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Abstract. We use some recent techniques from process algebra to draw several
conclusions about the well studied class of ping-pong protocols introduced by Dolev
and Yao. In particular we show that all nontrivial properties, including reachability
and equivalence checking wrt. the whole van Glabbeek’s spectrum, become unde-
cidable for a very simple recursive extension of the protocol. The result holds even
if no nondeterministic choice operator is allowed but reachability is shown to be
decidable in polynomial time if only two parties are participating in the protocol.
We also show that the calculus is capable of an implicit description of the active
intruder, including full analysis and synthesis of messages in the sense of Amadio,
Lugiez and Vanackère. We conclude by showing that reachability analysis for a
replicative variant of the protocol becomes decidable.
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1. Introduction

Process calculi have been suggested as a natural vehicle for reasoning
about cryptographic protocols. In (Abadi and Gordon, 1998), Abadi
and Gordon introduced the spi-calculus (a variant of the π-calculus)
and described how properties such as secrecy and authenticity can be
expressed via notions of observational equivalence (like may-testing).
Alternatively, security questions have been studied using reachability
analysis (Amadio and Lugiez, 2000; Boreale, 2001; Fiore and Abadi,
2001).

We provide a basic study of expressiveness and feasibility of cryp-
tographic protocols. We are interested in two verification approaches:
reachability analysis and equivalence (preorder) checking. In reachabil-
ity analysis the question is whether a certain (bad or good) configura-
tion of the protocol is reachable from a given initial one. In equivalence
checking the question is whether a protocol implementation is equiva-
lent (e.g. bisimilar) to a given specification (optimal behaviour). These
verification strategies can be used even in the presence of an active
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intruder (in the Dolev-Yao style), i.e., an agent with capabilities to
listen to any communication, to perform analysis and synthesis of com-
municated messages according to the actual knowledge of compromised
keys, and to actively participate in the protocol behaviour by transmit-
ting new messages. This can be naturally implemented not only into
the reachability analysis (see e.g. (Amadio et al., 2002)) but also into
the equivalence checking approach. Within the equivalence (preorder)
checking approach, correctness may be expressed as follows (following
(Focardi et al., 2000)): “a protocol P guarantees a security property X
if, whatever hostile environment E with a certain initial knowledge φI ,
then P is equivalent (in preorder) to (with) the specification α(P ).”
Formally this is given by saying that

protocol P satisfies property X iff ∀E ∈ E : P ‖ E ≈ α(P ). (1)

By an appropriate choice of the specification function α and a suitable
equivalence (preorder) ≈, several security properties can be verified.
Here is a small selection:

− Secrecy (confidential information should be available only to the
partners of the communication). Here ≈ stands for trace preorder.

− (Message) authenticity (identification of other agents (messages)
participating in communication ). Here ≈ stands for trace equiva-
lence or preorder.

− Fairness (in a contract, no party can gain advantage by ending the
protocol prematurely). Here ≈ stands for failure equivalence.

Various notions of bisimilarity are studied in this context as bisim-
ilarity is usually the “most decidable behavioral equivalence” which
was confirmed e.g. by several positive decidability results in process
algebra (Burkart et al., 2001). Hence the questions whether a certain
class of cryptographic protocols has decidable reachability and equiva-
lence (bisimilarity) checking are of particular importance for automated
verification.

A number of security properties are decidable for finite protocols
(Amadio and Lugiez, 2000; Rusinowitch and Turuani, 2003). In the case
of an unbounded number of protocol configurations, the picture is more
complex. Durgin et al. showed in (Durgin et al., 1999) that security
properties are undecidable in a restricted class of so-called bounded
protocols (that still allows for infinitely many reachable configurations).
In (Amadio and Charatonik, 2002) Amadio and Charatonik consider
a language of tail-recursive protocols with bounded encryption depth
and name generation; they show that, whenever certain restrictions on
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decryption are violated, one can encode two-counter machines in the
process language. On the other hand, Amadio, Lugiez and Vanackère
show in (Amadio et al., 2002) that the reachability problem is in
PTIME for a class of protocols with iteration.

In this paper we focus solely on ping-pong based behaviours of re-
cursive and replicative protocols (perhaps the simplest behaviour of all
studied calculi) in order to draw general conclusions about expressive-
ness and tractability of formal verification of cryptographic protocols.
The class of ping-pong protocols was introduced in 1983 by Dolev and
Yao (Dolev and Yao, 1983). The formalism deals with memory-less
protocols which may be subjected to arbitrarily long attacks. Here,
the secrecy of a finite ping-pong protocol can be decided in polynomial
time. Later, Dolev, Even and Karp found a cubic-time algorithm (Dolev
et al., 1982). The class of protocols studied in (Amadio et al., 2002)
contains iterative ping-pong protocols and, as a consequence, secrecy
properties remain polynomially decidable even in this case.

In the present paper we study recursive and replicative extensions
of ping-pong protocols. In (Hüttel and Srba, 2004) we showed that
the recursive extension of the calculus is Turing powerful, however,
the nondeterministic choice operator appeared to be essential in the
construction. The question whether the calculus is Turing powerful
even without any explicit way to define nondeterministic processes
was left open. Here we present a different reduction from multi-stack
automata and strengthen the undecidability results to hold even for
protocols without nondeterministic choice. We prove, in particular,
that both reachability and equivalence checking for all equivalences
and preorders between trace equivalence/preorder and isomorphism of
labelled transition systems (which includes all equivalences and pre-
orders from van Glabbeek’s spectrum (van Glabbeek, 2001)) become
undecidable. These results are of general importance because they prove
the impossibility of automated verification for essentially all recursive
cryptographic protocols capable of at least the ping-pong behaviour.
We also show that under the assumption that only two parties partic-
ipate in the protocol, the reachability problem becomes decidable in
polynomial time.

In the initial study from (Hüttel and Srba, 2004), the question of
active attacks on the protocol was not dealt with. We shall demon-
strate that a complete notion of the active intruder (including anal-
ysis and synthesis of messages in the sense of Amadio, Lugiez and
Vanackère (Amadio et al., 2002)) can be explicitly encoded into our
formalism in order to analyze general properties like in the scheme (1).

Finally, we study a replicative variant of the calculus. Surprisingly,
such a calculus becomes decidable, at least with regard to the reachabil-
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ity analysis. We use a very recent result from process algebra (decidabil-
ity of reachability for weak process rewrite systems by Křet́ınský, Řehák
and Strejček (Křet́ınský et al., 2004)) in order to derive the result. Our
positive result for the replicative calculus is a formal confirmation of the
general trend of using replication instead of recursion in process calculi
for cryptographic protocols and explains why recursion is hardly ever
considered in this setting.

This paper is a revised and unified version of (Hüttel and Srba, 2004)
and (Hüttel and Srba, 2005).

2. Basic definitions

2.1. Labelled transition systems with label abstraction

In order to provide a uniform framework for our study of ping-pong
protocols, we define their semantics by means of labelled transition
systems. A labelled transition system (LTS) is a triple T = (S,Act,−→)
where S is a set of states (or processes), Act is a set of labels (or

actions), and −→⊆ S×Act×S is a transition relation, written α
a

−→ β,
for (α, a, β) ∈−→. As usual we extend the transition relation to the

elements of Act
∗. We also write α −→∗ β, whenever α

w
−→ β for some

w ∈ Act
∗.

The idea is that the states represent global configurations of a given
protocol and the transitions describe the information flow. Labels on
the transitions moreover represent the messages (both plain-text and
cipher-text) which are being communicated during the state changes.

Remark 1. In (Hüttel and Srba, 2004) the semantics of ping-pong
protocols is given in terms of transition systems with knowledge, i.e.,
unlabelled transition systems where each state it assigned its knowl-
edge, represented as a subset of a certain set of all possible knowledge
values. By standard techniques such a knowledge-based semantics can
be translated to labelled transition systems and the studied verifica-
tion properties (reachability, equivalence checking, etc.) are preserved.
For example a state A with two knowledge values p1 and p2 can be
transformed to a labelled transition system where the values p1 and p1

are represented as self-loops in state A which are visible under special
actions p1 and p2. A fresh action a is used to represent the change of
the state (the unlabelled transitions in the original knowledge-based
semantics).

The explicit possibility to observe the full content of messages is
sometimes not very realistic; it means that an external observer of such
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a system can e.g. distinguish between two different messages encrypted
by the same encryption key, without the actual knowledge of the key.

In order to restrict capabilities of the observer we introduce a so
called label abstraction function φ : Act 7→ Act. Given a LTS T =
(S,Act,−→T ) and a label abstraction function φ we define a new LTS

Tφ
def
= (S,Act,−→Tφ

) where α
φ(a)
−→Tφ

β iff α
a

−→T β for all α, β ∈ S and
a ∈ Act. We call Tφ a labelled transition system with label abstraction.

Let us now focus on the messages (actions). Assume a given set
of encryption keys K. The set of all messages over K is given by the
following abstract syntax

m ::= k | k · m

where k ranges over K. Hence every element of the set K is a (plain-text)
message and if m is a message then k · m is a (cipher-text) message
(meaning that the message m is encrypted by the key k). Given a
message k1 ·k2 · · · kn over K we usually write it only as a word k1k2 · · · kn

from K∗. Note that kn is the plain-text part of the message and the
outermost encryption key is always on the left (k1 in our case). In what
follows we shall identify the set of messages and K∗, and we denote the
extra element of K∗ consisting of the empty sequence of keys by ǫ.

Example 1. Let us consider a labelled transition system

T
def
= (S,Act,−→)

where S
def
= {A,B,C}, Act

def
= K∗ for a given set of keys K = {k1, k2, λ}

and −→ is given by the following picture.

A
k1k2 // B

k2 // C

The protocol computation starts in the state A and is very simple. First
a plain-text k2 encrypted by the encryption key k1 is communicated to
the process B, which decrypts the message and sends out the plain-
text k2. Let us now assume a label abstraction function φ defined by
φ(k) = k if k ∈ K and φ(m) = λ otherwise. The labelled transition
system Tφ with label abstraction function φ now looks as follows.

A
λ // B

k2 // C

This translates to the fact that the external observer is not allowed to
see the content of encrypted messages (the action λ is used instead)
and only plain-text messages can be recognized. 2
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The level of abstraction we may select depends on the particular
studied property we are interested in and it directly corresponds to the
specification function α from (1). Nevertheless, it seems reasonable to
require at least the possibility to distinguish between plain-text and
cipher-text messages. We say that a label abstraction function φ is
reasonable iff φ(k) 6= φ(k′w) for all k, k′ ∈ K and w ∈ K+.

2.2. A calculus of recursive ping-pong protocols

We shall now define a calculus which captures exactly the class of ping-
pong protocols by Dolev and Yao (Dolev and Yao, 1983) extended (in
a straightforward manner) with recursive definitions.

Let K be a set of encryption keys. A specification of a recursive
ping-pong is a finite set of process definitions ∆ such that for every
process constant P (from a given set Const) the set ∆ contains exactly
one process definition of the form

P
def
=

∑

i1∈I1

vi1 � . wi1�.Pi1 +
∑

i2∈I2

vi2 .Pi2 +
∑

i3∈I3

wi3.Pi3

where I1, I2 and I3 are finite sets of indices such that I1 ∪ I2 ∪ I3 6= ∅,
and vi1 , vi2 , wi1 and wi3 are messages (belong to K∗) for all i1 ∈ I1,
i2 ∈ I2 and i3 ∈ I3, and Pi ∈ Const ∪ {0} for all i ∈ I1 ∪ I2 ∪ I3

such that 0 is a special constant called the empty process. We moreover
require that vi2 and wi3 for all i2 ∈ I2 and i3 ∈ I3 are different from
the empty message ǫ. (Observe that any specification ∆ contains only
finitely many keys.)

Summands continuing in the empty process constant 0 will be writ-
ten without the 0 symbol and process definitions will often be written
in their unfolded form using the nondeterministic choice operator ‘+’.
An example of a process definition is e.g.

P
def
= k1� . k2�.P1 + k1� . k3� + k1k2.P1 + k1k1 + k1k2.P2.

The intuition is that each summand of the form vi1 � . wi1�.Pi1

can receive a message encrypted by a sequence vi1 of outermost keys,
decrypt the message using these keys, send it out encrypted by the
sequence of keys wi1 , and finally behave as the process constant Pi1 .
The symbol � stands for the rest of the message after decrypting it with
the key sequence vi1 . This describes a standard ping-pong behaviour of
the process.

In addition to this we may have summands of the forms vi2 .Pi2 and
wi3 .Pi3 , meaning simply that a message is received and forgotten or
unconditionally transmitted, respectively. This is a small addition to
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the calculus we presented in (Hüttel and Srba, 2004) in order to allow
for discarding of old messages and generation of new messages. These
two features were not available in the earlier version of the calculus but
they appear to be technically convenient when modeling an explicit
intruder and for strengthening the positive decidability results in Sec-
tion 5. Nevertheless, the undecidability results presented in Section 3.1
are valid even without this extension since only the standard ping-
pong behaviour is used in the constructions. A feature very similar to
the forgetful input operation can be also found in (Amadio et al., 2002).

A configuration of a ping-pong protocol specification ∆ is a parallel
composition of process constants, possibly preceded by output mes-
sages. Formally the set Conf of configurations is given by the following
abstract syntax

C ::= 0 | P | w.P | C ‖ C

where 0 is the empty configuration, P ∈ Const∪{0} ranges over process
constants including the empty process, w ∈ K∗ ranges over the set of
messages, and ‘‖’ is the operator of parallel composition.

We introduce a structural congruence relation ≡ which identifies
configurations that represent the same state of the protocol. The re-
lation ≡ is defined as the least congruence over configurations (≡⊆
Conf×Conf) such that (Conf, ‖,0) is a commutative monoid and ǫ.P ≡ P
for all P ∈ Const. In what follows we shall identify configurations up
to structural congruence.

Remark 2. We let ǫ.P ≡ P because the empty message should never
be communicated. This means that when a prefix like k� .�.P receives
a plain-text message k and tries to output ǫ.P , it simply continues as
the process P .

We shall now define the semantics of ping-pong protocols in terms
of labelled transition systems. We define a set ConfS ⊆ Conf consist-
ing of all configurations that do not contain the operator of parallel
composition and call these simple configurations. We also define two
sets In(C,m),Out(C,m) ⊆ ConfS for all C ∈ ConfS and m ∈ K+.
The intuition is that In(C,m) (Out(C,m)) contains all configurations
which can be reached from the simple configuration C after receiving
(resp. outputting) the message m from (to) the environment. Formally,
In(C,m) and Out(C,m) are the smallest sets which satisfy:

− Q ∈ In(P,m) whenever P ∈ Const and m.Q is a summand of P

− wα.Q ∈ In(P,m) whenever P ∈ Const and v � . w�.Q is a sum-
mand of P such that m = vα
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− P ∈ Out(m.P,m) whenever P ∈ Const ∪ {0}

− Q ∈ Out(P,m) whenever P ∈ Const and m.Q is a summand of P .

A given protocol specification ∆ determines a labelled transition

system T (∆)
def
= (S,Act,−→) where the states are configurations of the

protocol modulo the structural congruence (S
def
= Conf/≡), the set of la-

bels (actions) is the set of messages that can be communicated between

the agents of the protocol (Act
def
= K+), and the transition relation −→

is given by the following SOS rule (recall that ‘‖’ is commutative).

m ∈ K+ C1, C2 ∈ ConfS C ′
1 ∈ Out(C1,m) C ′

2 ∈ In(C2,m)

C1 ‖ C2 ‖ C
m
−→ C ′

1 ‖ C ′
2 ‖ C

This means that (in the context C) two simple configurations (agents)
C1 and C2 can communicate a message m in such a way that C1 outputs
m and becomes C ′

1 while C2 receives the message m and becomes C ′
2.

Example 2. Let us consider a protocol specification ∆.

P
def
= k.P + k� . kk�.P + k.Q Q

def
= k.P

A fragment of the labelled transition system reachable from the initial
configuration P ‖ P looks as follows.

P ‖ P
k //

k ��

P ‖ kk.P
kk // P ‖ kkk.P

kkk // . . .

P ‖ Q

k

VV

2

2.3. Reachability and behavioural equivalences

One of the problems that is usually studied is that of reachability
analysis: given two configurations C1, C2 ∈ Conf we ask whether C2

is reachable from C1, i.e., if C1 −→∗ C2. In this case the set of labels
is irrelevant.

As the semantics of our calculus is given in terms of labelled tran-
sition systems (together with an appropriate label abstraction func-
tion), we can also study the equivalence checking problems. Given
some behavioural equivalence or preorder ↔ from van Glabbeek’s spec-
trum (van Glabbeek, 2001) (e.g. strong bisimilarity or trace, failure and
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simulation equivalences/preorders just to mention a few) and two con-
figurations C1, C2 ∈ Conf of a protocol specification ∆, the question is
to decide whether C1 and C2 are ↔-equivalent (or ↔-preorder related)
in T (∆), i.e., whether C1 ↔ C2.

3. Decidability Issues

In this section we shall discuss decidability questions for recursive ping-
pong protocols. First we demonstrate a negative result for protocols
with arbitrary many participants and then we show that reachability
is decidable in polynomial time if we restrict ourself to protocols where
only two parties are involved.

3.1. Recursive ping-pong protocols without explicit choice

In what follows we strengthen the undecidability result from (Hüttel
and Srba, 2004) and show that the reachability and equivalence check-
ing problems are undecidable for ping-pong protocols without an ex-
plicit operator of nondeterminism and using classical ping-pong be-
haviour only, i.e., for protocols without any occurrence of the choice

operator ‘+’ and where every defining equation is of the form P
def
=

v� . w�.P ′ such that P ′ ∈ Const.

Remark 3. Note that every process constant is allowed to have ex-
actly one defining equation, however, no constraints are imposed on the
communication behaviour of the parallel components.

We moreover show that the negative results apply to all behavioural
equivalences and preorders between trace equivalence/preorder and
isomorphism of LTS (which preserves labelling) with regard to all rea-
sonable label abstraction functions as defined in Section 2.

These results are achieved by showing that recursive ping-pong pro-
tocols can step-by-step simulate a Turing powerful computational de-
vice, in our case a computational model called multi-stack machines.

A multi-stack machine R with ℓ stacks (ℓ ≥ 1) is a triple R =
(Q,Γ,−→) where Q is a finite set of control-states, Γ is a finite stack
alphabet such that Q ∩ Γ = ∅, and −→⊆ Q × Γ × Q × Γ∗ is a finite set
of transition rules, written pX −→ qα for (p,X, q, α) ∈−→.

A configuration of a multi-stack machine R is an element from Q ×
(Γ∗)ℓ. We assume a given initial configuration (q0, w1, . . . , wℓ) where
q0 ∈ Q and wi ∈ Γ∗ for all i, 1 ≤ i ≤ ℓ. If some of the stacks wi are
empty, we denote them by ǫ.
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A computational step is defined such that whenever there is a tran-
sition rule pX −→ qα then a configuration which is in the control-state
p and has X on top of the i’th stack (the tops of the stacks are on the
left) can perform the following transition:

(p,w1, . . . ,Xwi, . . . , wℓ) −→ (q, w1, . . . , αwi, . . . , wℓ)

for all w1, . . . , wℓ ∈ Γ∗ and for all i, 1 ≤ i ≤ ℓ.
It is a folklore result that multi-stack machines are Turing powerful.

Hence (in particular) the following problem is easily seen to be unde-
cidable: given an initial configuration (q0, w1, . . . , wℓ) of a multi-stack
machine R, can we reach the configuration (h, ǫ, . . . , ǫ) for a distin-
guished halting control-state h ∈ Q such that all stacks are empty?
Without loss of generality we can even assume that a configuration in
the control-state h is reachable iff all stacks are empty.

Let R = (Q,Γ,−→) be a multi-stack machine. We define the fol-

lowing set of keys of a ping-pong specification ∆: K
def
= Q ∪ Γ ∪ {kp |

p ∈ Q} ∪ {t, k∗}. Here t is a special key such that every communicated
message is an encryption of the plain-text key t. The reason for this
is that it ensures that the protocol never communicates any plain-text
message. The key k∗ is a special purpose locking key and it is explained
later on in the construction.

We shall construct a ping-pong protocol specification ∆ as follows.

− For every transition rule pX −→ qα we have a process constant
PpX−→qα with the following defining equation.

PpX−→qα
def
= pX� . kqα�.PpX−→qα

− For every state p ∈ Q we have two process constants Tp and T ′
p.

Tp
def
= kp� . k∗�.T ′

p

T ′
p

def
= k∗� . p�.Tp if p ∈ Q r {h}, and T ′

h
def
= h� . h�.T ′

h

Recall that h ∈ Q is the halting control-state.

− Finally, we define a process constant B (standing for a buffer over
a fixed key k∗).

B
def
= k∗� . k∗�.B

In this defining equation the key k∗ locks the content of the buffer
such that it is accessible only by some T ′

p.
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Note that ∆ does not contain any choice operator ‘+’ as required.
Let (q0, w1, . . . , wℓ) be an initial configuration of the multi-stack

machine R. The corresponding initial configuration of the protocol ∆ is
defined as follows (the meta-symbol Π stands for a parallel composition
of the appropriate components).

(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

p∈Qr{q0}

Tp

)

‖ T ′
q0

‖
(

∏

j∈{1,...,ℓ}

k∗wjt.B
)

(2)

The following invariants will be preserved during any computational
sequence starting from this initial configuration:

− at most one T ′
p for some p ∈ Q is present as a parallel component

(the intuition is that this represents the fact that the machine R
is in the control-state p), and

− plain-text messages are never communicated.

Let (p,w1, . . . , wi, . . . wℓ) −→ (q, w1, . . . , αw′
i, . . . wℓ) be a computa-

tional step of R using the rule pX −→ qα such that wi = Xw′
i. This

one step is simulated by a sequence of four transitions in the ping-
pong protocol ∆ (see Figure 3.1). In the first step one buffer is selected
and unlocked (the current control-state p replaces the locking key k∗
in the outermost encryption). In particular the buffer k∗wit.B can be
unlocked. No other kinds of transitions are possible in the first step.
Opening of the selected buffer means that some of the process constants
PrA−→sβ become able to accept this message. In particular the process

constant PpX−→qα can receive the message and output kqαwit for fur-
ther communication; the key kq determines the control-state change.
(At this stage also a communication between k∗wit.B and B is enabled
but it does not change the current state and hence it cannot contribute
to a computational progress.) In the next step only Tq can receive the
message kqαwit, it remembers the new control-state q by becoming T ′

q

and offers the k∗-locked message for a communication with B. This
last communication (when B receives back the modified buffer) ends a
simulation of one computational step of R.

The following property is easy to see: if after some number of steps
starting in a protocol configuration corresponding to (p,w1, . . . , wℓ)
we reach a first protocol configuration where T ′

q appears for some
q ∈ Q then this corresponds to one correct computational step in
R. On the other hand, the computation of ∆ can get stuck after the
first communication step (in case that the unlocked buffer does not
enable an application of any rule rA −→ sβ) or an infinite sequence
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(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

r∈Qr{p}

Tr

)

‖ T ′
p ‖

(

∏

j∈{1,...,ℓ}

k∗wjt.B
)

↓ k∗wit
(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

r∈Qr{p}

Tr

)

‖ pwit.Tp ‖

(

∏

j∈{1,...,ℓ},j 6=i

k∗wjt.B
)

‖ B

↓ pwit
(

∏

(r,A,s,β)∈(−→r{(p,X,q,α)})

PrA−→sβ

)

‖ kqαw′
it.PpX−→qα ‖

(

∏

r∈Q

Tr

)

‖

(

∏

j∈{1,...,ℓ},j 6=i

k∗wjt.B
)

‖ B

↓ kqαw′
it

(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

r∈Qr{q}

Tr

)

‖ k∗αw′
it.T

′
q ‖

(

∏

j∈{1,...,ℓ},j 6=i

k∗wjt.B
)

‖ B

↓ k∗αw′
it

(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

r∈Qr{q}

Tr

)

‖ T ′
q ‖

(

∏

j∈{1,...,ℓ},j 6=i

k∗wjt.B
)

‖ k∗αw′
it.B

Figure 1. Simulation of (p, w1, . . . , wi, . . . wℓ) −→ (q, w1, . . . , αw′
i, . . . wℓ) s.t.

wi = Xw′
i

of communication steps of the form m.B ‖ B
m
−→ m.B ‖ B is also

possible.
This is formally captured in the following lemma.

Lemma 1. In the multi-stack machine R it holds that the config-
uration (q, w′

1, . . . , w
′
ℓ) is reachable from (p,w1, . . . , wℓ) if and only
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if
(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

p∈Qr{q}

Tp

)

‖ T ′
q ‖

(

∏

j∈{1,...,ℓ}

k∗w
′
jt.B

)

is reachable (in ∆) from
(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

p∈Qr{p}

Tp

)

‖ T ′
p ‖

(

∏

j∈{1,...,ℓ}

k∗wjt.B
)

.

The following theorems are now easily derived.

Theorem 1. The reachability problem for recursive ping-pong proto-
cols without an explicit choice operator is undecidable.

Proof. Immediately from Lemma 1 and from the undecidability of
reachability for multi-stack machines. 2

Theorem 2. The equivalence checking problem for recursive ping-
pong protocols without an explicit choice operator is undecidable for
any behavioral equivalence/preorder between trace equivalence/pre-
order and isomorphism (including all equivalences and preorders from
van Glabbeek’s spectrum (van Glabbeek, 2001)) and for any reasonable
label abstraction function.

Proof. Let R be a multi-stack machine and ∆ the protocol specifica-
tion constructed above with the initial configuration C as given by (2).
We consider the question whether C ‖ h is equivalent (or in preorder)
with C.

In case that the halting control-state h is not reachable from the
initial configuration of R, we know from Lemma 1 that T ′

h will never
appear as a parallel component in any reachable state from C. This
implies that the plain-text message h will never be communicated and
hence C ‖ h and C exhibit isomorphic behaviours under any label
abstraction function.

On the other hand, if h is reachable from the initial configuration
of R then because of Lemma 1 a configuration in ∆ with the parallel
component T ′

h is reachable. Such a configuration is stuck in the process
on the right, however, in the process on the left the plain-text message
h can be communicated between T ′

h and the extra parallel component

h. This means that C ‖ h and C are not even related by the trace
preorder (and hence they are also not trace equivalent) because after
a finite sequence of communicated messages there is a successor of the
configuration C ‖ h which can communicate the plain-text h while
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14 Hans Hüttel and Jǐŕı Srba

(as argued before) C can only exchange cipher-text messages. As the
label abstraction function φ is reasonable, necessarily for all messages
m (cipher-texts) communicated in C it is the case that φ(m) 6= φ(h).

To sum up, if the machine R cannot reach the halting configuration
then C ‖ h and C are isomorphic and if R halts than C ‖ h and C are
not in trace preorder. This implies that all equivalences and preorders
between trace and isomorphism are undecidable for any reasonable
label abstraction function. 2

The arguments in the proof of Theorem 2 imply that secrecy for
recursive ping-pong protocols (i.e. the question whether a plain text
message is ever directly communicated among the protocol partici-
pants) is also undecidable. The claim is valid even without the presence
of an active intruder.

As mentioned in the introduction, protocol properties such as se-
crecy, authenticity and fairness can be expressed also within the equiv-
alence checking approach (Focardi et al., 2000; Abadi and Gordon,
1998), considering preorders and equivalences like trace preorder, trace
equivalence and failure equivalence. The result of Theorem 2 implies
that for recursive ping-pong protocols, none of the protocol properties
in the equivalence checking setting are decidable.

3.2. Protocols with Two Participants

If the family of protocols we consider contains at most two partici-
pants (parallel components) in every reachable configuration, we get
a class similar to that of the traditional ping-pong protocols (Dolev
et al., 1982; Dolev and Yao, 1983). In fact, our class is more general
in the sense that we allow for recursive definitions in the protocol
specification. In the situation of at most two parallel components in
any reachable configuration we may without loss of generality assume
that such configurations are always of the form P ‖ w.Q for some
P ∈ Const, Q ∈ Const ∪ {0} and w ∈ K∗. If this is not the case,
the computation of such a protocol is stuck — no communication can
take place. We also assume that all process definitions are of the from

P
def
=

∑

i∈I vi � .wi�.Pi, i.e., there are no summands of the form v.Q or
w.Q (these summands will also make the computation of the protocol
get stuck as we obtain a configuration with two parallel components
that both either try to input a message or output a message).

We shall now demonstrate that the class of ping-pong protocols with
two participants is not Turing powerful since reachability now becomes
decidable. Hence we can still hope for automatic verification of some
protocol properties.
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Theorem 3. The reachability problem for ping-pong protocols with
two participants is decidable in polynomial time.

Proof. We reduce reachability of ping-pong protocols with two par-
ticipants to reachability of pushdown automata (PDA), disregarding
the input alphabet (see e.g. (Büchi, 1964)). In fact, we will use a
slightly more general notion of PDA where several stack symbols can
be removed in one computational step.

Let ∆ be a given protocol specification and let P1 ‖ w1.Q1 and
P2 ‖ w2.Q2 be two configurations of the protocol. We shall construct
a PDA system together with two configurations p1α1 and p2α2 such
that P1 ‖ w1.Q1 −→∗ P2 ‖ w2.Q2 if and only if p1α1 −→∗ p2α2.

The set of control states of the PDA automaton is {(P,Q) | P,Q ∈
Const∪{0}} and the stack alphabet is equal to the set of the encryption
keys K. We have now a natural correspondence between configurations
of the protocol and those of the PDA system. A protocol configuration
P ‖ w.Q corresponds to a PDA configuration (P,Q)w such that
(P,Q) is the control state (its second component is always the one
that has an output prefix) and w is the stack content (top is on the
left). The PDA rewrite rules are directly defined from ∆ as follows:

(P,Q)vi
a

−→ (Q,Pi)wi for every P ∈ Const, Q ∈ Const ∪ {0} and every

i, i ∈ I, such that P
def
=

∑

i∈I vi � .wi�.Pi.
It is now easy to see that P1 ‖ w1.Q1 −→∗ P2 ‖ w2.Q2 if and only

if (P1, Q1)w1 −→∗ (P2, Q2)w2.
The reachability problem of extended PDA is by standard tech-

niques reducible to reachability of ordinary PDA where at most one
stack symbol is removed by performing a single transition (it is enough
to replace every rule of the form px1x2 . . . xm −→ qα by the rules
px1 −→ p1, p1x2 −→ p2, . . . , pm−1xm −→ qα where p1, . . . , pm−1 are
new control states).

Since reachability of PDA is decidable (Büchi, 1964), we can con-
clude that reachability of ping-pong protocols with two participants
is also decidable. Moreover, the reachability problem of ordinary PDA
can be solved in polynomial time (Bouajjani et al., 1997; Esparza et al.,
2000), which implies that reachability of ping-pong protocols with two
participants is decidable also in PTIME. 2

This result is tight as we know that the reachability problem for pro-
tocols with three (and more) participants is already undecidable (Hüttel
and Srba, 2004).

On the other hand, the above reduction to pushdown automata can
be used to decide equivalence checking with regard to strong bisim-
ilarity, as strong bisimilarity is well known to be decidable for the
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16 Hans Hüttel and Jǐŕı Srba

class of pushdown processes (Sénizergues, 1998). This is possible under
the restriction that the label abstraction function is local in the sense
of (Hüttel and Srba, 2004), i.e., it makes visible only constantly many
outer-most (resp. inner-most) encryption keys. Nevertheless, even un-
der this restriction secrecy is decidable. For any protocol specification
P we compare it to a specification P ′, where P ′ is a version of P that
has been modified as follows. We introduce a fresh key k∗. Every input
prefix w.P is replaced by k∗w.P , and similarly every output prefix w.P
is replaced by k∗w.P . We fix keys a and b, where a 6= b, and define
a label abstraction function φ such that φ(k) = a for all k ∈ K and
φ(w) = b for w 6∈ K. Now φ is a local abstraction function, and it
distinguishes between plain-texts and cipher-texts. Clearly P and P ′

are strongly bisimilar if and only if P never communicates a plain-text
message.

4. The active intruder

In the literature on applying process calculi to the study of crypto-
graphic protocols, there have been several proposals for explicit mod-
elling the active intruder (environment). Foccardi, Gorrieri and Mar-
tinelli in (Focardi et al., 2000) express the environment within the
process calculus, namely as a process running in parallel with the pro-
tocol. In (Amadio et al., 2002) Amadio, Lugiez and Vanackère describe
a tiny process calculus similar to ours, except that they use replication
instead of recursion. Moreover, the environment is described in the
semantics of the calculus. Transitions are of the form

(C, T ) → (C ′, T ′)

where C and C ′ are protocol configurations and T and T ′ denote the
sets of messages known to the environment (all communication occurs
only by passing messages through these sets).

The environment is assumed to be hostile; it may compute new
messages by means of the operations of analysis and synthesis and pass
these on to the process. Let K be a set of encryption keys as before. The
analysis of a set of messages T ⊆ K∗ is the least set A(T ) satisfying

A(T ) = T ∪ {w | kw ∈ A(T ), k ∈ K ∩ A(T )}. (3)

The synthesis of a set of messages T ⊆ K∗ is the least set S(T ) satisfying

S(T ) = A(T ) ∪ {kw | w ∈ S(T ), k ∈ K ∩ S(T )}. (4)

The next lemmas follow immediately from Tarski’s fixed-point theorem.
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Lemma 2. The analysis of a set of messages T ⊆ K∗ is the union of
the family of sets Ai(S) defined by

A0(T ) = T

Ai+1(T ) = Ai(T ) ∪ {w | kw ∈ Ai(T ), k ∈ K ∩ Ai(T )}

Lemma 3. The synthesis of a set of messages T ⊆ K∗ is the union of
the family of sets Si(T ) defined by

S0(T ) = A(T )

Si+1(T ) = Si(T ) ∪ {kw | w ∈ Si(T ), k ∈ K ∩ Si(T )}

The set of compromised keys Kc for a given set T ⊆ K∗ of messages

is defined by Kc
def
= K ∩ S(T ), which is easily seen to be equal to

K ∩ A(T ). (The compromised keys are immediately available for the
intruder because they are either in his initial knowledge or can be
discovered by the analysis.)

Remark 4. Let T ⊆ K∗ be a given set of messages. The following
observation is easy to verify: in order to compute the complete set Kc of
compromised keys of size n, it is enough to find messages m1, . . . ,mn ∈
T such that when we analyze them in a sequence, we discover exactly
all compromised keys. Formally, we define

K0
c

def
= ∅ and Ki

c
def
= Ki−1

c ∪ {k ∈ K | mi = wk, w ∈ (Ki−1
c )∗}

for all i, 1 ≤ i ≤ n, and then Kc = Kn
c . 2

Proposition 1. It holds that w ∈ S(T ) if and only if w can be written
as w = uw′ for some u ∈ K∗

c and there exists u′ ∈ K∗
c such that

u′w′ ∈ T .

Proof. Notice that because of Lemma 2, w ∈ A(T ) iff there is u ∈ K∗
c

such that uw ∈ T . The proposition then follows by an application of
Lemma 3. 2

We can now design an environment sensitive semantics for our cal-
culus close in style to that of (Amadio et al., 2002). We define the
reduction relation → by the following set of axioms (here x ∈ P means
that x is a summand in the defining equation of the process constant
P ).
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(P ‖ C, T ) → (wα.P ′ ‖ C, T )

if (v� . w�.P ′) ∈ P and vα ∈ S(T ) (A1)

(P ‖ C, T ) → (P ′ ‖ C, T )

if (v.P ′) ∈ P and v ∈ S(T ) (A2)

(w.P ‖ C, T ) → (P ‖ C, T ∪ {w}) (A3)

(P ‖ C, T ) → (P ′ ‖ C, T ∪ {w})

if (w.P ′) ∈ P (A4)

It is possible to show that this semantics can be internalized in our
calculus within our existing semantics.

Theorem 4. For any recursive ping-pong protocol, we can define its
new parallel component which enables all the attacks described by
axioms (A1) – (A4).

The proof of this result can be found in (Hüttel and Srba, 2004). We
do not include the full proof here but sketch the general construction.
The necessary ideas can all be found in the proof of Lemma 1.

The attacker is an additional parallel component that keeps track
of the set S of all messages that have been transmitted. S is stored in
a buffer called the message pool, whose messages are separated using
a special separator key. The message pool is encrypted using a so-
called locking key. The purpose of this locking key (see also the proof
of Lemma 1) is to prevent other parallel components from reading or
modifying the content of the pool.

The attacker remembers the set of keys K currently known to be
compromised. From this, the attacker is able to construct any message
of the analysis and synthesis of S by copying any message from S to an
internal buffer. The message in the internal buffer can then be altered
by removing outermost keys from K and by adding keys from K. At
any point, the content of the internal buffer can be transmitted to the
environment.

5. Replicative ping-pong protocols

In this section we shall define a replicative variant of our calculus for
ping-pong protocols. We will then show that this formalism is not Tur-
ing powerful because the reachability problem becomes decidable. This
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is to be put in contrast with several results where replicative calculi
are known to be capable of simulating recursive ones (see e.g. (Milner,
1993) for the case of pi-calculus which implies also the same result for
spi-calculus, and (Giambiagi et al., 2004; Nielsen et al., 2002) for other
examples). On the other hand, a similar discrimination result as ours
between recursion and replication was recently proved for CCS (Busi
et al., 2003).

Let us now define replicative ping-pong protocols. Let K be the set
of encryption keys as before. The set Conf of protocol configurations is
given by the following abstract syntax

C ::= 0 | v� . w� | v | w | !(v� . w�) | !(v) | !(w) | C ‖ C

where 0 is the symbol for the empty configuration, v and w range
over K∗, and ! is the bang operator (replication). As before, we shall
introduce structural congruence ≡, which is the smallest congruence
over Conf such that

− (Conf, ‖,0) is a commutative monoid

− ǫ ‖ C ≡ C ≡ ǫ ‖ C

− !(ǫ) ≡ 0 ≡ !(ǫ)

− !(C) ≡ C ‖!(C).

A labelled transition system determined by a configuration (where
states are configurations modulo ≡ and labels are non-empty messages
as before) is defined by the following SOS rules (recall the replicative
axiom !(C) ≡ C ‖!(C) and the fact that ‘‖’ is commutative).

m ∈ K+

m ‖ m ‖ C
m
−→ C

m ∈ K+ m = vα

m ‖ v� . w� ‖ C
m
−→ wα ‖ C

Example 3. An initial configuration C
def
=!(k) ‖ !(k� . kk�) generates

a labelled transition system in Figure 2 with infinitely many reachable
configurations (only a finite fragment is depicted). Observe that (unlike
recursive protocols) the number of parallel components can grow arbi-
trarily (e.g. the left-most branch in the picture). The reason is that we
allow prefixes of the form !(w) which can unconditionally output new
messages and that we have replicative agents accepting these messages.

In case that the number of output prefixes for all reachable con-
figurations is bounded by some number n, the parallel components
of the form !(v), !(w) and !(v � . w�) can be replaced by n parallel
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Figure 2. Initial fragment of a labelled transition system for C
def
= !(k) ‖ !(k� . kk�)

occurrences of fresh process constants P!(v), P!(w) and P!(v�. w�) respec-

tively such that P!(v)
def
= v.P!(v), P!(w)

def
= w.P!(w) and P!(v�. w�)

def
= v �

. w�.P!(v�. w�), and hence it can be simulated by recursive protocols. 2

We shall now show that the reachability problem for general replica-
tive ping-pong protocols is decidable. We reduce our problem to reacha-
bility of weak process rewrite systems (wPRS) which was very recently
proven to be decidable (Křet́ınský et al., 2004).

Following the work of Mayr (Mayr, 2000), let Const be a set of process
constants. The set E of process expressions over Const is defined by

E ::= ǫ | X | E.E | E ‖ E

where ǫ is the symbol for empty expression, X ranges over Const, ‘.’ is
the operator of sequential composition and ‘‖’ is the operator of parallel
composition. We identify processes up to structural congruence, which
is the least congruence such that ‘.’ is associative, ‘‖’ is associative and
commutative and ǫ is a unit for ‘.’ and ‘‖’.

Let Q be a finite set of control-states and Act a set of actions. A
state-extended process rewrite system (sePRS) is a finite set ∆ of rewrite
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rules of the form pE
a

−→ qF where p, q ∈ Q, a ∈ Act, and E,F ∈ E
such that E 6= ǫ.

A given sePRS ∆ generates a labelled transition system T (∆) where
states are pairs of control-states and process expressions over Const

modulo the structural congruence, the set of actions is Act and the
transition relation is given by the following SOS rules (recall that ‘‖’ is
commutative).

(pE
a

−→ qF ) ∈ ∆

pE
a

−→ qF

pE
a

−→ qE′

p(E.F )
a

−→ q(E′.F )

pE
a

−→ qE′

p(E ‖ F )
a

−→ q(E′ ‖ F )

A sePRS ∆ is called a weak process rewrite system (wPRS) iff there

is a partial ordering ≤ on Q such that all rewrite rules pE
a

−→ qF from
∆ satisfy that q ≤ p.

Theorem 5. ((Křet́ınský et al., 2004)) The reachability problem for
wPRS is decidable.

Let us now consider an arbitrary configuration C in the calculus of
replicative ping-pong protocols. We shall construct a wPRS system ∆
which preserves the reachability property.

The configuration C can be naturally written as C ≡ A ‖ B ‖ O
where A contains all parallel components of the form !(v� . w�), !(v)
and !(w); B contains all parallel components of the form v� . w� and v;
and O contains all output prefixes of the form w. Here we assume that
the rules of the structural congruence ≡ are applied as long as possible
in order to minimize the size of the configuration C (such assumptions
are implicit also later on). Observe now that any configuration C ′ ≡
A ‖ B′ ‖ O′ reachable from C contains exactly the same part A and
every parallel component from B′ is also in B.

The intuition of the reduction is that A does not have to be remem-
bered as all parallel components from A are always available, B will be
stored in control-states of the wPRS (note that there are only finitely
many different components in B′ for all reachable configurations of the
form A ‖ B′ ‖ O′) and the parallel components from O will be stored
as a parallel composition of stacks in the wPRS system.

Let C ≡ A ‖ B ‖ O be the initial configuration. Formally, the wPRS

rules ∆ where Const
def
= K ∪ {Z,X} (Z is a special symbol for the

bottom of a stack, X is a process constant for creating more parallel

components) and where Q
def
= {pB′

| ∃B′′ s.t. B ≡ B′ ‖ B′′} are defined
as follows.
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1. pB′
X −→ pB′

(X ‖ w.Z) B′ ⊆ B and !(w) ∈ A

2. pB′
w.Z −→ pB′

B′ ⊆ B and !(w) ∈ A

3. pB′
Z −→ pB′

B′ ⊆ B

4. pB′
v.Z −→ pB′

B′ ⊆ B and !(v) ∈ A

5. pB′
v −→ pB′

w B′ ⊆ B and !(v� . w�) ∈ A

6. pB′
v.Z −→ pB′′

B′ ⊆ B and B′ ≡ B′′ ‖ v

7. pB′
v −→ pB′′

w B′ ⊆ B and B′ ≡ B′′ ‖ v� . w�

In the definitions above, whenever we have w ∈ K∗, we use the
word w also in the wPRS rules in the meaning that it represents
a sequential composition of process constants contained in w, i.e., if
w = a1a2 · · · an then w in the wPRS rules stands for the sequential
composition a1.a2. . . . .an. Moreover B′ ⊆ B means that there is some
B′′ such that B ≡ B′ ‖ B′′ and x ∈ A means that the expression x is a
parallel component in A. All actions are omitted as they are irrelevant
for the reachability question.

Rules 1. – 3. correspond to the structural congruence ≡. As !(w) ≡
w ‖!(w) rule 1. enables us to create a new parallel component w when-
ever !(w) ∈ A and by rule 2. such a component can always be deleted.
Rule 3. corresponds to the fact that ǫ ‖ C ≡ C. (Recall that we assume
that C does not contain any component of the form !(ǫ) or !(ǫ).)

Rules 4. – 7. are computational rules: in rules 4. and 5. we allow
the reception of messages by the components in A and the control-
state does not change in this case; in rules 6. and 7. we do the same for
components in B′ (the current remaining part of B) and whenever such
a component is used, we remove it from B′ by changing the control-state
to pB′′

.
Let us assume the initial configuration C ≡ A ‖ B ‖ O as above

such that O ≡ w1 ‖ w2 ‖ · · · ‖ wn. The initial configuration of the
wPRS system ∆ is then

pB(X ‖ w1.Z ‖ w2.Z ‖ · · · ‖ wn.Z).

It is easy to see that every rewriting step in ∆ corresponds either
to a single computational step in the replicative ping-pong protocol
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or to an application of some congruence rule. On the other hand, any
communication in the protocol can be directly simulated in ∆.

Hence we can make the following observation (assuming that O′ ≡

w′
1 ‖ w′

2 ‖ · · · ‖ w′
n′).

Lemma 4. It holds that

A ‖ B ‖ O −→∗ A ‖ B′ ‖ O′

if and only if

pB(X ‖ w1.Z ‖ w2.Z ‖ · · · ‖ wn.Z) −→∗

pB′

(X ‖ w′
1.Z ‖ w′

2.Z ‖ · · · ‖ w′
n′ .Z).

Theorem 6. The reachability problem for replicative ping-pong pro-
tocols is decidable.

Proof. By Lemma 4 we reduced the problem to the reachability
question for wPRS (observe that pB′

≥ pB′′
iff B′′ ⊆ B′ is the natural

ordering on control-states of the wPRS demonstrating that the control-
state unit has a monotone behaviour). The decidability result then
follows from Theorem 5. 2

An interesting question to investigate is whether the active intruder
(as considered in Section 4) can be explicitly modelled in the replicative
variant of the ping-pong calculus. Such an intruder will have to be able
to remember all the messages exchanged during the protocol execution
plus he should be able to perform a set of non-trivial operations (in
order to perform e.g. analysis and synthesis). We claim that the model
would become Turing powerful and hence a non-trivial extension of the
replicative calculus is needed to capture the behaviour of the active
attacker, which will make reachability undecidable.

6. Conclusion

We have seen that ping-pong protocols extended with recursive defi-
nitions have a full Turing power. This is the case even in the absence
of nondeterministic choice operator ‘+’. A result like this implies that
any reasonable property for all richer calculi cannot be automatically
verified. In case that only two parties participate in the protocol, the
reachability analysis becomes feasible and the answer can be provided
in polynomial time.
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We have also showed that reachability analysis for a replicative
variant of the protocol becomes decidable. Our proof uses very recent
results from process algebra (Křet́ınský et al., 2004) and can be com-
pared to the work of Amadio, Lugiez and Vanackère (Amadio et al.,
2002) which establishes the decidability of reachability for a similar
replicative protocol capable of ping-pong behaviour. Their approach
uses a notion of a pool of messages explicitly modelled in the semantics
and reduces the question to a decidable problem of reachability for
prefix rewriting. In our approach we allow spontaneous generation of
new messages which is not possible in their calculus. Moreover, we
can distinguish between replicated and once-only behaviours (unlike
in (Amadio et al., 2002) where all processes have to be replicated). In
order to establish more specific decidability results for a semantics with
an explicit intruder, one should investigate a setting where the most
general intruder has been internalized into our calculus. The results in
our paper indicate that one should probably consider a subset of the
calculus that we have studied.

Last but not least we hope that our approach may be extended to
include other operations on messages. That this may be possible is
due to the fact that the proof of decidability for replicative protocols
only uses parallel composition of stacks and consequently does not
require the full generality of wPRS. Hence there is a place for further
extensions of the protocol syntax while preserving a decidable calculus
(e.g. messages of the form k1(k2 op k3)k4 for some extra composition
operation op on keys can be easily stored in wPRS as k1.(k2 ‖ k3).k4).

Other open problems include decidability of bisimilarity for replica-
tive ping-pong protocols and the problem of determining general con-
ditions that guarantee equi-expressiveness of recursion and replication
(see e.g. (Milner, 1993; Giambiagi et al., 2004; Nielsen et al., 2002)).
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