ always holds. We do this by requiring that there is at least k
steps in the path, thus ensuring that two configurations repeat and we
have found a loop. To find such a path we simply call Path again but
with false as the last input instead.

For this case we store a single extra configuration which is the intended
final configuration plus the space required by the calls to the Path algo-
rithm. Recall that the call to Path uses O(log(k)2) space plus the space
needed for a call to Verify with the subformula ϕ′ as input. This is
in polynomial space as the recursion level of Verify is bounded by the
input (we always call Verify with a subformula).

ϕ = Eϕ1Uϕ2 For the existential until operator we first ensure that the original
formula either satisfies ϕ1 or ϕ2. Otherwise there is no way of satisfying
Eϕ1Uϕ2 regardless of any future successor configurations.

Next we search for a configuration (s′, w′) satisfying the second formula
ϕ2. Once we find such a configuration we check whether it is reachable
by calling the Path algorithm to find a path from the original configura-
tion to our target configuration in at most k steps where all intermediate
configurations satisfy ϕ1. Again we rely on Lemma 2 to determine that
we need to look though at most k configurations.

In this case we store a single extra configuration which is the intended
final configuration satisfying ϕ2, plus the space required by the call to
Path. As above this is in polynomial space as the recursion level of
Verify is bounded by the input.

For every case we have that every recursive call of Verify is made with
a subformula. As Verify can also call the Path algorithm we have at most
O(|ϕ| × log(k)) function calls, where each frame uses O(log(k)) space to store
the function arguments and local variables (extra configurations). Thus the
final space consumption is O(log(k)2× |ϕ|) which is polynomial in the size of
the input. �
Remark 2
The algorithm presented in the proof of Theorem 4 is clearly not usable in practise.
Instead we suggest to extend an existing model checking algorithm presented in [6]
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to our weighted formalism. The idea is to reduce the model checking problem, to the
problem of calculating the minimum fixed-point assignment of a dependency graph.
While this approach runs in exponential time in the worst case (exponential size en-
coding), it works on-the-fly and is shown to be efficient on regular CTL model checking
[6].

4. Synthesis

In this section we present a game theoretic framework based on the multi-
weighted formalism presented in Section 2 and formally define the synthesis
problem. We comment on the memory requirements of a winning strategy
and prove that for a cost-convergent model w.r.t. an upper-bounded specifi-
cation the synthesis problem is decidable.

4.1. Game Theoretic Framework
An n-Weighted Game (n-WG) is a two-player game where one player acts

as the controller and the other player acts as the environment. A game is
played on a game graph, where the transitions have been partitioned between
the two players.

Definition 4.1 (n-Weighted Game Graph) An n-Weighted Game Graph is a
tuple G = (S, s0,AP , L, Tc, Tu) where Tc and Tu are disjoint sets and K =
(S, s0,AP , L, Tc ∪ Tu) is an n-WKS.

The underlying data structure of the game graph is an n-WKS and we
denote the specific n-WKS for the game graph G = (S, s0,AP , L, Tc, Tu) as
KG = (S, s0,AP , L, Tc ∪ Tu). The set of transitions Tc is owned by the con-
troller, and the set Tu is owned by the environment. We write:

s c−→ s′ if (s, c, s′) ∈ Tc

s
c99K s′ if (s, c, s′) ∈ Tu

From here on we will refer to transitions of the type → as controllable
transitions and 99K as uncontrollable transitions. We write s→ when there is
some controllable outgoing transitions from s and s 99K when there is some
uncontrollable outgoing transition from s.

Lastly we define a winning condition (objective) as a cb-WCTL formula ϕ
over the n-WKS KG .

Definition 4.2 (Game) A game is a tuple (G, ϕ) where G is an n-Weighted
Game Graph (n-WGG) and ϕ is a cb-WCTL formula expressing a winning
condition.

To define the state of a game we say that a configuration (s, w) ∈ S×Nn
0

in the game consists of the current state s and the accumulated cost w. We
define the set of all configurations as C. The game is played by moving from
configuration to configuration, where (s0, 0n) is the initial position. Given a
configuration (s, w) we proceed in the following manner:
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• If all outgoing transitions from s belong to Tc, then the controller must
choose.

• If all outgoing transitions from s belong to Tu, then the environment
must choose.

• If there are both outgoing transitions in Tc and Tu from s, then the envi-
ronment may choose one from Tu or force the controller to choose from
Tc.

We give precedence to the environment when there are both controllable
and uncontrollable outgoing transitions as this enforces the notion of an en-
vironment beyond our control. Once either the controller or the environ-
ment has chosen an edge (s, c, s′) ∈ Tu ∪ Tc the next configuration becomes
(s′, w + c).

The controller’s choices are based on a strategy σ that, given the history of
the game, outputs the controller’s next move. Recall that Π f in

KG
is the set of all

finite runs in KG . We now define a strategy as a function mapping from finite
runs to controllable transitions.

Definition 4.3 (Strategy) Let G = (S, s0,AP , L, Tc, Tu) be an n-WGG, then the
strategy of the controller is a function σ : Π f in

KG
→ Tc ∪ {nil} mapping a finite

run ρ to a transition s.t.

σ(ρ) =

{
Last(ρ)

c−→ s′ ∈ Tc if Last(ρ)→
nil otherwise

and nil is the choice to do nothing. Notice that we restrict the use of nil s.t.
for any ρ ∈ Π f in

KG
we have σ(ρ) = nil only if Last(ρ) 6→.

Based on the strategy’s choices and all choices available to the environ-
ment, we unfold the game into an n-WKS.

Definition 4.4 (Strategy restricted n-WKS) Given a game graph K = (S, s0,
AP , L, T) and a strategy σ, we define G�σ = (S′, s0,AP , L′, Tc�σ ∪ T′u) as the
n-WKS resulting from restricting the game graph under the strategy σ.

• S′ = Π f in
KG

• L′(ρ) = L(Last(ρ))

• T′c�σ = {(ρ, c, (ρ ◦ σ(ρ))) | σ(ρ) = (Last(ρ)
c−→ s′) ∈ Tc}

• T′u = {(ρ, c, ρ ◦ (Last(ρ)
c99K s′)) | (Last(ρ)

c99K s′) ∈ Tu}.

In future illustrations we only include the part of G�σ reachable from s0. When
the unfolded game restricted by the strategy, satisfy the winning condition ϕ
we define it as a winning strategy. Hence the controller wins the game if they
have a winning strategy.
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Definition 4.5 (Winning Strategy) The strategy σ is a winning strategy over
the game (G, ϕ) iff G�σ, s0 �0n ϕ, where G = (S, s0,AP , L, Tc, Tu) and ϕ is a
cb-WCTL formula.

In Example 3 we return to the introductory scenario presented in Section
1.1 with a simpler specification. We determine a winning strategy for the
resulting game and illustrate how model checking relates on the strategy re-
stricted n-WKS.

Example 3 (Strategy Unfolding)
Let G = (S, s0,AP , L, Tc, Tu) be the n-WGG originally presented in Section 1.1
(repeated in Figure 5 for convenience) and let AX(AX(EX(#1 ≤ 0 ∧ #2 ≥ 50))) be
the winning objective expressed as an cb-WCTL formula.

s2 s1

s4 {liq}

s3

s0
Legend = (Loss,Earnings, Months)

(0, 0, 0)

(0, 0, 0)

(0, 0, 1) (0, 0, 3)

(10, 0, 0)

(0, 50, 0) (0, 10, 0)

(0, 1, 0)

Figure 5: Model of investment scheme

Then our goal is to plan our investment so that no matter what our first two steps
are there exists a transition leading to a state where we have no losses and a 50 units
earning. For this purpose we define the following strategy:

σ(s0) = s0
(0,0,0)−−−→ s1 σ(s0

(0,0,0)−−−→ s1) = s1
(0,0,1)−−−→ s2

for the remainder of the runs we simply assign transitions arbitrarily. Given the strat-
egy σ we can now construct the strategy restricted n-WGG G�σ which is illustrated
below in Figure 6.
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𝑠0

𝑠0
(0,0,0)−−−−→ 𝑠1

𝑠0
(0,0,0)−−−−→ 𝑠1

(0,0,1)−−−−→ 𝑠2

𝑠0
(0,0,0)−−−−→ 𝑠1

(0,0,1)−−−−→ 𝑠2
(10,0,0)−−−−−→ 𝑠0

𝑠0
(0,0,0)−−−−→ 𝑠1

(0,0,1)−−−−→ 𝑠2
(0,50,0)−−−−−→ 𝑠0

⋮

⋮

(0, 0, 0)

(0, 0, 1)

(10, 0, 0)

(0, 50, 0)

Figure 6: Strategy restricted n-WGG G�σ = (S′, s0,AP , L′, Tc�σ ∪ T′u)

To show that σ is winning we must have that for all runs of length two, it is
possible to take a transition leading to a state with no losses and earnings of 50

units. In this example our strategy imposes that we choose the transition s1
(0,0,1)−−−→ s2,

representing the high risk investment, and then the only run of length two is,

ρ= s0
(0,0,0)−−−→ s1

(0,0,1)−−−→ s2

and we have that cost(ρ) = (0, 0, 1). Now there are two possible outgoing transitions

s2
(10,0,0)−−−−→ s1 and s2

(0,50,0)−−−−→ s1, both uncontrollable and thus both part of the strategy
restricted n-WKS. As the second transition does not generate any losses and 50 units
of earnings, we have that σ is indeed a winning strategy for the game (G, ϕ) as
G�σ, s0 �0n AX(AX(EX(#1 ≤ 0∧ #2 ≥ 50))).

We have now introduced the notion of a game and a winning strategy and
are ready to define the synthesis problem.

Definition 4.6 (Synthesis Problem) Let (G, ϕ) be a n-WG where K = (S, s0,
AP , L, T) is an n-WGG and ϕ is a cb-WCTL formula. The synthesis problem is
to decide if there is a strategy σ s.t. G�σ, s0 �0n ϕ.

The synthesis problem is then the question of whether there exist a strategy
s.t. a specification is satisfied on the computation tree resulting from applying
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the strategy. As all possible branches are now important to the existentially
or universally quantified formula, intuitively it does not make sense to talk
about a specific strategy for the environment.

Example 4 (Motivating Example Formalised)
With n-WGs we can now express the motivating example presented in Section 1.1
as a synthesis problem. Recall the informal objective ”Within a year, can we achieve
earnings of at least 600 units, while never experiencing a loss of more than 30 units
over a period of 6 months.” While this specification is slightly ambiguous we interpret
the 600 unit earnings as optimistic case, achievable if the environment cooperates. We
specify this part of the objective as the cb-WCTL formula ϕ1.

ϕ1 = EF(#2 ≥ 600∧ #3 ≤ 12∧ {liq})

The specification is read as follows: Is there any possibility that can earn at least 600
units (component two is larger or equal to 600) within a year (component three is
smaller or equal to 12) and be at a state where we liquidate our assets ({liq})?

For the second part of the informal objective, we must ensure that we do not end
up losing more than 30 units within 6 months. This requirement is specified in ϕ2 as
an invariant property which, given fresh values for the first and third vector, ensures
that component one is below 30 until component three is above 6.

ϕ2 = AG(reset #{1, 3} in (A(#1 ≤ 30)U(#3 ≥ 6))

Now our final specification is simply the conjunction of these requirements.

ϕ = ϕ1 ∧ ϕ2

The synthesis problem is then to find a strategy σ s.t. G�σ, s0 �0n ϕ.

4.2. Strategy Memory Requirements

In Definition 4.3 we have introduced what we refer to as a full memory
strategy where each decision is based on the full run leading to the current
state. For reachability and safety games it is known that so called memory-
less strategies, which only take the current state into account, are sufficient
[22]. We will later demonstrate that when adding the current cost to the state
information, this is also sufficient for weighted reachability games.

In contrast the memory needed for expressing a winning strategy increases
when we consider a larger subset of the cb-WCTL logic. Even if one considers
expanding the memory required to a sequence of visited states, this is not
always sufficient to define a winning strategy. To demonstrate this we refer to
Example 5.

Example 5 (Memory requirements)
Let (G, ϕ) be a n-WG where the n-WGG G is illustrated in Figure 7 and the winning
condition is the formula ϕ = ϕ1 ∧ ϕ2 where ϕ1 = EX(AF(#1 = 4 ∧ α)) and
ϕ2 = EX(AF(#1 = 4∧ β)).
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s0 s1 s2

s3 {α}

s4 {β}

(1)

(2)

(2)

(1)

(1)

(1)

Figure 7: Illustrating memory requirements

It is relatively easy to verify that as both s0
(1)−→ s1 and s0

(2)−→ s1 are part of the
resulting strategy restricted game graph, then there exist a winning strategy. To il-

lustrate consider the strategy σ where given transition s0
(1)−→ s1 the strategy choice

is s1
(2)−→ s2 followed by s2

(1)−→ s3. This will result in a branch fulfilling the sub-
formula ϕ1. The strategy then chooses the opposite combination given the transition

s0
(2)−→ s1, fulfilling the second subformula ϕ2.
In order to define such a strategy we need to remember both the part of the run

consisting of uncontrollable transitions (which causes the branching) as well as the
current state. Let us shortly argue this point in relation to the presented game. For the
winning condition to be satisfied, we need to be able to visit both s3 and s4 with the
cost 4. Thus at the position (s2, 3) the strategy must able to make different choices.
Here the current configuration as well as the sequence of states is identical. The
only identifying piece of memory is the particular uncontrollable transitions chosen.
Without this information we are forced to make the same choice every time we reach
(s2, 3), and we are thus not able to satisfy the formula.

4.3. Decidability of Upper-bounded WCTL Synthesis
We find that if we restrict the logic to upper-bounds on the temporal op-

erators and require that all infinite runs of the game graph increase the cost
components w.r.t. those upper-bounds, we achieve a simple decidability result
for the resulting synthesis problem. First we formally define the new logic as
follows:

Definition 4.7 (Upper-bounded WCTL (ub-WCTL)) We define an ub-WCTL
formula as a cb-WCTL formula where the temporal operators have upper-
bounds. We use the following syntax abbreviations:

E(ϕ1)U(e≤c)(ϕ2) ≡ E(ϕ1)U(ϕ2 ∧ (e ≤ c)) EF(e≤c)(ϕ) ≡ EF(ϕ ∧ (e ≤ c))

A(ϕ1)U(e≤c)(ϕ2) ≡ A(ϕ1)U(ϕ2 ∧ (e ≤ c)) AF(e≤c)(ϕ) ≡ AF(ϕ ∧ (e ≤ c))

AG(e≤c)ϕ ≡ AG((e ≤ c) =⇒ ϕ)

EG(e≤c)ϕ ≡ EG((e ≤ c) =⇒ ϕ)

We define the set of all upper-bounds (e ≤ c) on the temporal operators in
a ub-WCTL formula ϕ as UB(ϕ). Whenever there exist a bounded expression
(e ./ c) ∈ UB(ϕ) and #i is part of the expression e we say that the component
#i is bounded in ϕ.
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Based on an ub-WCTL formula, we can now impose a restriction on the
model, s.t. all cycles have to increase in all upper-bounds expressed in the
formula.

Definition 4.8 (Cost-convergent n-WKS) We say that a n-WKS K is cost con-
vergent w.r.t. a ub-WCTL ϕ if for all cycles (ρc = s →+ s) ∈ Π f in

K and for all

1 ≤ i ≤ n where #i is bounded there exists a position j s.t. ρc(j) c−→ ρc(j + 1)
where c[i] > 0.

Together these restrictions allow us to state the following result.

Theorem 5 (Decidability of ub-WCTL synthesis)
Given an n-WG (G, ϕ) where ϕ is an ub-WCTL formula and KG is a cost convergent
n-WKS w.r.t. ϕ, then the synthesis problem is decidable.

Proof. We define two strategies σ and σ′ as n−equivalent, denoted σ =n σ′

iff σ(ρ) = σ′(ρ) for all input ρ of length n ∈ N0. We now argue that for cost
convergent games there exist a sufficiently large number n s.t. if σ =n σ′ then
G�σ, s �w ϕ iff G�σ′, s �w ϕ.

To find the number n we first identify the largest bound in the formula
gb = max({c | (e ≤ c) ∈ UB(ϕ). By Definition 4.8 we know that for all
cycles the cost increases in all bounded components. By the semantics, we
have that whenever the cost of a run reaches some upper-bound (e ≤ c) then
any formula containing this (or a more strict) bound, becomes either trivially
false (reachability) or trivially true (safety). As any cycle contains at most |S|
states then (|S| × gb) number of steps will ensure that all bounds are reached.
Of course any subformula ϕ′ can be prefixed with the reset operator, which
naturally resets (and thus in effect extends) the length of the run required to
determine ϕ′. However, as each reset only affects a specific subformula, then
for the formula ϕ we arrive at the following length n = (|S| × gb× |Sub(ϕ)|).

We can now simply enumerate every possible strategy up to n steps and
verify the formula on the strategy restricted n-WKS using the model checking
result from Theorem 4. �

While this provides us with a decidability result for a logic which allows
nesting of all CTL operators and the use of both lower- and upper-bound as
propositions, it is also limiting as it requires upper-bounds on the temporal
operators. In the following section we look at a subset of the cb-WCTL, which
does not require a upper-bound or cost convergence in the model.

5. Synthesis of Weighted Reachability

In this section we investigate the synthesis problem for a reachability sub-
set of cb-WCTL, where there are no restrictions on the logic or the model.
We show that the synthesis problem for this reachability logic is EXPTIME-
complete and provide an on-the-fly algorithm for calculating the winning
strategy if one exist.
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Definition 5.1 (Weighted Reachability) We define the reachability subset Weighted
Reachability (WReach) as cb-WCTL with the following syntax:

ϕ := AFψ

ψ := a | ¬a | (e ./ c) | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

e := c | #i | e1 ⊕ e2

where a ∈ AP , ./ ∈ {<,≤,=,≥,>}, c ∈ N0 , and 1 ≤ i ≤ n is a component
index in a vector.

We define a WReach game as a game (G, ϕ) where G is n-WGG and ϕ is a
WReach formula.

5.1. Dependency Graphs

Given the complexity of the problem it is preferable that the solution works
on-the-fly. We propose a reduction from the synthesis problem for WReach
games to the problem of calculating the minimum fixed-point assignment of
a dependency graph.

Definition 5.2 (Dependency graph) A dependency graph is a tuple G = (V, E)
where

• V is a finite set of nodes and

• E ⊆ V ×P(V) is a finite set of hyper-edges.

Given a hyper-edge e = (s, T) ∈ E we say that s ∈ V is the source node and
T ⊆ V is the set of target nodes.

An assignment of a DG G = (V, E) is a function A : V → {0, 1} that
assigns value 0 (false) or 1 (true) to each node in the graph. We assume
an ordering v of assignments s.t. A1 v A2 whenever A1(v) ≤ A2(v) for
all v ∈ V. The set of all assignments is denoted A and clearly (A,v) is a
complete lattice. Given the monotonic function F : A → A defined as:

F(A)(v) =
∨

(v,T)∈E

∧

u∈T
A(u)

then by Knaster-Tarski we have that there exist a minimum fixed-point assign-
ment denoted Amin

G . A pre fixed-point assignment of G is an assignment A
where it holds for every (v, T) ∈ E that if A(u) = 1 for all u ∈ T then A(v) = 1.
To compute the minimum fixed-point assignment we apply F repeatedly on
the assignment starting with F(A0) where A0 is defined s.t. A0(v) = 0 for all
v ∈ V.

In [15] Liu and Smolka provide a local algorithm for calculating the mini-
mal fixed-point assignment of a finite dependency graph, and show that this
algorithm runs in linear time in the size of the graph.
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5.2. Encoding of the WReach Synthesis Problem

We now provide an encoding of an n-WG into a finite dependency graph.
Given a finite game (G, AFψ) where G = (S, s0,AP , L, Tc, Tu) is an n-WGG
and AFψ is an WReach formula we construct a dependency graph G s.t. the
initial node is 〈(s0, 0n), AFψ〉. The rules for generating the successors are
defined Figure 8.

(s, w), ψ if s ⊨w ψ

∅

(a) Propositions

(s, w), AFψ s → and let {t1, . . . , tn} = {(s, ci, si) ∈ Tc}

(s, w), ψ (s, w), AFψ, t1 . . . (s, w), AFψ, tn

(b) Choosing the strategy given the configuration (s, w)

(s, w), AFψ, t Let {(s, c1, s1), . . . , (s, cn, sn)} = {(s, ci, si) ∈ Tu ∪ {t}}

(s1, cut(w + c1)), AFψ . . . (sn, cut(w + cn)), AFψ

(c) Encoding of the full AFψ based on the chosen transition t

(s, w), AFψ s ̸→ and let {(s, c1, s1), . . . , (s, cn, sn)} = {(s, ci, si) ∈ Tu}

(s, w), ψ (s1, cut(w + c1)), AFψ . . . (sn, cut(w + cn)), AFψ

(d) Encoding of the full AFψ when there are no controllable transitions

Figure 8: Encoding of WReach games

In Figure 8a we illustrate the case where we directly evaluate the proposi-
tions ψ given the current position (s, w). In Figure 8b we have the case where
there is some controllable transition to choose as the strategy given the po-
sition (s, w). The moves of the game are then to check whether player 1 has
already won (if s �w ψ) or explore all possible strategies. In Figure 8c we then
take the strategy into account and explore all new reachable configurations of
the game. The last Figure 8d shows the case where given the position (s, w)
there is no outgoing controllable transition. Again we check if player 1 has
already achieved the objective or explore all reachable configurations of the
game, in relation to the full formula.

Notice that even in a finite game a step-wise unfolding can be infinite, as
the cost of cycle can increase infinitely. To ensure a finite representation we
apply Cut to the cost of the successors. To illustrate this approach we return
to the motivating example presented in Section 1.1 in Example 6 where we
show the encoding to dependency graphs.
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Example 6 (Encoding of WReach game)
Let (G, ϕ) be a WReach game where G is the n-WGG presented in Section 1.1 and
ϕ = AF(#1 ≤ 0∧ #2 ≥ 4∧ #3 ≤ 12∧ {liq}) is a WReach formula.

Then the dependency graph G illustrated in Figure 9 is based on the game (G, ϕ)
with root 〈(s0, (0, 0, 0)), ϕ〉 where the successors are defined by the rules in Figure
8. To simplify the illustration we omit the intermediate nodes generated in Figure 8b
and jump directly to the position we get from taking the chosen transition illustrated
in Figure 8c.

ψ = ({liq} ∧ #1 ≤ 0 ∧ #2 ≥ 4 ∧ #3 ≤ 12)

(s0, (0, 0, 0)), AFψ (s0, (0, 0, 0)), ψ

(s0, (0, 0, 0)), AFψ, s0
(0,0,0)−−−−→ s1

(s1, (0, 0, 0)), AFψ (s1, (0, 0, 0)), ψ

(s1, (0, 0, 0)), AFψ, s1
(0,0,0)−−−−→ s4

sub-graph (s1, (0, 0, 0)), AFψ, s1
(0,0,3)−−−−→ s3 (s1, (0, 0, 0)), AFψ, s1

(0,0,1)−−−−→ s2

(s3, (0, 0, 3)), ψ (s3, (0, 0, 3)), AFψ sub-graph

sub-graph (s1, (0, 10, 3)), AFψ (s1, (0, 1, 3)), AFψ sub-graph

sub-graph sub-graph sub-graph
(some sub-graph propagate 1)

sub-graph sub-graph

...
(s1, (0, 4, 12)), AFψ sub-graph

sub-graph (s1, (0, 4, 12)), AFψ, s1
(0,0,0)−−−−→ s4 sub-graph

(s4, (0, 4, 12)), AFψ (s4, (0, 4, 12)), ψ

∅
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Figure 9: Dependency graph G with root 〈(s0, (0, 0, 0)), AF(#1 ≤ 0∧ #2 ≥ 4∧ #3 ≤ 12∧ {liq})〉

Intuitively then whenever a node 〈(s, w), ϕ〉 has the value 1, then there is a winning
strategy from the position (s, w) for the winning condition ϕ.

To simplify the definition of the strategy we only give the position as the input.
Thus by following the one assignment of the dependency graph we get the following
strategy

σ(ρ) =





s0
(0,0,0)−−−→ s1 if last(ρ) = s0

s1
(0,0,3)−−−→ s3 if last(ρ) = s1 and cost(ρ)[3] ≤ 9

s1
(0,0,0)−−−→ s4 if last(ρ) = s1 and cost(ρ)[3] > 9

.

Notice that we chose the strategy s.t. we always choose the low risk investment. Based
on this strategy we can now construct the strategy restricted n-WKS G�σ and verify
that G�σ, s0 �0n AF(#1 ≤ 0∧ #2 ≥ 4∧ #3 ≤ 12∧ {liq}).
Lemma 6
Given a finite WReach game (G, AFψ) then the dependency graph G with root
〈(s, w), AFψ〉 constructed by the rules in Figure 8 is finite.

Proof. We have that a node in the graph 〈(s, w), ϕ〉 consist of a configuration
(s, w) and either the entire formula AFψ or the evaluable part of the formula
ψ. Additionally the nodes of the type 〈(s, w), AFψ〉 can be decorated with a
controllable transition. This gives us the following total number of configura-
tions (|S| × |{cut(w) | w ∈Nn

0}| × |T| × 2). �

Theorem 7 (Encoding correctness)
Let (G, AFψ) be a finite WReach game where G = (S, s0,AP , L, Tc, Tu) is an n-
WGG, s ∈ S and w ∈ Nn

0 . Let G be the constructed dependency graph with root
〈(s, w), AFψ〉. Then there exists a strategy σ s.t. G�σ, s �w AFψ iff Amin

G (〈(s, w), AFψ〉) =
1.

Proof. First we consider the direction from left to right. Let σ be a strategy
s.t. G�σ = (S′, s0,AP , L′, Tc�σ ∪ T′u) and G�σ, s �w AFψ then we show that
Amin

G (〈(s, w), AFψ〉) = 1. By the semantics we have that G�σ, s �w AFψ if there

exist some smallest j ≥ 0 s.t. for all maximal runs (ρ = ρ0
c1−→ ρ1

c2−→ ρ2 . . . ) ∈
ΠMax
G�σ where ρ0 = s then ρi �w+costρ(i) e for some i ≤ j. Hence all maximal runs

satisfy the property within j steps. Then by the semantics we have that for all
transitions (s, c, (s ◦ (s, c, s′))) ∈ T′u ∪ Tc�σ then G�σ, (s ◦ (s, c, s′)) �w+c AFψ
within j− 1 steps. We proceed by induction of j:

j = 0 then we have that s �w e and by Figure 8d and by Figure 8b we have
that there exists a hyper-edge (〈(s, w), AFψ〉, {〈(s, w), e〉}) and as the
condition s �w e is fulfilled we have that there is a single outgoing edge
leading to the empty set. Hence we have that Amin(〈(s, w), e〉) = 1.

j > 0 then either σ(s) = nil and then by Figure 8d we have that there is a
hyper-edge (〈(s, w), AFψ〉{〈(si, ci + w), AFψ〉 | (s, ci, si) ∈ Tu}) and by
the induction hypothesis on j all target nodes have the assignment 1,
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hence Amin(〈(s, w), AFψ〉) = 1. Otherwise σ(s) = (s, cj, sj) ∈ Tc and
then by Figure 8b there exist a hyper-edge going to the target state
〈(s, w), AFψ(s,cj ,sj)〉). From this node we have the following hyper-edge
(〈(s, w), AFψ(s,cj ,sj)〉{〈(sj, cj +w), AFψ〉∪ {〈(si, ci +w), AFψ〉 | (s, ci, si) ∈
Tu}}). By the induction hypothesis on j all target nodes have the assign-
ment 1, hence Amin(〈(s, w), AFψ〉) = 1

Next we consider the direction from right to left. Let Amin
G (〈(s, w), AFψ〉) = 1

then we show that there exists a strategy σ s.t. G�σ, s �w AFψ. First we notice
that for a node to have the value 1 then the value must have propagated from
a node of the form 〈(s′, w′), e〉 where s′ �w′ e. As Amin(〈(s, w), AFψ〉) = 1
then either Amin(〈(s, w), e〉) = 1 and then by structural induction hypothesis
there exist some σ s.t. G�σ, s �w e hence we also have that G�σ, s �w AFψ.
Otherwise, there must be a finite number of steps down to a node which is
assigned the value 1. We say the smallest number of steps required to reach
such a node is the depth of a node. The remainder of the proof now goes by
induction on the depth.

If s 6→ then by Figure 8d we must have for all transitions (s, ci, si) ∈ Tu
that Amin(〈(si, ci + w), AFψ〉) = 1. As the depth of these target nodes must
be strictly lower than our source node, then by induction on the depth we
know that there exist a strategy σ s.t. G�σ, si �w+ci AFψ. Thus σ(s) = nil is a
winning strategy from the initial position (s, w).

Otherwise s → and then by Figure 8b there must exist some controllable
transition (s, c′, s′) ∈ Tc s.t. Amin(〈(s, w), AFψ(s,c′ ,s′)〉) = 1. By Figure 8c we
have that for all uncontrollable transitions and the single controllable tran-
sition (s, ci, si) ∈ {Tu ∪ (s, c′, s′)} then Amin(〈(si, w + ci), AFψ〉) = 1. As the
depth of these target nodes must be strictly lower than our source node, then
by induction on the depth there exist a strategy σ s.t. G�σ, si �w+ci AFψ.
Hence given σ(s) = (s, c′, s′) then σ is a winning strategy from the initial
position (s, w). �

We notice that given the encoding of the game, the strategy relies solely
on the last state and the accumulated cost of a run, thus giving us a finite
memory strategy.

We find that the synthesis problem for WReach games is EXPTIME-hard,
even when we only have one weight and require cost convergence. We show
this by reduction from countdown games.

Lemma 8
The synthesis problem for 1-weighted WReach games is EXPTIME-hard.

Proof. We show this by reduction from countdown games which were proved
to be EXPTIME-complete in [11]. A countdown game (Q, R) consists of a set
of states Q and a transition relation R ⊆ Q×N× Q. We write transitions as
(q, k, q′) ∈ R and say that the duration of the transition is k. A configuration
in the game is a pair (q, c) where q ∈ Q and c ∈ N and the rules of the game
are now defined as follows: Given the configuration (q, c) then,

• if c = 0 then player one wins, else
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• if for all transitions (q, k, q′) ∈ R then k > c and c > 0 then player 2 wins,

• otherwise there exist some transition (q, k, q′) ∈ R s.t. k < c. Then
player one must chose such a durations k, and player two will now
chose a target state q′ s.t. (q, k, q′) ∈ R and the new configuration is then
(q′, c− k).

As all edges have non negative durations this game results in a finite
number of rounds. Now we simply need to reduce the problem of decid-
ing whether player 1 has a winning strategy for a configuration (q, c) in the
countdown game (Q, R) to deciding whether there exist a winning strategy in
a WReach game.

We create a n-WGG G = (S, s0,AP , L, Tc, Tu) from the countdown game
(Q, R) as follows: S = Q ∪ {sk

q | (q, k, q′) ∈ R}, AP = ∅, s0 = q0 is the initial
position and Tc = {(q, k, sk

q) | (q, k, q′) ∈ R and sk
q ∈ S} and Tu = {(sk

q, 0, q′) |
sk

q ∈ S and (q, k, q′) ∈ R}. To enforce the rules we simply create the following
winning condition ϕ = AF(#1 ≤ c ∧ c ≤ #1). Now it is trivial to see that if
there exist a winning strategy σ s.t. G�σ, s �0 ϕ, then player 1 has a winning
strategy in the corresponding countdown game (Q, R) given the configuration
(q0, c). �
Theorem 9
The synthesis problem for WReach games is EXPTIME-complete.

Proof. Let (G, AFψ) be a WReach game. Then by Lemma 8 we have that the
synthesis problem is EXPTIME-hard. Next we show that the problem is in
EXPTIME.

By Lemma 6 and Theorem 7 we can create a finite dependency graph G
s.t. there exist a strategy σ where G�σ, s �w AFψ iff Amin

G (〈(s, w), AFψ〉) = 1.
Additionally by Lemma 6 we have that the number of nodes constructed is
exponential in the number of dimensions in the game graph. As the minimum
fixed-point algorithm runs in linear time [15], we have that the synthesis pro-
blem for WReach games belong in EXPTIME. �

5.3. Challenges in Extending The Encoding

We find that a straight forward extension of the method presented in the
previous section towards more powerful logics is not possible. In our current
method we build the strategy compositionally based on subformula. However,
the fact that we have a winning strategy for each subformula ϕ1, ϕ2 does not
mean there is a strategy for ϕ1 ∧ ϕ2. To illustrate this we refer to Example 7.

Example 7 (Conjunction of temporal operators)
We begin by defining the game (G, ϕ) where the winning condition is specified in
Figure 10a and the game graph G is shown in Figure 10b.

We find that there exist winning strategies for both subformula. For ϕ1 = AF(α)
a strategy σ1 can be defined s.t. σ1(s0) = s0 → s1, and for ϕ2 = AF(β) then a strat-
egy σ2 can be defined where σ2(s0) = s0 → s2. Clearly these are winning strategies
for the corresponding subformula. While the existence of winning strategies for both
subformula may suggest that there exists a winning strategy for the conjunction, it
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ϕ = AF(α) ∧ AF(β)

(a) formula

s0s1{α} s2 {β}

(b) G = (S, s0,AP , L, Tc, Tu)

Figure 10: n-WG (G, ϕ) illustrating a game with separate winning strategies for each subformula

is obvious that there cannot be such a strategy σ in this example. From the definition
of the strategies above we can tell that one of the controllable transitions will not be
present in the strategy restricted n-WKS and both are required to satisfy the formula.

Notice that this is not a problem with disjunction, as a strategy satisfying
either side will by the semantics satisfy the disjunction itself. However it is
not enough to simply have separate winning strategies for both sides of a
conjunction in a branching formula. They also need to be compatible meaning
that they are consistent in their choice of controllable transitions given the
same configuration.

To incorporate this we need to either radically change the method, or find
a way to keep the conjuncted formula together trough the unfolding. This is
an area of future work we are currently pursuing.

6. Conclusion

We studied the model checking and synthesis problem for a multi-weighted
extension of Kripke structures and weighted CTL. In relation to the model
checking, we found that the full WCTL model checking problem is undecid-
able. However, by restricting the logic to only consider constant bounds, the
problem becomes decidable and is in fact PSPACE-complete.

In the synthesis setting, we extended the formalism to a game setting with
two players: a controller and an environment. We then defined the synthesis
problem as the question of whether the controller has a winning strategy such
that the unfolded system, according to this strategy, satisfies a given WCTL
formula. By imposing upper-bounds on the temporal operators and restrict-
ing ourselves to only consider cost-convergent game graphs, we demonstrated
that the synthesis problem is decidable. Lastly, we provided an on-the-fly al-
gorithm and a tight complexity bound of EXPTIME for the reachability subset
of the logic which allows both lower- and upper-bounds.

In future work we plan to extend this method to include cb-WCTL, thus
proving the synthesis problem decidable without any additional restrictions
on the model.
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