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Abstract. The recent surge in electricity prices has increased the de-
mand for cost-effective and sophisticated heat pump controllers. As do-
mestic floor heating systems are becoming increasingly popular, there
is an urgent need for more efficient control systems that include also
heat buffer tanks to account for fluctuating energy prices. We propose
a scalable thermal model of the hot water buffer tank together with a
mixing loop and evaluate its operation and performance on an experi-
mental Danish house from the OpSys project. We experimentally assess
the buffer tank’s quality by selecting the proper size and number of vir-
tual layers using an industry-standard controller. Finally, we integrate
the buffer tank and mixing loop into the heating system and create an
intelligent STRATEGO controller to examine their performance. We ana-
lyze the tradeoff between cost and comfort for different buffer tank sizes
to determine when a buffer tank or a mixing loop should be included
in the system. By providing a detailed understanding of the buffer tank
and mixing loop, our study enables the clients to make better decisions
regarding the appropriate buffer tank size and when to install a mixing
loop based on their specific heating needs.

Keywords: Intelligent heat pump control - Energy efficiency - Floor
heating - Buffer tank modelling.

1 Introduction

According to 2020 figures, Renewable Energy Sources (RESs) contribute up to
26 % in domestic space heating [1]. The proportion of RES in Denmark’s elec-
tricity market has increased from 44 % in 2015 to 50 % in 2020 with the ultimate
objective of becoming carbon-free by 2050 [2].

There is a substantial potential for integrating RES into domestic heating
systems to reduce energy consumption costs. Heat pumps enable the heating sys-
tem to utilize flexible energy. Furthermore, a hot water buffer tank can enhance
the heating system’s energy flexibility. Integrating a hot water buffer tank can
play a key role in improving energy efficiency. The tank model must accurately
determine the water temperature inside the tank in order to better exploit the
buffer tank. In addition, in modern space heating a mixing loop can be intro-
duced between the water tank and heaters to mix up the hot and cold water to
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improve efficiency and provide better regulation of water flow into the heaters.
An intelligent heat pump controller is required to maximize the benefits of the
buffer tank and the mixing loop.

When used in domestic heating control systems, Model Predictive Controllers
(MPC) demonstrated the potential for energy and cost savings [3H5]. An esti-
mated house model depicting the thermal dynamics of the house is required be-
fore developing an MPC. The thermodynamics model depicts the house’s heat
dynamics as well as the impacts of outdoor weather, residents’ behaviour, and
solar radiation on the room temperature. Given the thermodynamics model, an
MPC is coupled with a control objective (e.g., reduce cost and optimize comfort)
in a tight and periodic loop of “observe, solve, act.” However, implementing an
MPC has various challenges, such as the house dynamics needing to be discov-
ered in advance and the behaviour and dynamics changing over time.

To tackle these issues, we use the control setup from our recent work [6],
where we first identify the thermodynamics and heat transfer coefficient using
CTSM-R (continuous time stochastic modelling in R) [7], and then design an
intelligent UPPAAL STRATEGO [8] controller, which controls the heat pump for
the floor heating using an online strategy synthesis approach. In this paper, we
additionally propose and implement thermodynamic models of the hot water
buffer tank and the mixing loop. We incorporate the models into the heating
system and create intelligent STRATEGO controllers to operate it. Our main
novel contributions are:

1. Development of a dynamic thermal model of the hot water buffer tank.

2. Quality assessment to examine the impact of virtual layers and tank sizes.

3. Integration of a mixing loop for mixing hot and cold water to achieve more
flexibility and better control of forward water temperature.

4. Employment of the heat buffer tank and mixing loop models to design the
STRATEGO MPC.

5. Extensive experimental evaluation.

Related Work: Recently, emerging studies on domestic heating systems yielded
some particularly compelling findings. For instance, a study published in [9] op-
timized energy costs in an ultra-low temperature district heating system using
an MPC for a 22-flat building in Copenhagen, demonstrating significant energy
savings. Another study [10] suggested an online and compositional synthesis
approach by employing STRATEGO controller for comfort optimization in a do-
mestic floor heating problem. Similarly, [6] proposed a toolchain for controlling
heat pump operation in a floor heating system, specifically for optimal cost and
comfort optimizations. In this study, the authors identified the thermal dynamics
of a target house using CTSM-R software and designed a STRATEGO controller
to learn optimal control strategies. The results demonstrated that the intelligent
controller saved energy costs while maintaining comfort, ultimately outperform-
ing a traditional bang-bang controller. However, these studies [6,[9,/10] do not
consider the buffer tank and mixing loop in the context of domestic heating. We
extends these works, and in particular [6], by introducing these components.
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Adding a hot water buffer tank to the heating system may improve the con-
trol and efficiency of the system. Several studies have examined the simulation
and modeling of electric water heaters (EWHs). However, some of these studies,
such as [11422], have only considered a uniform water temperature in the tank
and modelled it as a single mass of water using a first-order thermal model. This
approach is not effective when there is a hot water out-flow and cold water in-
flow in a relatively small buffer tank, as the temperature distribution in the tank
tends to be uneven. Two and three-mass [23}25] models have been developed to
overcome the limitations of one-mass models. These models assume a constant
temperature profile within each water mass, resulting in improved accuracy in
calculating the tank water temperature. However, there is still a need for more
precise models to capture nonuniform temperatures in the tank effectively. The
approaches proposed in [26,27] discuss how the water temperature in the buffer
tank can be calculated with reasonable accuracy. The approaches propose di-
viding the tank water into several virtual layers to accommodate stratification
created due to the temperature difference in different tank areas. Our buffer tank
modelling approach is similar to [26}27], however, they use a simple boiler and
we use a heat pump together with intelligent control to heat-up the water.

Furthermore, a mixing loop can be added to adjust the forward water temper-
ature by mixing hot district heating water with cold returning domestic heating
water, lowering energy costs [28]. Similarly, the mixing loop modelling method-
ologies proposed in [29H32] reduce energy costs in low-temperature district heat-
ing. Instead of district heating, we propose a mixing loop model together with its
intelligent control for an individual house and extensively evaluate the interplay
between the buffer tank and the mixing loop.

We believe that we are the first to study the impact of combined intelli-
gent predictive control of both the heat-producing unit and the mixing loop in
a buffer-tank-enabled heating system.

2 Case House and Problem Statement

To evaluate the performance of the buffer tank and mixing loop, we now present
an overview of the house used in our experiments and the evaluation environ-
ment. Figureextends the setup of a small family house modelled in 6] with two
additional components: a hot water tank and a mixing loop. It is a 150m? phys-
ical test house with four rooms, including a living room with a built-in kitchen
(Room 1), two bedrooms (Rooms 2 and 4), and a bathroom (Room 3).

The heat pump system produces hot water and directs it to the buffer tank.
This hot water is then distributed to the floor heaters through floor pipes to
meet the heating demands of the house. With a buffer tank, the control of heat
becomes more indirect. In order to provide better direct control, we integrate a
mixing loop between the buffer tank and the floor heaters.

The system has three levels of control, i.e., heat pump, mixing loop, and
room thermostat. We consider traditional bang-bang controller to control the
room thermostats. Each thermostat operates independently of the heat pump
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Fig. 1: The overview of the house and its heating system

and other thermostats; it is turned on if any room’s temperature drops below
the fixed set point (22 °C) and turned off if all the room temperatures exceed
it. The incoming mass flow of water (M) has a fixed distribution key that dis-
tributes the hot water to the rooms via the manifold in fixed proportions denoted
by MfRi where ¢ = 1,...,k (k denotes the number of rooms). Individual room
thermostats regulate binary valves v;, with mass flow re-distributed proportion-
ally to the remaining open valves if certain valves are shut. On the other hand,
the heat pump and the mixing loop are controlled with a dedicated controller
(e.g., UPPAAL STRATEGO in our case). The control parameters for the heat
pump and the mixing loop are the heat pump’s operating intensity and level of
mixing (through the valve v,,). The objective is to control the heat pump and
the mixing loop to achieve optimal comfort and cost. The Tforwara and Trerurn
represent forward and return water temperatures, respectively.

For the modelling purposes and the construction of a predictive controller
of the heat pump and the mixing loop, we need to obtain the house’s thermo-
dynamic model. We extend the methodology proposed in @ where the data
recorded from the intended house (from OpSys Project [33]) modelled in DY-
MOLA is used to determine the thermal model of the house, as well as
related heat exchange coefficients.

3 Buffer Tank and Mixing Loop Thermodynamics

This section describes our proposed thermal dynamic models of the buffer tank
and the mixing loop. In Figure 2a] we present the schematic overview of the hot
water buffer tank. We split the tank water into n virtual layers. The temperature
of each layer is affected by the direction of the water pressure created either from
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Table 1: List of variables and constants used in tank thermodynamic model

Variables Description

T T, temperatures of the n water layers in tank[°C]

Thp temperature of the water exiting the heat pump [°C]

Treturn temperature of the water returning from the room floors [°C]|
Toutdoor ambient temperature [°C]

Fhp mass flow of water exiting the heat pump [litres/minute]

Frp mass flow of water exiting the floors to the tank [litres/minute]
Flay) mass flow of water from layer z to layer y [liters/minute]
Constants

M mass of water in each layer [litres]

A area of each layer [m?]

Cuw thermal capacitance in the water tank [J/kgC]

U, coefficient for heat conductivity to ambient

U, coefficient for heat conductivity in the tank water

top-to-bottom or bottom-to-top inside the tank, which is decided by the mass
flows from the heat pump (F};,) and to the floors (Fiyp).

In Figure[2b] we present thermal dynamics model of the buffer tank as a set of
differential equations (Equations ) representing the temperature of the top
layer (71), finite number of intermediate layers (7}), and the bottom layer (7T,,).
In these equations, the heat supply, thermal conductance of the water, and heat
loss to the surrounding environment determine the heat balance. The related
variables and constants are described in Table [Il

Equation (2)) computes the water temperature (7) of any intermediate layer £.
The function f(¢) computes the heat effect (relative to mass flow F{, ,)) to and
from the layer £—1 or £+ 1 depending on the mass flows F},, and Fy;,. Whenever
F},, is greater than FYyj,, water pressure is formed from the top to the bottom,
causing direct heat gain from the adjacent upper layer ¢/ — 1 and heat loss to
the adjacent lower layer ¢ + 1. In contrast, when Fyj, is greater than Fj,, the
water creates pressure from the bottom to the top layer, resulting in a direct
heat effect transferring from the adjacent lower layer £ + 1 to ¢, and from £ to
£ — 1. The second term calculates the heat loss incurred by the outside weather
(related to the coefficient U, ). The fourth and fifth terms express the conductiv-
ity impact of the adjacent upper (¢ — 1) and lower layers’ (¢ + 1) temperatures
on the current layer (¢) (through the conductivity coefficient U, ). Equations
and are specialized forms of Equation and determine the temperatures
Ty and T,,. The hot water temperature (Tp,) entering the tank greatly influences
the top layer. On the other hand, the direct heat influence on the bottom layer
is caused by the return water temperature (Trerurn)-
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dhh

= ((Fap - Cuw - Thp) — (Fyn - Cuw - T1) + f(1)
~ (Ua - A (T1 — Toutdoor)) + (Us - (Tt = T2))) /(M - C) (1)

dt

for every ¢, 2 < /{ < n,we have the following equation :

% _ (f(f) _ (Ua A (Tg — ToutdOD’l‘))
= (Uy - (Te—1y = To)) + (Us - (Te = Tie—1))))/ (M - Cu)  (2)
% = ((th -Cly - Treturn) - (FhP Cu - Tn) + f(n)
_ (Uu CA- (Tn - Toutdoor)) - (Uv . (Tn—l - Tn)))/(M ’ Cu’) (3)
where

1) { (F(lg) Cuw T1) ithP>th
+

K (F2,1) - Cw Tz) otherwise
F(0) = {+(F(é 1.0)  Cuw - To1) = (Fleesny - Cuw - To)  if Fup > Fp,
+(Flee+1)) - Cw Te+1) - (F(e t—1) - Cuw Te) otherwise
(Fne1,m) - Cw - Tuor)  if Frp > Fyan
flm) = { —(Fnn-1) - Cuw Tn) otherwise

(b) Thermodynamics model of the hot water buffer tank

Fig. 2: Buffer tank schematic diagram and thermal equations for n layers

To evaluate the Equations 7, we let the buffer tank heat up (charging)
and cool down (discharging) to see how the tank water temperatures evolve.
To do so, we set the outdoor temperature (T,yutdoor) and tank water’s initial
temperature to 10 °C and 30 °C, respectively. For simplicity, we limit the virtual
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Fig. 3: Temperatures of buffer tank water during charging/discharging

layers to three (i.e., Ty, Ty, and Tg) and assume a 75-litre tank size. Figure
shows the temperature trends for all three layers during the charging period (30
minutes). The heat pump consumes 2.5 kWh of electricity and supplies hot water
to the tank from the top layer at a rate of 5 litres per minute (Fj,). However,
we restrict the hot water from flowing towards the floor heaters, i.e., Fy, = 0.
The tank water temperatures keep rising, and the gap between them decreases
as the heat pump keeps providing the hot water. After a while, the temperatures
reach the same point, and no further heat exchange occurs.

During discharging phase (Figure , we keep the heat pump off, and the
floor heaters get 5 litres per minute of hot water from the top layer. However,
the cold water (Treturn is 25 °C) returns to the tank via the bottom layer. Due
to the continuous infusion of cold water, the layers’ temperatures keep dropping
and, after some time, become constant at 25 °C.

Finally, we present the thermal model of the mixing loop. The mixing is
done with a mixing valve (v, in Figure . Assuming that the control_choice
is the mixing option selected by the controller from the available mixing levels
(mizing_-levels), the percentage of cold water (mizing-value) to be mixed with
the hot water can be calculated using Equation (). Equation () computes the
temperature of the water to be forwarded (Torwara) towards the floor heaters
using the relative share of cold (T} eturn) and hot water (77, top layer). The mass
flow of cold water entering the buffer tank (Fp,) is calculated using Equation @

. control_choice
mizing value = ———— (4)
maixing_levels

Ttorward = Treturn - mizing value + T1 - (1 — mizing_value) (5)

Fyp = Fyp - (1 — mizingvalue) (6)

4 System Modelling in UPPAAL STRATEGO

Given the thermal dynamics model of the buffer tank, we now create its model
in UppAAL. We employ the tool UPPAAL STRATEGO |[8], which is a branch of the
UPPAAL tool suit [35H38]. In STRATEGO, systems are modelled as networks of
finite-state automata equipped with discrete data types (e.g., bounded integers,
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arrays) and a finite number of clocks (continuous variables). Transitions in the
automata are conditioned on the values of the discrete variables and clocks and
when executed, both the discrete variables and clocks can be updated. The tran-
sitions can be controllable (represented by solid lines) or uncontrollable (repre-
sented by dashed lines) guarded with specific conditions. If two parallel processes
reach a controllable and uncontrollable transition simultaneously; the environ-
ment has priority to take any transition or pass control over to the controller.
The clocks facility in STRATEGO captures the timing aspects of the real systems
and serves as continuous variables to represent differential equations. Moreover,
STRATEGO enables communication with Clibraries [39], making it possible to
use a Clibrary to write complex functions and interact with other libraries.

4.1 Buffer Tank Modelling in UPPAAL STRATEGO

Figure [4] depicts the complete system composition as a buffer tank in STRAT-
EGO. In STRATEGO, the sub-parts of the model are named templates. The model
comprises seven parameterized automata templates, namely Room, Controller,
FitnessFunction, DataReader, BufferTank, BufferLayer, and BufferUpdate. The
continuous variables Tf, T,i, and Tg representing room, floor, and envelope tem-
perature (for Room 7) are expressed as real-time clocks in the Room template.
DataReader brings historical weather and day-ahead electricity pricing informa-
tion into the model. The Fitness function (see Equation ) is implemented
by the FitnessFunction template. The Controller template implements the con-
troller’s control mechanism, which allows the system to choose between different
energy levels for the heat pump and different valve settings for the mixing loop.
The current work focuses mainly on describing the modelling of the buffer tank,
so we here explain only the buffer tank-related templates. The complete model
with details of the remaining templates can be found on GitHub [40].

The buffer tank-related templates are grouped within the red dashed-line area
(see Figure [4a)). The Buffer Tank template incorporates two continuous variables
(called clocks) to represent the temperature of the top (77) and bottom (75,) lay-
ers, which evolve with time. On the other hand, the BufferLayer template calcu-
lates the temperature of an arbitrary number of intermediate (Tg) water layers.
The functions calculate top(), calculate_layer(), and calculate_bottom()
employ Equations (| . and I) to compute Ty, Ty, and T, respectively. In
Figure [4c, we show calculate,top() definition as an example to highlight the
one-to-one mapping of these functions with buffer tank thermal equations (Equa-
tion in this case). The invariant t<min and guard t>min in BufferUpdate
template combinely force the system (every minute) to take the uncontrollable
transition and update the functions and
reset the local clock t. These functions are deﬁned in Figure [{d] while their
declarations are presented in Figure [db] The number of layers, volume, and area
of the tank is defined by external calls to the functions in external Clibraries.

In Figure [4d] the function calculates the water mass flow
(Fxy) between any two consecutive layers by computing the difference of Fhp
and F¢p. The function is responsible for determining the
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const double M=volume/layers;
const double Cw= 4180.0;
double Fhp= 0.3267;

void conductivity(){
if(Fhp > Ffh){
Fxy = Fhp - Ffh;

double Ffh= 0.3267; }

double Fxy; else{

const double Uv=0.6; Fxy = Ffh - Fhp;
const double Ua= 1.5; }

const double A=area/layers;
double Thp;

clock T[layers];

typedef int[1,layers-2] mid_t;

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 oy
1 1 .

b 11 void massflows_hp_fh(){
1 1
1 1
I const int rooms = 4; 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1
1
1
1
1
1
1
1
1
1
1
1
1 double temp2 = 0.0;
! double temp = 0.0;
! for( r : id_t)
typedef int [0, rooms-1] id_t; 1 s
// Layers between top and bottom :
const mid_t index; |
// Constant mass flow for each room 1
double massflow[rooms]= 1
{0.157, 0.1051, 0.0224, 0.0422}; !!
1
1
1
1
1
1
1
1
1

{
temp = massflow[r]*is_massflow_on[r];
temp2 = temp2+temp;

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r |

if(temp2 = 0.0){ h

Ffh = 0.0; \

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Thp = (heat_produced*1000) /(FhpxCw)
+T[levels-1];

+ f-(UaxAx(T[0] - Toutdoor))
+ (Uvx(T[O] -T[1])))/(MxCw);

bool is_mass_flow_on[rooms]=[1,1,1,1];

// Heat pump energy consumption }

double consumed_power; else{

// Heat pump produced heat Ffh = temp2;

double heat_produced; }
I e e e e e e e e 1 // when heat pump is off

. if (consumed_power = 0.0){
(b) Global declarations ! Fhp = 06.0001;

T T T T T TTTTTT T T }
| double Calcu?ate—mp(){ 1 // when heat pump is on
1 double F; ' else{
1 if (Fhp > Ffh) 1
1 f = - (FxyxCwxT[0]); :. Fhp = 0.0297 + ((consumed_power
: else f = (FxyxCwxT[1]); 1! -0.625)/0.1875)%0.0297;
h return ((FhpxCwxThp) - (FFhxCwxT[0]) : : }
1 '
1 1
1 1
1

(c) Top layer function (d) Conductivity and mass-flow functions
Fig. 4: Composition of the complete system in STRATEGO
Fhp and Fgp values. The massflow[] and is_massflow_on[] arrays used in

the for loop contain the constant mass flows for each room and Boolean values
representing each room’s thermostat’s opening/closing status, respectively. The
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variable temp2 adds the contribution of mass flow from each room to determine
their combined mass flow F¢}, value. However, Fhp depends on the heat pump’s
intensity, with the maximum value being 0.3267 at full heat pump intensity of
2.5 kWh. Like heat-pump intensity, we split Fhp into equal levels with a value of
0.0297 on each level. The power consumption for the first intensity level is 0.625
kWh, adding 0.1875 kWh against each adjacent intensity level. The function also
computes the temperature (Thp) of the water exiting the heat pump.

4.2 Online Synthesis

In Figure[5] we depict an overview of online synthesis algorithm to give a better
understanding. Looking further into the future, we see that 24 hours in advance
known electricity prices and weather forecasts have diminished predictive power.
To address this issue, we propose an online strategy synthesis approach where the
controller periodically observes the state of the room, buffer water temperature,
electricity price, and weather forecast to learn appropriate control decisions by
optimizing the fitness function that balances the comfort and cost. The decisions
are generated as a decision tree (i.e., strategy; in Figure |5| where 4 represents 6
hours) for operating the heat pump and mixing loop accordingly. The controller
uses quick recomputation to compensate for inaccuracies in the initial state. As
a result, the volatile variables are monitored and communicated to the strategy
strategy; every 15 minutes to get the control decisions that suit the current
situation. A single strategy is used for the subsequent 24 intervals (6 hours) to
reduce the computational effort.

5 Experimential Evaluation

We begin by describing the experimental setup and then evaluate our approach
by presenting a series of experiments as follows:

1. buffer tank quality assessment with an industry-standard controller,
2. buffer tank evaluations with intelligent STRATEGO controller,
3. buffer and mixing loop evaluations with intelligent STRATEGO controller.
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5.1 Evaluation Setup

In our experiments, we control the heat pump from the STRATEGO model for
February (week 6) and April (week 14) of 2018 while maintaining corresponding
weather conditions. For all trials described in the following sections, we use the
energy prices from the Danish day-ahead electricity market as of autumn 2022.

We optimize the control mechanism against the objective/fitness function (in
Equation [7} which is similar to one introduced in [6]). The fitness function (F’)
provides flexibility to handle the tradeoff between cost and comfort in a balanced
way by adjusting the relative weights. Typically, a consumer wishes to manage
the tradeoff between cost and comfort by adjusting the weight against each
parameter. Therefore, we state the optimization criteria that allow the customer
to perform such tuning with 0 < Weopms < 1 weighting factor. This encourages
us to express the fitness function for our controllers parameterized as Weomg.
For each Weomys setting, Weos is compted as Weost = 1 — Weomyp. To ensure
proportional weighting between two units, cost (DKK), and squared degrees
Celsius, we calculated a normalization factor, norm, based on the performance
of the traditional bang-bang (BB) controller. The controller simply turns the
heat pump on if the temperature in any room falls below 22°C and turns it off
otherwise. We calculated the normalization factor by assessing the performance
of the BB controller in terms of cost and comfort in the week preceding the

experimental week using the formula norm = % The main purpose of the

heat pump is to minimize the gap between the room temperatures T’ " and a given
set point T, with the heating cost. The heating cost cost(7) = price, - w. is a
time-dependent function and product of the heat pump energy consumption w.,
(determined directly by the controller) and the hourly basis (known 24 hours in
advance) market electricity price (price..). We apply the function over a period 7
to 7, given that the heat-pump settings, energy prices, and room temperatures
(denoted by T (7)) are known for k rooms:

Tn k
F(ro,m) = / (Weost - norm - cost(7)) + Weomy - Z (T, — Tl )2 | dr
K =1

[¢]

(7)

where the first part represents the energy cost (linear impact on fitness), and the
second part records the room temperature deviations (from the set point (7}))
such that the large deviations are penalized substantially as compared to minor
deviations due to its squared manner.

We limit the controller to 15-minute control intervals, which is enough for
systems with slow dynamics, such as floor heating. Each reported configuration
is tested ten times, and the mean value and standard deviation intervals are
displayed in bar charts. Throughout the study, Weoms values are changed in 0.1
increments.
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5.2 Buffer Tank Quality Assessment

In this section, we analyze the buffer tank size and the number of virtual layers
that are sufficient to calculate the water temperature within the tank with ade-
quate accuracy. Selecting the buffer tank’s proper size can save installation and
operation costs. A too small buffer tank sometimes needs more storage capacity
to fulfil the heating demand of the heating system. The limited capacity enforces
the heat pump for frequent cycling and may reduce system efficiency. On the
other hand, too large buffer tanks need higher installation costs and may cause
significant heat losses. Another interesting aspect is the precision of the buffer
tank, which is affected by the number of virtual layers.

To investigate these issues, we use a heat pump control strategy presented in
the reference curve of an industry-standard product sheet [41]. The product sheet
proposes regulating the forward water temperature according to outside weather
for a heat pump with no buffer; however, regulating return water temperature
instead ensures reasonable forward temperatures for a heat pump with a buffer
tank. Therefore, we implement this strategy to operate the heat pump based on
the return water temperature (Tyeturn). The strategy turns on the heat pump
if the return water temperature drops below 50 °C and turns it off if it exceeds
55 °C. We name this strategy as Return Water Control Strategy (RWCS-BT,
where BT refers to buffer tank).

Now we consider February (week 6) to examine the influence of tank sizes
and levels on the performance of a heat pump under the control of the RWCS-
BT controller, equally focusing on cost and comfort. The investigation utilizes a
simulation horizon of one week, with a target temperature of 22 °C. Figure[f] dis-
plays the experiment results. The vertical axis displays the absolute values of the
fitness function, energy cost (in DKK) and discomfort, where discomfort records
the room temperature deviations from the target temperature. Figures [6a] [6D]
and [6¢|illustrate the impact of tank sizes concerning fitness, discomfort and cost
using the test house from Section[2} Our findings suggest that increasing the tank
size leads to a decrease in discomfort and a rise in cost, with the improvement
in comfort being relatively less significant than the corresponding increase in
energy cost. The increase in cost is attributed to the greater heat dissipation to
the surrounding environment that arises when larger tanks are considered. Fit-
nesswise 150-litre option is better than the 75-litre; however, the 75-litre tank
is the most cost-effective option, exhibiting an approximately similar level of
discomfort compared to other tank sizes. The 75-litre tank size can also save
the installation cost significantly compared to the 150-litre tank. As a result, we
employ the 75-litre tank in subsequent experiments.

In Figure[6d] we investigate the impact of virtual layers in a buffer tank. We
observe that the fitness value increases up to 7 layers and becomes stable after-
wards. Therefore, we conclude that the 7 virtual layers give sufficient precision
for a 75-litre tank. As a result, we have decided to employ the 7 virtual layers in
75 litres tank in subsequent sections of this paper. We note that the precision of
the buffer tank is dependent on many factors, e.g., the size of the buffer tank and
operational circumstances (i.e., heat pump dimensionality and user patterns).
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Fig. 6: The effect of tank sizes and virtual layers on the cost and comfort

5.3 Buffer Tank Evaluations with Intelligent STRATEGO Controller

In this section, we discuss the performance of various iterations of the online
STRATEGO-based controller. We include random noise (upto 1 °C) in the
historical weather data to account for discrepancies in weather information be-
tween the house and the controller as the house experiences actual weather and
the controller relies on weather forecasts. We introduce several controllers to
evaluate our approach:

— BB: It is a traditional bang-bang controller to control the heat pump without
a buffer tank. This controller turns the heat pump on if the temperature in
any room falls below 22 °C and turns it off otherwise,

— STRATEGO: A predictive controller that trains on the house model to learn
good decisions to operate the heat pump. It controls the intensity of the
heat pump between 11 levels. Like BB, it operates the heat pump without
a buffer tank,

— RWCS-BT: As already described in Section [5.2] it is a controller from
industry-standard that maintains the return water temperature between 50-
55 °C. It operates the heat pump with a buffer tank.

— STRATEGO-BT: It is also a predictive controller. Like RWCS-BT, this it is
designed to control the heat pump with a buffer tank (but no mixing loop).

We consider BB to be the baseline controller because its behaviour in the model
is deterministic when repeated with historical weather. The experimental find-
ings of the controllers for April (week 14) control are shown in Figure E The
fitness and cost measures on vertical axis represent the fitness function (F') and
energy cost (in DKK). Discomfort measure, on the other hand, displays the
recorded deviations in room temperatures from the set point. Each measure on
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Fig. 7: Experimental results for April (week 14) control under STRATEGO-BT-ML

the vertical axis is calculated by computing its value from a specific controller
and BB using the formula measure = %{B’ll" which means a relative value
below 1 implies that a controller outperforms BB and vice versa. The horizontal
axis emphasizes comfort (with We,,s values). We avoid reporting a pure focus

on cost (i.e., Weoms = 0.0) because it causes the controller to turn off all heat.

Figure [7] shows the comparison of STRATEGO, RWCS-BT, and STRATEGO-
BT controllers (shown by the first three bar charts i.e., blue, yellow and green)
relative to the BB controller. Here STRATEGO-BT is unexpectedly underper-
forming STRATEGO with respect to fitness, comfort, and cost (see Figures
and, especially with more focus on comfort. The higher cost is due to the
heat loss from the buffer tank to the ambient. The loss in comfort is attributed
to STRATEGO-BT controller’s lack of control over room thermostats; they get
activated whenever the temperature in corresponding rooms goes below 22 °C.
With an increased focus on comfort, STRATEGO-BT anticipates heat demand
and produces high-temperature hot water in the buffer tank. This water is re-
leased when a thermostat valve opens, causing discomfort (overheating). Hence
the introduction of a buffer tank without a mixing loop is not benificial.
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5.4 Mixing Loop Evaluations with Intelligent STRATEGO Controller

We integrate a mixing loop between the buffer tank and the floor heaters to
improve the cost and comfort. We create controller STRATEGO-BT-ML, which
controls the heat pump and water mixing proportions, and we experiment with
several mixing level settings. Our finding is that 11 mixing levels give the con-
troller enough flexibility to mix hot and cold water appropriately. It can be
seen in Figure[7]that STRATEGO-BT-ML (75-litre) outperforms STRATEGO-BT;
however, with a higher focus on comfort, it still performs worse than STRATEGO
indicating that 75-litre tank is insufficient for optimal mixing loop operation.
Therefore, we include a 1000-litre tank that allows the heat pump to store heat
when it is cheap and better handle the mixing loop. STRATEGO-BT-ML (1000
litres) consistently outperforms STRATEGO except for extreme cases where we
ignore comfort or cost (i.e., Weoms at 0.1 or 1.0). For example, with equal focus
on comfort and cost (Weoms = 0.5), it saves 12% energy costs with 7% better
comfort than STRATEGO. We want to remark here, that these numbers are spe-
cific to our case house and may differ for houses with different thermodynamics.

6 Conclusion

We proposed scalable thermal models for the hot water buffer tank and the
mixing loop, which we then incorporated into a 150m? test house used in the
toolchain from [6]. First, we examined the buffer tank’s quality using an industry-
standard controller (RWCS-BT). The results suggest that a 75-liter capacity
with seven virtual layers is sufficient for adequate heat pump operation.

We compared the performance of RWCS-BT and three intelligent controllers
having: no buffer tank (STRATEGO), a buffer tank (STRATEGO-BT), and a buffer
tank and a mixing loop (STRATEGO-BT-ML). Our findings reveal that both
RWCS-BT and STRATEGO-BT perform worst than STRATEGO in terms of cost
and comfort due to the lack of the mixing loop. STRATEGO-BT-ML (75-litre)
with a mixing loop mitigates the higher cost and comfort to some extent, but
still, it underperforms STRATEGO. However, a 1000-litre tank with a mixing loop
enables STRATEGO-BT-ML to outperform all other controllers, saving substan-
tial energy costs while improving comfort. Larger tanks are expensive, but they
can save energy by storing heat when it is cheap.

Our method gives a more in-depth understanding of buffer tanks and mix-
ing loops, allowing customers to choose the optimal tank size for their heating
requirements. Before purchasing a buffer tank, customers may conduct model-
based simulations to explore a variety of different tank sizes under the local
weather conditions in order to calculate the possible savings.

Acknowledgements: We would like to thank Per Printz Madsen and Hessam Gol-
mohammadi for their extensive help in understanding the physics of the buffer
tanks. This research is partly funded by the ERC Advanced Grant Lasso, the Vil-
lum Investigator Grant S40S, and DIREC: Digital Research Centre Denmark.
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