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Abstract. Efficient state-space exploration has a significant impact on
reachability analysis in explicit model checking and existing tools use sev-
eral variants of search heuristics and random walks in order to overcome
the state-space explosion problem. We contribute with a novel approach
based on a random search strategy, where actions are assigned dynami-
cally (on-the-fly) updated potencies, changing according to the variations
of a heuristic distance to the goal configuration as encountered during
the state-space search. We implement our general idea into a Petri net
model checker TAPAAL and document its efficiency on a large bench-
mark of Petri net models from the annual Model Checking Contest. The
experiments show that our heuristic search outperforms the standard
search approaches in multiple metrics and that it constitutes a worthy
addition to the portfolio of classical search strategies.

1 Introduction

Heuristic search strategies are widely applied in areas such as pathfinding and
planning [7], where the popular A* algorithm [6] is often used. Similarly in
model checking, instead of naively exploring the state-space using, e.g., Breadth
First Search (BFS) or Depth First Search (DFS), it can be beneficial to use a
heuristic search to navigate in the state-space. Heuristic search has also been
succesfully applied in Petri net verification tools [12,5,11]. Since 2011, the an-
nual Model Checking Contest (MCC) [10] has been held; here Petri net tools
compete to solve a variety of problems, such as reachability analysis and dead-
lock detection. The tools ITS-Tools [11], SMPT [2] and LoLA [12] have im-
plemented a random walk state-space exploration, and Tapaal [5] is using a
random depth-first search. These tools have placed top three in the reachability
category in MCC’21 [9] and MCC’22 [10], showing that randomness improves
tool efficiency [12].

We propose a novel search heuristic, called Random Potency-First Search
(RPFS), which combines a heuristic search based on distance function together
with randomness in order to achieve a competitive-edge compared to the existing
strategies. Our objective is to increase the likelihood of finding (not necessarily
the shortest) trace to goal configurations. The unique property of RPFS is that,
while searching the state-space, it learns which transitions are more likely to
contribute to achieving a given reachability goal and it dynamically modifies
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transition potencies (a number that expresses how likely a transition is to be
selected during the search) according to the learned information. Such dynamic
potency updates proved recently beneficial for guiding random Monte Carlo
walks [1] but have not yet been explored for state-space search strategies.

We implement our RPFS search in the verifypn engine [8] of the tool
TAPAAL [5], the best scoring tool in the reachability category at the most
recent edition of MCC’22 [10]. We then benchmark RPFS against the existing
search strategies present in TAPAAL on a large set of MCC’22 models. The re-
sults indicate a convincing performance of RPFS: it solves additional 512 queries
compared to the second best search strategy, which is a significant 5% increase in
the number of answered queries. We then rerun the TAPAAL competition script
(using a portfolio of several different search strategies) used at MCC’22, by re-
placing the existing heuristic search with RPFS and obtain over 1% additional
answers. As TAPAAL, the winner of MCC’22, solves close to 95% of all queries
in the reachability benchmark, the additional 1% increase is very significant.

Preliminaries. Let N0 be the set of natural numbers including zero. A Petri net
is a triple N = (P, T,W ) where P is a finite set of places, T is a finite set of
transitions s.t. T ∩ P = ∅, and W : (P × T ) ∪ (T × P ) → N0 is a weighted flow
function. A marking on N is a function M : P → N0 assigning a number of
tokens to places. A transition t ∈ T is enabled in M if M(p) ≥ W (p, t) for all
p ∈ P . An enabled transition t in M can fire and produce a marking M ′, written

M
t−→ M ′, where M ′(p)

def
= M(p)−W (p, t) +W (t, p) for all p ∈ P .

Graphically, places are drawn as circles, transitions are drawn as rectangles,
and arcs are drawn as arrows. Unless an arc is annotated by a number, its default
weight is 1; we do not draw normal arcs with weight 0. Tokens are denoted as a
number inside a place. A Petri net example is given in Figure 1.
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Fig. 1: Petri net example

We are interested in the reachability of
the standard cardinality queries φ where
φ ::= e ▷◁ e | φ ∧ φ | φ ∨ φ | ¬φ for ▷◁
∈ {≤, <,=, ̸=, >,≥} and where expressions e
are given by e ::= n | p | e + e | e − e | n · e
such that n ∈ N0 and p ∈ P .

An expression e in a marking M natu-
rally evaluates to a number eval(M, e) as-
suming that eval(M,p) = M(p). The satis-
faction relation M |= φ is then defined in a
straightforward way such that M |= e1 ▷◁ e2
iff eval(M, e1) ▷◁ eval(M, e2).

For example in the net from Figure 1, we can reach a marking satisfying the
query p3 ≥ 20 by firing the transition t2 followed by t3.

2 Explicit State-Space Search

In order to solve the reachability problem, explicit model checkers perform a
state-space search as depicted in Algorithm 1. The algorithm is generic in the
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Algorithm 1: Generic Reachability Search Algorithm

Input: Petri net N , initial marking M0, proposition φ
Output: true if there is a reachable marking M s.t. M |= φ, false otherwise

1 Function Generic-Reachability-Search(N,M0, φ):
2 if M0 |= φ then return true ;
3 Initialise(Waiting, M0) // Initialise Waiting with M0

4 Passed := {M0}
5 while Waiting is non-empty do
6 M := SelectAndRemove(Waiting)

// Select and remove an element M from Waiting

7 for M ′ such that M
t−→ M ′ where t is enabled in M do

8 if M ′ is not in Passed then
9 if M ′ |= φ then return true ;

10 Passed := Passed ∪ {M ′}
11 Update(Waiting, t, M , M ′, φ) // Update Waiting with M ′

12 return false

way how it initialises the waiting set with M0, updates the waiting set with the
successor marking M ′, and selects and removes an element from the waiting
set. In BFS strategy, the waiting set is implemented as a queue (FIFO) and in
DFS it is implemented as a stack (LIFO). In RDFS, which stands for random
DFS, the implementation is a stack where all successor markings M ′ of M are
randomly shuffled before they are pushed to the waiting stack. A heuristic search
strategy, called BestFS, implements the waiting set as a priority queue where
markings that minimise the distance function Dist(M,φ) are selected first. The
distance function returns a number, estimating how far a given marking M is
from satisfying the property φ. In the tool TAPAAL, the distance function is
computed by Algorithm 2 taken from [8].

The four standard strategies are implemented for example in the Petri net
model checker TAPAAL [5] and its engine verifypn [8]. The verifypn engine
performs a number of preprocessing techniques like query simplification [4] us-
ing state equations [8] as well as structural reductions [3]. These techniques can
solve a reachability query without executing the explicit state-space search. We
evaluate the standard search strategies on Petri net models from MCC’22 [10];
each of the 1321 models are verified against 16 reachability cardinality queries,
giving us the total of 21 136 problem instances. As 10 952 instances are solved
without employing the explicit state-space search, we consider only the remain-
ing 10 184 instances in our experiments on which we run all search strategies,
enforcing 5 minute timeout and a memory limit of 16GB. The experiments are
run on a CPU cluster using AMD EPYC 7551 32-core processors with clock
speed at 2.5GHz. A reproducibility package can be obtained at GitHub1.

1 https://github.com/theodor349/RPFS-reproducibility

https://github.com/theodor349/RPFS-reproducibility
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Algorithm 2: Distance Heuristics in TAPAAL, taken from [8]

Input: Marking M , cardinality query φ
Output: Nonnegative integer representing the distance of M from satisfying φ

1 Function Dist(M,φ):
2 if φ = e1 ▷◁ e2 then return ∆(eval(M, e1), ▷◁, eval(M, e2)) ;
3 if φ = φ1 ∧ φ2 then return Dist(M,φ1) + Dist(M,φ2) ;
4 if φ = φ1 ∨ φ2 then return min{Dist(M,φ1), Dist(M,φ2)} ;
5 if φ = ¬(e1 ▷◁ e2) then return ∆(eval(M, e1), ▷◁, eval(M, e2)) ;
6 if φ = ¬(φ1 ∧ φ2) then return min{Dist(M,¬φ1), Dist(M,¬φ2)} ;
7 if φ = ¬(φ1 ∨ φ2) then return Dist(M,¬φ1) + Dist(M,¬φ2) ;
8 if φ = ¬(¬φ1) then return Dist(M,φ1) ;

where ▷◁ is the dual arithmetical operation of ▷◁ (for example > is the
notation for ≤) and where

∆(v1,=, v2) = | v1 − v2 | ∆(v1, ̸=, v2) =

{
1 if v1 = v2

0 otherwise

∆(v1, <, v2) = max{v1 − v2 + 1, 0} ∆(v1, >, v2) = ∆(v2, <, v1)

∆(v1,≤, v2) = max{v1 − v2, 0} ∆(v1,≥, v2) = ∆(v2,≤, v1)

Strategy Total Solved Solved % Fastest Unique Unique All

BFS 10184 7367 72.3 % 856 100 16

DFS 10184 8235 80.9 % 1691 14 7

RDFS 10184 8641 84.8 % 2452 218 41

BestFS 10184 8617 84.6 % 2358 177 31

Virtual Best 10184 9179 90.1 % - - -

RPFS 10184 9153 89.9 % 2000 - 178

Virtual Best All 10184 9357 91.9 % - - -

Table 1: Comparison of search strategies

The upper part of Table 1 (ignore for now the rows with RPFS strategy and
Virtual Best All, as well as the column Unique All) shows the comparison of
the basic search strategies as implemented in TAPAAL’s verification engine, the
best tool at MCC’22 in the reachability category. The numbers of solved queries
for each strategy indicate that the random DFS (RDFS) as well as the standard
heuristic search (BestFS) are the most succesfull strategies, both solving almost
85% of all queries. These are also the two strategies that solve largest number of
queries fastest. The number of unique answers (number of queries that a given
strategy solved but none of the other three provided any answer) also indicates
that the random and heuristic searches are the most beneficial ones. It is worth
to note that BFS also obtains a significant number (100) of unique answers. This
is due to the positive queries that have a relatively short witness trace, where
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Initialise(Waiting, M0) =
Waiting := {(M0,−)}
foreach transition t in T do

Potencies(t) := 100

(a) Initialise

Update(Waiting, t, M , M ′, φ) =
Waiting := Waiting ∪ {(M ′, t)}
Potencies(t) := max{1,Potencies(t)+

Dist(M,φ)− Dist(M ′, φ)}

(b) Update

SelectAndRemove(Waiting) =
n := 0
foreach transiton t in Waiting do

n := n+ Potencies(t)
r := a random number in [0, 1]
if r ≤ Potencies(t)/n then

tbest := t

(M, tbest) := argmin
(M,tbest )∈Waiting

Dist(M,φ)

Waiting := Waiting \ (M, tbest)
return M

(c) Select and remove

Fig. 2: The pseudocode for RPFS

BFS manages to find them but the other strategies miss these answers as they
explore the state-space in a more depth-like manner.

These results indicate that one can consider to combine the heuristic search
strategy with randomness, which we indeed tried by modifying the BestFS strat-
egy so that we randomly select a marking from the priority queue among the first
n markings that minimise the distance to the reachability query. The optimal
value of n is around 100 where the performance peeks by solving 8761 instances
(corresponding to 86.0% of all queries). In the next section, we shall present our
idea of combining heuristic search with randomness by dynamically changing the
probabilities of which transition to fire next during the state-space exploration.
This novel method achieves even more significant performance improvement as
it can solve almost 90% of all queries on its own.

3 Random Potency-First Search (RPFS)

We shall now describe our RPFS strategy where we assign potencies (positive
numbers) to transitions. During the random search, transitions with higher po-
tencies are more likely to be selected. We modify the transition potencies dy-
namically during the state-space search as we learn more information about
which transitions decrease the distance to satisfying a given reachability query.
The RPFS algorithm is described in Figure 2 where it instantiates the three
primitives from Algorithm 1.

We initialise Waiting as a set of marking-transition pairs (M, t) representing
a marking M that was reached by firing t (initially no transition is fired to reach
M0, so we use ’-’ here). The potencies of all transitions are set to 100. To select a
marking from Waiting , we first pick some transition t from the waiting set with
the probability Potencies(t)/

∑
t′ appearing in Waiting Potencies(t

′) and return a
marking that can be reached by firing t and minimises the distance function. For
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an efficient implementation of the selection of t, we use an algorithm described
in [1]. Finally, the update function changes the potency of the transition t by
the difference between the current distance and the new distance after firing t.
Should the distance increase, the potency of t is lowered accordingly but we keep
the potency of all transitions strictly positive. Implementation-wise, Waiting is
implemented as a collection of priority queues, one for each transition. As such,
for an element (M, t), the marking M is only stored in the priority queue for t.
Because of this, we can select markings efficiently, as we do not need to search
through all markings in the waiting set.

Let us consider the net from Figure 1 where we ask about the reachability of
the query p3 ≥ 20. The standard BestFS heuristics attempts to find a solution
by repeatedly firing t1, as this reduces the distance to satisfying the reachability
query. First when all 19 tokens are in the place p3, the search backtracks and
explores the firing of transition t2 that brings us to the goal (after firing also
t3). In total, 20 markings are explored before t2 is fired. Because of the random
choice in RPFS, the number of explored markings is not deterministic; we run
RPFS 100 000 times on this example and noticed that it expanded on average
3.03 markings before it reached the goal. Hence the random choice allows us
to explore with a certain probability also alternative search options, while still
having a preference towards the more promising markings.

4 Experimental Evaluation of RPFS

We have rerun the RPFS strategy search in the identical experimental setup as
presented in Section 2 and the results are summarised in Table 1. Our RPFS
strategy solves 89.9% of all queries, which is almost the same as all four remain-
ing strategies solve together (the virtual best of these strategies is 90.1%). In the
number of unique answers over all five search strategies, RPFS got the largest
number of 178 unique answers; in particular the number of unique answers for
BFS dropped to only 16, which is a clear indication that RPFS is more effi-
cient in finding short witness traces that the RDFS and BestFS have difficulties
dealing with. The benchmark contains a large number of easy-to-solve instances,
where RDFS and BestFS are faster due to a smaller overhead compared to run-
ning RPFS. Still, on 2000 instances RPFS provides the fastest answer. We also
experimented with different ways of modifying the transition potencies (e.g. by
altering them by a constant value); these changes did not make any significant
difference on the performance of RPFS. In Figure 3 we can see the four stan-
dard search strategies, RPFS and virtual best (over all five strategies) for our
experimental evaluation. Independently for each search strategy, all instances
(on x-axis) are ordered by their running times (on y-axis) and plotted in the
comparison graphs. Note that y-axis uses the logarithmic scale. We can see that
RPFS is clearly the best performing and it is closer to the virtual best (over all
strategies) than to the BestFS and RDFS that show very similar performance.

In the final experiment, we run the competition script of TAPAAL on all
models in the reachability category. The script uses a portfolio management,
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Fig. 3: A performance plot comparing standard search strategies and RPFS

BestFS RPFS BestFS % RPFS %

Cardinality 20308 20471 96.08% 96.85%

Fireability 19541 19894 92.45% 94.12%

Total 39849 40365 94.27% 95.49%

Table 2: Solved instances from the total of 42272 (21136 for each subcategory)

where several search strategies and other optimisations are run in parallel on
up to 4 cores for one hour on all 16 queries. In the script, we replace the use of
BestFS with our new RPFS strategy and the number of answered queries can
be seen in Table 2. We can observe a nontrivial increase in the answers, both in
the cardinality queries and even more in the fireability ones (that are internally
transformed into cardinality queries). In total, the RPFS heuristic provided an
improvement of 1.22% over the performance of last year’s winner of MCC’22.

5 Conclusion

We described RPFS, a novel idea of random, heuristic-based search strat-
egy where transition potencies are dynamically updated during the state-space
search. We instantiated this search strategy to the Petri net framework, how-
ever, we believe that the idea can be applicable to other formalisms as well. The
RPFS strategy provides a significant performance boost to the existing strategies
and it is now implemented in the state-of-the-art tool TAPAAL. In future work,
we shall study how to further improve the performance of RPFS e.g. by guid-
ing the search according to the solutions to state-equations obtained by linear
programming, or by turning it into a variant of A* search.

Acknowledgements. We thank the anonymous reviewers for their comments and
suggestions and Peter G. Jensen for his help with the experimential setup.
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A Appendix (Explicit State-Space Search)

Methodology for benchmarking against random search strategies.
Running random search strategies can result in different running times, depend-
ing on the chosen random seed. In order to eliminate such fluctuations, we run
RDFS many times with 21 different random seeds. For each seed, we indepen-
dently order all instances (x-axis) according to the running times (on y-axis in
logarithmic scale) and present the curves in Figure 4. We can observe that the
21 random strategies vary a relatively small amount in the total number of in-
stances solved. In fact, out of the total 10 184 instances, the largest difference in
the number of instances solved between any two RDFS strategies is 50. In our
experimental evaluation, we used the seed of the random run that solved the
median number of answers in the benchmark. We can also see that repeating
random runs with different seeds can improve the answer rates as shown by the
virtual best curve in the figure (here an instance is solved if at least one of the
random searches found the answer).

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

10−2

10−1

100

101

102

Instance

T
im

e
(S

ec
on

ds
)

Virtual Best

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

10−2

10−1

100

101

102

Instance

T
im

e
(S

ec
on

ds
)

Virtual Best

Fig. 4: Comparison of RDFS runs using 21 different seed offsets
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