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Abstract. Heatpump-based floor-heating systems for domestic heating
offer flexibility in energy-consumption patterns, which can be utilized for
reducing heating costs—in particular when considering hour-based elec-
tricity prices. Such flexibility is hard to exploit via classical Model Predic-
tive Control (MPC), and in addition, MPC requires a priori calibration
(i-e. model identification) which is often costly and becomes outdated as
the dynamics and use of a building change. We solve these shortcomings
by combining recent advancements in stochastic model identification and
automatic (near-)optimal controller synthesis. Our method suggests an
adaptive model-identification using the tool CTSM-R, and an efficient
control synthesis based on Q-learning for Euclidean Markov Decision
Processes via UPPAAL STRATEGO. On a virtual Danish family-house from
the OpSys project, we demonstrate up to 33% reduction in heating cost
while retaining comparable comfort to a standard bang-bang controller.
Furthermore, we show the flexibility of our method by computing the
Pareto-frontier that visualizes the cost/comfort tradeoff.

Keywords: Model identification - strategy syntheses - heat-pump con-
trol - floor heating.

1 Introduction

Space heating is the primary source of energy consumption in residential and
commercial buildings, consuming more than 40% of the energy delivered to such
facilities [8]. Intelligent control of heating systems promises to reduce this energy
use, thereby countering global warming effects and CO2 emissions.

Model Predictive Controllers (MPCs) have been demonstrated as an effi-
cient method for control of domestic heating systems with the potential for both
energy and cost reductions [1,[{18}/26]. In the classical setting of MPC, an approx-
imate system model under control is constructed before application and paired
with a control objective. In the setting of a domestic heating system, such a
model describes heat dynamics of the house and external effects that may im-
pact the temperature of the house, for instance, residential behaviour, outdoor
temperature or solar radiation contributing to the temperature of the rooms.
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This model also defines the possible actions of the controller along with the im-
pact of these control-actions on the behaviour of the system. When the given
model is paired with a control objective (e.g. minimize cost and maximize com-
fort), (model, objective)-pairing induces an optimization-problem. Depending on
the formalism used to describe the model and control objective, different solvers
can be used to obtain the next optimal control action to use. As a result, one
can apply the MPC-controller in a tight and periodic loop of “observe, solve,
act” to control the system.

This paper targets a floor-heating heat-pump control problem for a standard
family house. In the case of domestic heating systems, three significant challenges
appear in the classical MPC application:

— the heating dynamics of a house is not known a priori,

— the behaviour and dynamics of a house change over the lifetime of the house,

— the design, tuning and deployment of MPC for learning near-optimal control
strategies to minimize a desired objective function is not straightforward.

To address these issues, we propose a framework for model-identification for
use with the tool UPPAAL STRATEGO extending on the concept presented
by Larsen et. al. [18]. In particular, we introduce the model estimation into
the loop of the regular MPC-control. We employ the tool CTSM-R, (continues
time stochastic modelling in R) [17] to identify the house model by utilizing the
historical data of the house. We further propose an online strategy synthesis
approach where the controller periodically predicts the control decisions with
the current room temperatures and weather forecast knowledge. The controller
explores partial state space and learns near-optimal strategies within the given
price budget based on the selected learning method. Under the learned strategies,
the controller optimizes and computes every decision ahead of time to make it
ready to be applied for the next time interval. The main contributions of the
method are as follows.

1. Developing data-driven thermal dynamics and constant coefficient estima-
tions using CTSM-R.

2. Modelling a case-house in STRATEGO using the estimated heat transfer co-
efficients and thermal dynamics.

3. Employing STRATEGO MPC to learn near-optimal control strategies for op-
erating the heat-pump.

4. Analysing the efficiency of the STRATEGO controller to handle the trade-off
between heating cost and user comfort.

Related Work: Several domestic heating systems have been discussed in the
literature. Vogler-Finck et. al. [26] study the house dynamics where the control
objective is given in the restricted form of linear equations. They apply grey-box
modelling facility from MATLAB System Identification toolbox [20] to identify a
model for predictive control. They examine three family houses of different ages
and the results witness reduced carbon footprint of heating by MPC optimization
based on energy and CO2. However, they use a simple deterministic model for
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MPC whereas we apply a stochastic model for MPC with an online strategy
synthesis approach. An alternative approach is adopted by Larsen et. al. [18]
who utilize the tool STRATEGO [6[7] to obtain near-optimal control-optimization
for switch-controlled hybrid stochastic systems. The authors suggest an online
and compositional synthesis approach for a family-house floor heating system,
focusing purely on maximizing comfort and disregarding energy consumption.
In our work, we instead optimize for multiple objectives (comfort and cost) and
introduce a model identification approach into the loop of an MPC control.

For large and complex systems, model identification becomes an important
aspect of MPC control to identify a relatively simple and reduced-order model to
make it practically controllable in real-time. However, Privara et. al. [22] describe
that model identification is one of the main practical obstacles for large scale use
of MPC. The grey-box modelling is one of the commonly used approaches that
require a small data-set for model identification. Ferracuti et. al. [9] and Fonti
et. al. [10] utilise low-order grey-box models to detect short-term (15min, 1h and
3h horizons) thermal behaviour of a real building while Reynders et. al. [23] used
grey-box approach to identify reduced-order energy building models. However,
these works do not offer a controller synthesis for the identified models. We
create a specialised model for a fully automatic heat-pump case where we first
identify the model and then use it for strategy synthesis and evaluation.

Vinther et. al. [25] propose black-box approach to estimate MPC models from
multiple Artificial Neural Network (ANN) techniques with a Genetic Algorithm
(GA) to predict the future set-points (for room temperatures) in an existing
floor heating system. Furthermore, Nassif et. al. [21] also use ANN with GA for
optimisation of a HVAC system. Harasty et. al. [11] apply a differential evolution
(DE) algorithm with ANN for MPC control and optimisation of room temper-
ature for the conservation of cultural heritage. These approaches are based on
offline learning, but we offer an online learning approach where the control deci-
sions are predicted periodically for the near future by considering the real-time,
making them applicable in practice even for long-lasting horizons.

2 Usecase and Method

We demonstrate our approach on a 150m? experimental family house sketched
in Figure [[] The house consists of four rooms of different sizes and material
properties: Room 1 is the designated living room with a build-in kitchen, Room 2
and Room 4 are bedrooms, and Room 3 serves as the bathroom with a light
concrete floor as opposed to the light wooden floors of the other rooms. The
system uses hot water as a means of heat distribution. The house in question
has a high-fidelity DymMoLA model, which has been constructed and compared
to a physical model through the OpSys project [15]. As it is standard for existing
houses, the heating system has two layers of control: room thermostats (with a
fixed mechanical bang/bang controller), and a heat-pump (for which we derive a
controller). The model reflects a realistic scenario where an existing building is
retrofitted with an intelligent heat-pump. Notice here that each room thermostat
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acts independently of the heat-pump and the other thermostats; it is simply
concerned with opening the flow of hot water when the room temperature drops
below a certain set point (fixed to 22° in our experiments). This implies that the
only control-point of concern is the intensity of the heat-pump.

The system is designed as a closed-loop system with a fixed distribution-
key. This means that the ingoing massflow of water (ﬁf) must be distributed
to the rooms via the manifold. Conventionally the manifold is calibrated s.t.
a fixed proportion of water is designated to each room. This distribution-key

we denote M wa for a room x. The individual room thermostats regulate the
binary valves v,. This implies that the massflow is re-distributed (proportionally)
to the remaining open valves if certain valves are shut. Furthermore, we denote
by T forward and Treturn the forward and return water temperature.

The main purpose of the heat-pump is to balance the difference between the
room temperatures Tﬂ” and a given set point T, with the cost of heating cost(7) =
price, - w., which is a time-dependent function of the energy consumption of the
heat-pump w, (determined directly by the controller) and the market electricity
price (price,) which varies on an hourly basis and is known 24 hours in advance.

Naturally, a consumer wishes to weight comfort against cost, and we can
thus state the optimization criteria and introduce the 0 < Weo,,p < 1 weighting
factor that allows for such tuning. This allows us to derive the following ( Weomys-
parameterized) fitness function for our controllers for a period 7y to 7, given that
the heat-pump settings, energy prices and room temperatures (denoted 7 (7))
are known for the duration for k rooms as:

Tn k ~
F(roma) = [ (0= Waang) - c0st(@) + Woamg + | ST, = Ti(a))? | de

Notice that this function penalizes more significant deviations of temperatures
in a squared fashion while the cost increase has a linear impact on fitness.

2.1 Methodological Overview

While a high-fidelity model for DYMOLA is provided, this model is infeasible
for practical experiments both due to its high computational effort caused by
the high fidelity and due to licensing issues making massive parallel experiments
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Fig. 2: Estimation and control process using observed data

unfeasible. The overview of our suggested approach can be seen in Figure[2] We
initially derive a low-fidelity model of the thermal dynamics of the building via
a data-driven grey-box model estimation using the CTSM-R software [16]. The
CTSM-R library allows finding best-fit parameters for a stochastic model based
on samples of a (virtual) house. The specific grey-box formulation is given in
Section [3| along with an evaluation of its performance. Notice that the model-
identification problem is constructed s.t. the estimation can be computed in
a decomposed manner, i.e. a model is computed individually for each room,
and the set of models is later recomposed. We do so to avoid an explosion in
computational effort from a large set of variables to estimate. While this grey-
box model yields us the internal heat coefficients (how the energy dissipates
between rooms or a heater), it does not capture the heat transfer from the hot
water flowing through the pipes. Therefore, we derive a model capturing the
relationship between internal temperature changes and the drop in the heat-
carrying water, yielding us the return water temperature (T'yesurn )-

Given these two thermal models, we can instantiate a Euclidean Markov
Decision Process (EMDP) [13] from which STRATEGO MDP model can learn
near-optimal control strategies. This model simulates both the behaviour of the
house but also contains models of the expected weather and the future energy
price prediction. We use this model for both evaluation and predictive control in
our experimental setup, including an experiment with varying degrees of noise
in the model used for predictive control. For instance, we replay a historical
weather scenario during the evaluation while the predictive controller only has
access to an approximate weather forecast.

3 Thermal Model Identification

The CTSM-R software [17] allows for continuous-time grey-box model identi-
fication. The general method of CTSM-R is based around maximum likelihood
estimation and a gradient-decent approach for convergence. It identifies Continu-
ous Time Stochastic Model and estimates the embedded parameters. CTSM-R
has been successfully applied for the identification and estimation of physical
system models, e.g., heat thermodynamics of buildings and walls, thermostats
and radiators, and more [5}24}27].

We model the thermal dynamics of the house as presented in Equations 7
from Figure (3} For readability, we annotate the system in the following way:
predicted state-variables by a tilde, e.g. 77, inputs directly affected by the two
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Fig.3: The thermodynamics system with the input data and the heat transfer
coefficients where i € {1,2,3,4} and, («), (8) are “resistance” and “capacity”

levels of controls (i.e. the heat-pump or the room thermostat) with an overline,

e.g. M?, impact of nature with a dot, e.g. T,,, and constants (to be estimated)
are left without decoration.

The thermal dynamics model follows a classical three-state framework con-
sisting of room temperature (TZ), heater temperature (T,j) and envelope tem-
perature (77). This approach is similar to what was presented in [16]; however,
we here consider the rooms as individual model identification problems to over-
come instability in the model identification when the number of coefficients to
be estimated grows. Here the room temperature (T7) is directly affected by the
heater (relative to the coefficient o), the envelope (relative to the coefficient
o) and the direct solar radiation of the room (S relative to the coefficient o).
The room temperature directly impacts the heater temperature (be), but also
receives energy from the in-flowing hot water which is proportional to the flow-
rate M and the relative difference to the forward temperature of the water (T).

The envelope (T}’L) models the energy transfer through the walls surrounding the
room. The envelope thus exchanges energy with the room itself (Tﬁ), the outside
world T, (proportional to the coefficient of) and with the other rooms of the
house (the last sum term of Equation ().

A legend of the variables used can be seen in Figure [3alfor data-variables and
Figure[3D] for the transfer coefficients. Given a time-series of historical data of the



End-to-End Heat-Pump Control Using UPPAAL STRATEGO 7

22

o

% 20 S

3 =

o i<}

g 18+ g

g measured >

2 " estimated e

0 2000 4000 6000 0 2000 4000 6000

Time (minutes) Time(minutes)
(a) Room 4 (b) Deviations for each room

Fig. 4: Predicted and and measured indoor temperatures

variables presented in Figure [3af (excluding T, # and Tg), the CTSM-R software
can estimate the heat transfer coefficients presented in Figure Eﬂ The model
is estimated s.t. the suggested coefficients allow us to predict T° with a high
accuracy given known values for the massflow and temperature of the feed-in
water and the environmental influences such as sun and outdoor temperature.

Decomposed Grey-Box Modelling. Notice here that the presented model only
considers a single room. This implies that the identification can be done on a
room-to-room basis without the explosion in the coefficients to be estimated. In
general, this allows us for faster model identification. This implies repeating the
same model-identification scheme four times but with different indexing. As we
shall see later, four such identified models can be recomposed to form a complete
model with high predictive power.

Evaluation of the Estimations. We shall now assess the quality of our proposed
model-identification. The model is identified on a time-series consisting of data
generated by the high-fidelity DYMOLA model using historical weather input
from February 05, 2009, from Aalborg, Denmark and five days forward at a
sample rate of 60 seconds.We note that the model estimation for the values is
completed in less than 7 minutes for each room. Remark here that the data
used for the estimation contains some effects not captured by Equations 7;
notably occupants and cooking activities, contributing to significant noise in the
system.

To estimate the quality of the model, we compute a 6000 minutes time-
series in DYMOLA and compare the predicted room temperatures of each of the
identified room-models to the reference computed by DyMOLA. In Figure
we see a head-to-head comparison for Room 4 where we can observe that the
identified model demonstrates good predictive power. In particular, we note that
no divergent behaviour is observed. The deviation of each room from measured
data can be seen in Figure [db] Excluding Room 1, the largest average deviation
observed for all rooms is less than 1 C°, and in general, kept below 0.5 C°
of difference. However, in Room 1 in the following intervals 1000-1400, 2400-
2900, 3800-4300, 4700-5400 minutes, significant deviation occurs, which is traced
back to the unaccounted contribution of heat from cooking activities which are
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expected to be unobservable in a real application—and not captured during the
model identification.

Estimating Return- Water Temperatures. The model created so far is only con-
cerned with the internal transfer of energy in the house; however, in Figure [T] we
can see that the return-water of the rooms is given as input to the heat-pump.
We thus need to estimate a second model for predicting the return-water tem-
perature. We here again adopt a data-driven approach and derive a model of this
temperature-drop directly from data. We here assume a simple linear model; the
increase in temperature of a room is assumed to be primarily due to energy dis-
sipation from the heater. While this assumption is true in a closed system (due
to the principle of conservation of energy), we here know that the assumption is
incorrect: external influences occur, such as loss and gain of energy from neigh-
boring rooms. This assumption allows us to establish the relationship described
in Equations —@, and using historical data for Tfoppara, 1) and T/ we can
estimate the coefficients o, 8 and intercept . Again, these coefficients allow us
to later predict the value of T'yepyrmi for use in our full predictive model. Notice
that prior to model-identification, we filter out data points where the water is
not flowing (i.e. the local thermostat has shut off the supply). It is observed that
while the return temperatures are all above 32 C°, the absolute mean error in
estimating them is for all the rooms between 0.74 C° and 0.95 C°.

Energy%oss = Tforwm'd - T}ZL (5)
Energy; gin, =Ty, — Ty (6)
Tforward - Tretw"ni ~ Q- Energy’ltoss —+ /8 : EneTgy;ain + (7)

4 Modelling in UPPAAL STRATEGO

We can create a complete predictive model given the two identified thermal
models. For doing so, we use the UPPAAL tool suit [214,|19] which has been
successfully applied in many industrial projects for verification, performance
analysis, and strategy synthesis. UPPAAL STRATEGO [7] is a branch of the tool
that provides machine learning-based techniques for strategy synthesis and cost
optimization of different controllers from Priced Timed MDPs. It has a rich mod-
elling formalism for stochastic and hybrid games and control synthesis exploit-
ing efficient reinforcement learning facilities. In UPPAAL systems are modelled
as networks of finite-state automata processes. The processes communicate with
each other through channels or shared variables, and real-valued clocks facility
is available in the tool to capture critical timing aspects of a system. In addi-
tion, STRATEGO provides C-library support [14] which offers a convenient way
to construct complex interactions with other libraries and historical data, for
instance, STRATEGO itself.

The overall composition of the system as a model in STRATEGO can be seen
in Figure We design sub-parts of the system as separate templates (parameter-
izable automata). The dashed-line areas in Figure[5|represent that the model has
four templates: Room, HeatPump Controller, DataReader and Objective Function.
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In the Room template, we express the continuous variables Tf, Tfl and Tg (de-
veloped in Equations as real-time clocks which evolve with time, but with
rate-expressions matching the identified models. The DataReader template reads
the weather and day-ahead electricity price information from the data file into
the model. The Objective Function template implements the fitness/optimization
function (see Equation . The HeatPumpController template implements the
control mechanism of the controller where choices for using different energy levels
for heat-pump are made.

STRATECGO handles this heating problem as a stochastic hybrid game. In this
model, solid edges indicate controllable actions, and dashed lines indicate uncon-
trollable (controlled by the environment) actions. Circles are denoted locations,
and the double-circle indicate the initial location of automata and arrows are
called edges. An (instantiated) set of templates constitute a Network of (Hybrid
Stochastic) Timed Game Automata (which semantically gives us an EMDP)
where a state is given by a location vector (one for each template instance) and
an assignment of concrete values to any variable. The system may then evolve
by respecting guards and invariants — in particular, those that restrict the
continuous development of clocks wrt our house dynamics. The initial location
is committed (marked by a C in the locations) forcing the model to initially call
the init() function, initializing the weather, electricity price and solar radia-
tions values. At the following location, the controller may take any of the two
edges depending on the amount of energy it decides to operate the heat-pump
in an interval; in the lower transition, the heat-pump is shut off while in the
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upper uses the select statement to compactly implement 10 different intensity
levels of the controller (encoded in the type intensity_t). I.e. the controller
assigns the temporary variable i a discrete value from intensity (range between
0 and 10) to reflect different intensity level choices to operate the heat-pump.
The function roomControl() implements the bang/bang controllers of the room
thermostats, which decides whether to periodically open or close the valves lead-
ing to each room, this directly gives a way to compute the distribution of the
ongoing flow by the setMassFlow() function. The variable consumed_power con-
tains the amount of electricity selected by the controller for each intermediate
interval during strategy synthesis while heat_produced is the produced heat for
every interval. The function calculate_cop() calculates the Coefficient of Per-
formance (COP) value used to measure the produced heat. Notice that the COP
value, for a given return-water temperature and outdoor temperature, provides a
gearing of input to output energy; i.e. at a COP value of 2, a single kWh of power
yields 2kWh of energy. Such gearing is normally found in the technical speci-
fications of a heat-pump. This gearing, along with the pump intensity-setting,
massflow and the return-water temperature, allows for the computation of the
forward temperature and using the equations for return-water temperature. The
return-water temperature is computed based on the previous time-step, and the
relative changes in the indoor temperatures allow us to predict this value us-
ing the developed equations from Section |3] At the wait location, the invariant
x<=interval bounds the system to stay there until the value of clock x (local
clock) reaches interval i.e. 15-minute. The constant interval is the control
frequency of the heat-pump. The guard x>=interval prevents the system from
making this transition before spending 15 minutes at the wait location, after
which the clock x is reset to zero, allowing for timing a new interval.

Evaluation using STRATEGO: We use the provided model for both learning and
evaluation in our experiments. However, in the evaluation phase, the control
choices of the STRATEGO controller template are restricted to follow those sug-
gested by a call to an external library, implying that the controller is invoked
for every simulated 15 minutes. When we evaluate the system under the control
of a bang-bang controller, this call returns either full intensity or the 0 inten-
sity value. When the STRATEGO itself is used as a controller instead, the call
instantiates the above templates—but instead of evaluating, it will synthesize a
controller by repeated sampling.

4.1 Learning by STRATEGO

To attain a predictive controller, STRATEGO trains on the instantiated model,
using the initial state estimate by exploiting repeated sampling and Q-learning.
This allows the tool to factor in temporal changes such as weather and price
changes of the near future. However, four problems arise:

1. not all variables are observable, specifically only the room-temperatures (TT’),
the weather forecast and the price projection can be observed,
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2. controllers take time to compute, leading to a delay from observation to
reaction,

3. the development of the real world (or evaluation model) can deviate over
time, and

4. both weather forecasts and prices have a limited horizon.

The latter points we shall discuss in Section and let us instead here
address the first issue.

Initial state estimation: In our three-state thermodynamics model, the changes
in room temperature (Tf,) are directly dependent on two hidden states, i.e., floor
temperature (T,fb) and envelope temperature (Tg) The states are unobservable
and they intuitively track the abstract value of “energy stored in the heater”
and “energy stored in the wall” respectively. This implies that the tool works
on a partially observable model. To attain reasonable estimates, we can predict
these hidden variables—and similarly the future value of observable values to
accommodate for the observational delay. Assuming that a full state is known
at 7 and that a control choice has already been made, then the state at 715
can be captured by forward simulation of the model. Experiments show that this
method of approximating the hidden variables T/ and T} allowed a drift of no
more than 0.1C° between the repeated estimates of the variables in the model
used for learning and the model used for evaluation.

4.2 Online Synthesis

Given that energy costs are only known 24 hours in advance and that weather
forecasts are known to have degrading predictive power the further into the fu-
ture they look, we utilize an online synthesis procedure. At the same time, as our
model used for controller synthesis has hidden variables, a rapid recomputation
of a strategy allows us to adjust for errors made in the initial state-estimation
and potential discrepancies with the real house (or evaluation model in our case).

We thus propose a method where at each 15-minute interval, the volatile
variables (energy price, weather and measurable variables of the house) are mon-
itored and transferred to the controller. This allows the controller to instantiate
the method of Section E.I] with the most recent measurements. We can then
let STRATEGO synthesize a controller on. An overview of this flow is given in
Figure[f] Each day has four 6-hour periods, and each period has 24 of 15-minute
intervals. The reuse interval (k) is 24, which means a single strategy is used for
k intervals. In the first interval, STRATEGO gets the current room temperatures,
weather forecast and day-ahead electricity price, estimates the initial state and
synthesizes a strategy that minimizes the fitness function F' by sampling 12-
hours (learning horizon) ahead in future. The controller saves the first strategy
(51). The heat-pump uses S during intervals 2-25 and makes another strategy
during interval 25, which is then used for the next 24 intervals (i.e. from 26-49).

Notice here that it is assumed that the synthesis procedure is not instan-
taneous, implying that a synthesized controller can only be applied in the sub-
subsequent interval. To overcome this issue, we apply the initial state-estimation
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as described in Section to estimate the house state at a time-point 7 + 15
from measurements obtained at 7. We set the training horizon of the method to
be 12 hours, implying that the learning method will only sample the system up
to a horizon of 12 hours from the starting measurement. This can aptly be done
in STRATEGO using the query presented in Equation[8] We here see that the con-
troller is trained to only react on the observable variables minute_clock (tracking
real-time), Ti[i] (tracking indoor room temperatures) and Toutdoor_forecast
(tracking weather forecast). The result of the synthesis procedure is a reactive
strategy that for an assignment of the input variables yields a (near-)optimal

action to take @,

strategy S = minE (F) [minute_clock <= 12x60)] (8)
{} -> {minute_clock, Ti[@], Ti[1], Ti[2], Ti[3],
Toutdoor_forecast}: <> minute_clock==(12%60)

Notice also that Equation [8| defines a feature vector (observable variables of the
state-space) to be only directly measurable variables of the original system. This
makes the strategy directly applicable for several intervals (up to the learning
horizon) in the actual system under control. We can exploit this to lower the
overall computational effort of deploying our approach, which directly impacts
the overall energy impact of running the smart heating system. Essentially, by
re-using a strategy for several intervals, a single server can act as a controller for
a group of houses, i.e. if a strategy only needs to be computed every six intervals,
six houses can share the computational resource.

5 Evaluation

To validate our approach, we experiment with controlling the OpSys house for
a week with weather conditions matching February 4-10, 2018. As a reference,
we use the estimated model presented in Section [d] The goal of any controller is
to minimize the parameterized cost-criteria defined in Equation [I] for the period
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under control. In all experiments, we compare different variations of the online
STRATEGO-based controller against a standard bang-bang (BB) controller.
We conduct three series of experiments:

1. a series under realistic assumptions on observability and time,
2. a study of sensitivity to various degrees of measurement noise, and
3. a study of impact of changes in the learning parameters of STRATEGO.

All experiments are conducted on AMD EPYC 7551 limited a single core
and 2GB of memoryﬂ We limit the controller to 15-minute control intervals
which is sufficient for systems with as slow dynamic as floor-heating. For each
reported configuration, the experiment is repeated 10 times and the mean value
is reported with standard deviation intervals reported in bar-charts. A repro-
ducibility package is available in [12].

In all series, we observe changes to the results when the weights of comfort
(0 < Weoms < 1) changes; we modify these values in steps of 0.1. To make
this weighting independent of the given week and to allow for this proportional
weighting between two units (kWh and squared degrees Celsius), we compute a
normalization-factor norm based on the BB controller. This normalization-factor
is computed by estimating the performance of the BB controller on the week
leading up to February 4-10 in terms of cost and comfort. The normalization-
factor is then given directly by norm = Cozé ;’”.

In our plots we report relative performance to that of the BB controller; we
do so as the behaviour of the BB controller in the model (when replayed with
historical weather) is deterministic. We omit to report values for a pure emphasis
on cost as this leads the controller to (as expected) turn off all heat.

Realistic Evaluation: In this series, we emulate a realistic setup; this implies that
hidden variables are estimated, the weather forecast is stochastic, and the con-
troller only can be applied with a 15 minutes delay from the variable observation-
time, as described in Section

We experiment with two configurations and compare them with the standard
BB controller. In one, we fix the learning parameters s.t. the wall-clock compu-
tation time is not exceeding 15 minutes on given hardware; namely 600 samples
(depicted blue in Figure [7)), and a re-use interval of 24 (6 hours) limiting the
computation effort—denoted the realistic configuration. In a more hypothetical
application, we double the training budget to 1200 samples (leading to an approx
30 min computation time) and reduce the re-use interval to 6 (depicted orange
in Figure —named the best configuration.

We see that the BB controller is dominated in all ways by any of the two
STRATEGO controllers. In particular we see that at Weyyms = 0.4 either STRAT-
EGO controller achieves comparable comfort to the BB controller (Figure ,
but at a 33-34% reduction in cost (Figure . In Figure we observe for any
setting of the parameters the STRATEGO-based controllers are dominating in the
distance measure and more so with an increased comfort weight. In Figure [7d] we

! Actual memory usage expected to be significantly lower, but not recorded.
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Fig. 7: February week control under partial observability with 24 reuse intervals and
600 training samples (blue) and 6 reuse intervals and 1200 training samples.

have also annotated the average temperature experienced throughout the week
for the realistic controller to provide a tangible perspective on the discomfort
measure. With a less than 0.16C° deviation in the average temperature from the
setpoint with Weoms > 0.4, again resulting in a 33% reduction in cost.

As the BB controller is incapable of adjusting to the time-varying cost func-
tion, it is expected that the STRATEGO controller can outperform it with a
focus on cost. More interesting, the benefit of using STRATEGO grows with an
increased focus on comfort. Notice that Equation [I] penalizes overshooting. We
hypothesize that the binary mode of the BB entails periods of large overshooting
of the target temperature and others with undershooting due to the 15-minute
control interval EIThe STRATEGO controllers can instead compensate gradually
and react more subtly.

While the realistic controller in general trails the best controller, find it to
be well-performing in general, trailing with no more than 4% points in comfort
for settings with Weo,ms > 0.4 and a loss in comfort of no more than 13% points
in the same range.

Sensitivity Analysis of Impact of Measurement Noise: As our experimental setup
is virtual, we can study the impact of stochastic weather-prediction, hidden vari-
ables and delayed controller response; this comparison is seen in Figure [§] The

2 Due to wear and tear on heat-pumps it is undesirable to change states too often.
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Fig. 8: February week control under different observability situations with 24 reuse
intervals and 600 learning runs

experimental setup is similar to the Realistic series apart from the specified
changes. We experiment with four configurations: 1. Full observability, allowing
for delayed controller response, perfect weather-prediction and direct observa-
tion of hidden variables (i.e. an ideal scenario), 2. Predicted Tg and TZL, otherwise
as full observability, 3. Noisy weather, otherwise as full observability, and 4. Par-
tial observability, exactly the same setup as in the Realistic Fvaluation series.
In Figure |8, we observe that while a high emphasis on cost (which is a fully
observable variable), the impact of noisy weather prediction and predicted un-
observable variables has only a modest effect (2-3%), however with a > 0.8 focus
on comfort, we see the uncertainty of the weather significantly impacting the
performance (up to 8%), indicating a sensitivity of the controller towards accu-
rate forecasts. We observe an anomaly with a 0.1 emphasis on comfort where the
full observability configuration is significantly worse than the predicted scenario.
While the discrepancy appears to be within measurement noise, it still warrants
further investigation. We hypothesize that the squaring of the difference of the
target and the actual temperature in Equation [l| leads to rare spikes in the
response affecting the partition-refinement scheme deployed of STRATEGO.

Sensitivity Analysis of Learning Parameters: STRATEGO is a sampling-based
tool, and the performance (in terms of quality of the controller synthesized)
is dependent on the number of samples provided. This is given directly in the
number of runs (simulations) the engine is allowed to conduct.

In Figure we see that an increase in the number of runs (in general)
improves the performance. However, with a doubled effort of 1200 runs (approx
30 minutes of computation pr. strategy), the performance in general improved by
2% and in a rare case by 3%. We can see a similar improvement in performance
with an increase from 300 to 600 runs. However, a similar anomaly is observed
with an 0.1 emphasis on comfort as was found in the Measurement Noise-series
of experiments. We conjecture that this effect manifests to a higher degree with
an increased learning effort.

We here also experiment with reducing the overall computational effort needed
for control. In Section [4.2] we introduced the reuse interval which allows for ap-
plying a given control strategy for an extended period. In Figure [9a] we observe
that a tighter re-computation cycle of 6 intervals (every 1% hours) allows us to
gain 3% performance compared to our Realistic series of experiments. Towards
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a reuse of 24 periods, we observe a drop in performance when the reuse interval
is extended.

6 Conclusion

We presented a tool-chain for controlling a heat-pump system in a floor heating
case study. The tool-chain offers an end-to-end solution for floor heating appli-
cations by establishing an automatic procedure for the identification of house
thermodynamics and designing UPPAAL STRATEGO controller. We compare the
performance of STRATEGO controller against the traditionally used bang-bang
controller. Experimental results show that our controller offers significant im-
provements in both user comfort as well as energy cost, even when realistic lim-
itations on computation effort are taken into account. In particular, STRATEGO
saves 33% energy while preserving the same comfort as the standard bang-bang
controller. We also analyse the cost-comfort trade-off paradigm, which shows
that we can save energy costs by slightly compromising the comfort. We believe
that the results can be further improved by introducing a heat buffer and that
the computational effort can be reduced by techniques such as ensemble learning.
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