
STOMPC: Stochastic Model-Predictive Control
with Uppaal Stratego ?

Martijn A. Goorden1[0000−0002−0641−7240], Peter G.
Jensen1[0000−0002−9320−9991], Kim G. Larsen1, Mihhail Samusev1,2, Jǐŕı Srba1,

and Guohan Zhao2

1 Deparment of Computer Science, Aalborg University, Aalborg, Denmark
{mgoorden,pgj,kgl,srba}@cs.aau.dk

2 Deparment of the Built Environment, Aalborg University, Aalborg, Denmark
{msam,guohanz}@build.aau.dk

Abstract. We present the new co-simulation and synthesis integrated-
framework STOMPC for stochastic model-predictive control (MPC) with
Uppaal Stratego. The framework allows users to easily set up MPC
designs, a widely accepted method for designing software controllers in
industry, with Uppaal Stratego as the controller synthesis engine,
which provides a powerful tool to synthesize safe and optimal strate-
gies for hybrid stochastic systems. STOMPC provides the user freedom
to connect it to external simulators, making the framework applicable
across multiple domains.

1 Introduction

Controller software has become increasingly dominant in cyber-physical systems.
Functionality that previously was implemented by hardware is now being shifted
towards software. Often cyber-physical systems are safety-critical, hence strong
safety-related requirements are formulated for them. At the same time, quality
objectives need to be considered, such as being as fast as possible or minimizing
resource usage. Designing safe and optimal controller software manually is a chal-
lenge, and several formal methods have been developed to synthesize controller
strategies automatically [1, 14,15].

For stochastic hybrid systems, the tool Uppaal Stratego [5,10] is the newly
emerged branch of the leading tool Uppaal that can automatically synthesize
safe and near-optimal controller strategies. It combines statistical model check-
ing, synthesis for timed games, and reinforcement learning. Uppaal Stratego
has been applied successfully to several case studies [3, 6, 8, 11,12].

Within industry, model predictive control (MPC) is a widely adopted method
for designing controllers [7]. MPC schemes are popular as they yield high-
performing control systems without expert intervention over long periods of
time. This is achieved by periodically using a model to predict the system’s

? This work is partly supported by the Villum Synergy project CLAIRE and the ERC
Advanced Grant LASSO.

2 M. Goorden et al.

future behavior and calculate an optimal control strategy for the next time-
bounded period [4]. Therefore, MPC schemes are also called online control, as
they can adapt control strategies while the system is running.

Uppaal Stratego conceptually fits well within MPC designs. Yet it lacks
the ability to periodically update the model’s state and synthesize a new strat-
egy. In previous work [11], bash scripts are created utilizing the command line
interface of Uppaal Stratego to do all the calculations periodically. Unfortu-
nately, these bash scripts are very case specific and not well adaptable to other
case studies. Furthermore, we noticed that for each new case study, researchers
were repeatedly rediscovering MPC schemes for Uppaal Stratego.

We present the co-simulation and synthesis integrated-framework STOMPC,
which implements a basic MPC scheme using Uppaal Stratego as the core
engine for synthesizing the strategies. With this framework, we aim to greatly
simplify the setup for different case studies by implementing standard functional-
ities for MPC schemes with Uppaal Stratego in Python classes. Furthermore,
STOMPC can be connected to external, domain specific, simulators (or in fact
again Uppaal Stratego) that represent the real world. This makes the frame-
work applicable to cases from different domains. Our framework is accessible on
GitHub3, can be installed through pip, and its documentation is available4. An
artifact for evaluation can be downloaded from Zenodo5.

2 Framework Overview

MPC captures a particular way of designing controllers for a broad range of
systems and processes. It has the following three characteristics [4]: a model,
which is used to predict the future of the system within a certain horizon, the
calculation of a control sequence (or strategy) that optimizes some objective, and
a receding approach, where all calculations are repeated after executing the first
control action from the sequence and observing the true state as a consequence
of that.

Fig. 1 provides a conceptual overview of the key ingredients of MPC that are
implemented by STOMPC. Up to time t = k, we have observed the true state
of the system x and provided control input u to it. Using a model of the system,
we can predict the future state x̂k within the control horizon. The evolution of
the state depends on the control sequence being applied ûk, where the applied
control action can be switched after each control period. To determine which
control sequence to choose, the objective is optimized. Often the objective is to
minimize the difference between the state of the system and a reference signal.

Once the optimal control sequence is obtained, the first control action of this
sequence is applied. When the end of the control period is reached, the process
mentioned above is repeated. At time t = k + p, where p is the duration of the
control period, the true value of the state of the system x(k + p) is observed,

3 https://github.com/DEIS-Tools/strategoutil
4 https://strategoutil.readthedocs.io/en/latest/
5 https://doi.org/10.5281/zenodo.6519909

The STOMPC framework 3

k − 2p k − p k k + p k + 2p k + 3p k + 4p k + 5p k + 6p

Past Future

x
x̂

u

ûPeriod
Horizon

Fig. 1. Conceptual overview of model predictive control. In blue (dashed line) is the
continuous evolution of the state in the past x and for the future x̂, while red (dotted
line) shows the periodically switched control signal in the past u and for the future û.

MPC setupUppaal Stratego Simulator

x(k), ûk(k)

x(k + p)x(k)

ûk(k)

Fig. 2. Global architecture of STOMPC, where the MPC setup starts a new step at
time t = k. After each step, k is replaced by k + p and everything is repeated.

which, most likely, is different from the predicted state x̂k(k+ p). Repeating the
calculation with the new true state x(k + p) might result in a different control
sequence ûk+p than the one calculated before ûk.

STOMPC implements this MPC scheme using Python, hiding as much details
as possible, such that a user can focus more on the application itself. Fig. 2
shows the architecture of STOMPC. It provides the component MPC setup,
which orchestrates the MPC scheme. At time t = k for some k, it supplies the
current true state of the system x(k) to Uppaal Stratego. It does this by
inserting the state values into the Uppaal Stratego model. Subsequently, the
MPC setup runs Uppaal Stratego with this model to calculate the optimal
control strategy. From the report generated by Uppaal Stratego, the MPC
setup identifies the calculated control action ûk(k) for the next control period.

After this, the MPC setup switches to the simulator. This simulator can be
again Uppaal Stratego or an external, domain specific one (see Section 3 for
examples), or the actual physical system. The MPC setup supplies the simulator
with the calculated control action ûk(k) for the next control period and, for
memory-less simulators, also the last recorded true state x(k) from which the
simulator should continue. Subsequently, the simulator returns the true state
x(k+p) at the end of the control period. After that, the above procedure repeats
until the end of the experiment.

More information on the setup of the tool, including a detailed example, can
be found in the tool’s documentation6.

6 https://strategoutil.readthedocs.io

4 M. Goorden et al.

3 Use Cases

An advantage of STOMPC is its general applicability across different application
domains. We now discuss three use cases from different application domains:
floorheating in a family house, storm water detention ponds, and traffic light
control.

3.1 Floorheating in a Family House

The MPC scheme from Section 2 is in collaboration with the company Seluxit
applied to controlling floor heating in a family house located in Northern Jutland,
Denmark. Fig. 3 shows a screenshot of a digital twin of the house, displaying all
its 10 rooms and the water pipes supplying heat to the rooms. Each room has
its individually controlled target temperature (the upper digits in the rooms)
and the thermodynamic equations used in the model consider the heat exchange
between the rooms, between the rooms and their outside envelope, as well as the
heat exchange from the water pipes passing under rooms.

Fig. 3. Digital twin of a floor heating system

In each 15 minute period, tem-
perature sensors in each room report
the current readings to the central
control unit. During the following 15
minutes, the server gathers a 24-hour
weather forecast and computes an
optimal control strategy for the next
75 minutes using Uppaal Strat-
ego. The computed strategy opti-
mizes the comfort in each room.

Simulations on the digital twin
using the Uppaal Stratego online
controller (where the real house behavior is replaced by a Simulink model) show
an average 40% improvement in comfort, compared to the controller that was
used in the house before. As a side effect of the predictive control, the new Upp-
aal Stratego control saves about 10% of energy. Further details about this
concrete application of MPC can be found in [2, 11].

3.2 Stormwater Detention Ponds

Stormwater Detention Ponds are critical real-time control assets in urban
stormwater management systems. They reduce the considerable hydraulic im-
pact towards the natural stream, as well as avoid significant pollutant loads
being discharged. However, only passive control of the stormwater pond outlet
valves is currently used in Danish engineering practice.

We implement a co-simulation by combining Uppaal Stratego with the
domain specific simulator EPA-SWMM [9], as shown in Fig. 4. EPA-SWMM
is an open-source physical-based dynamic rainfall-runoff model that has been
implemented for decades in the urban stormwater management [9].

The STOMPC framework 5

Fig. 4. Digital twin of an urban
stormwater management system

Pyswmm [13], a python interface
wrapper, is used for the interfacing of
EPA-SWMM with STOMPC. In each 15
minute control period, EPA-SWMM ex-
tracts the current water level in stormwa-
ter ponds, and feeds it towards Upp-
aal Stratego. From thereon until the
end of the upcoming control horizon
(48 hours), Uppaal Stratego synthe-
sizes the optimal control strategy for the
outlet valves taking weather forecasting
data into account. Two objectives are in-
volved: guarantee the safe operation of
the stormwater pond without any over-
flow and maximize the sedimentation pro-
cess to improve the water quality. Our ap-
proach increased the control performance by 22%. Further details can be found
in [8].

3.3 Traffic Light Control

The application of MPC is widespread in the domain of traffic control. Recently
Uppaal Stratego has been successfully used to minimize the delays, queue
lengths, number of stops, and fuel consumption of vehicles traveling on the ar-
terial street Hobrovej in Aalborg simulated in VISSIM [6]. The street consists of
4 signalized intersections as shown in Fig. 5. The original traffic light controllers
are pre-timed or detector time-gap based.

Fig. 5. Intersections optimized by Upp-
aal Stratego at Hobrovej, Aalborg

Every second Uppaal Strat-
ego is called to solve a traffic
light configuration sequence plan-
ning problem that minimizes the
total intersection delay. The vehi-
cle information communicated to
Uppaal Stratego are the esti-
mated times of arrival extracted
from VISSIM’s area sensors for
each vehicle within 200m of the in-
tersection. The first step in the re-
sulting optimal control sequence is then sent back to VISSIM. Compared to the
original control, and considering an intersection with smallest improvements, the
described MPC approach manages to reduce the delays by 27%, queue lengths
by 42%, number of stops by 20% and fuel consumption by 19%.

In the original paper the data exchange between Uppaal Stratego and
VISSIM was established using a Python script. STOMPC can with minimal
adjustments wrap the complexity of the communication between those two pieces

6 M. Goorden et al.

of software and let the user focus on the more high-level problems such as the
definition of input data, objective function, and MPC parameters.

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: ICALP. pp. 1–17. Springer (1989)

2. Agesen, M., Larsen, K., Mikucionis, M., Muniz, M., Olsen, P., Ped-
ersen, T., Srba, J., Skou, A.: Toolchain for user-centered intelli-
gent floor heating control. In: IECON. pp. 5296–5301. IEEE (2016).
https://doi.org/10.1109/IECON.2016.7794040

3. Ashok, P., Křet́ınský, J., Larsen, K.G., Le Coënt, A., Taankvist, J.H., Weininger,
M.: SOS: Safe, optimal and small strategies for hybrid markov decision pro-
cesses. In: Parker, D., Wolf, V. (eds.) QEST. pp. 147–164. LNCS (2019).
https://doi.org/10.1007/978-3-030-30281-8 9

4. Camacho, E.F., Alba, C.B.: Model predictive control. Springer (2013)
5. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal

stratego. In: Baier, C., Tinelli, C. (eds.) TACAS. pp. 206–211. LNCS (2015).
https://doi.org/10.1007/978-3-662-46681-0 16

6. Eriksen, A., Lahrmann, H., Larsen, K., Taankvist, J.: Controlling signalized inter-
sections using machine learning. Transportation Research Procedia 48, 987–997
(2020). https://doi.org/10.1016/j.trpro.2020.08.127

7. Garćıa, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and prac-
tice – a survey. Automatica 25(3), 335–348 (1989). https://doi.org/10.1016/0005-
1098(89)90002-2

8. Goorden, M.A., Larsen, K.G., Nielsen, J.E., Nielsen, T.D., Ras-
mussen, M.R., Srba, J.: Learning safe and optimal control strategies for
storm water detention ponds. IFAC-PapersOnLine 54(5), 13–18 (2021).
https://doi.org/10.1016/j.ifacol.2021.08.467

9. Huber, W.C., Rossman, L.A., Dickinson, R.E.: Epa storm water management
model, swmm5. Watershed models 338, 359 (2005)

10. Jaeger, M., Jensen, P.G., Larsen, K.G., Legay, A., Sedwards, S., Taankvist, J.H.:
Teaching stratego to play ball: Optimal synthesis for continuous space MDPs.
In: Chen, Y.F., Cheng, C.H., Esparza, J. (eds.) ATVA. pp. 81–97. LNCS (2019).
https://doi.org/10.1007/978-3-030-31784-3 5

11. Larsen, K.G., Mikučioni, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online
and compositional learning of controllers with application to floor heating.
In: Chechik, M., Raskin, J.F. (eds.) TACAS. pp. 244–259. LNCS (2016).
https://doi.org/10.1007/978-3-662-49674-9 14

12. Larsen, K.G., Mikučioni, M., Taankvist, J.H.: Safe and optimal adaptive cruise
control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Olderog-Festschrift, pp.
260–277. LNCS, Springer (2015). https://doi.org/10.1007/978-3-319-23506-6 17

13. McDonnell, B.E., Ratliff, K., Tryby, M.E., Wu, J.J.X., Mullapudi, A.: Pyswmm:
The python interface to stormwater management model (swmm). Journal of Open
Source Software 5(52), 2292 (2020). https://doi.org/10.21105/joss.02292

14. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In:
ICALP. pp. 652–671. Springer (1989)

15. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM journal on control and optimization 25(1), 206–230 (1987)

The STOMPC framework 7

A Demonstration with the storm water detention pond

In this appendix, we demonstrate the usage of the framework with the storm
water detention pond case.

A.1 Installing the framework

For this case, we need to have three tools available:

– STOMPC, the framework as described in this paper,
– Uppaal Stratego, the generic tool that will synthesize strategies, and
– pySWMM, the Python API for SWMM, the domain-specific tool that will

perform detailed simulations of the pond.

Both STOMPC and pySWMM are available though ‘pip’7:

$ pip i n s t a l l s t r a t e g o u t i l
$ pip i n s t a l l pyswmm

Uppaal Stratego itself needs to be downloaded manually. A de-
tailed installation guide is available in the STOMPC documentation
at https://strategoutil.readthedocs.io/en/latest/installation.html#
uppaal-stratego.

A.2 Preparing the Uppaal Stratego model

In most cases, a Uppaal Stratego model suitable for offline strategy synthesis
is adjusted to be suitable for online control. That also has been the situation for
this case. The model from [8] has been modified for this online model-predictive
control setup. In this section, we do not discuss how to adjust a model suitable
for offline control to one for online control, but we indicate what you have to do
specifically for using the STOMPC framework to perform this online control.

In the Uppaal Stratego model, we need to insert placeholders at the vari-
ables that will have different values at the start of each MPC step, for example,
the water level w. These placeholders are strings with the format “//TAG <var-

name>”, where “<varname>” is the name of the variable. So, for the clock variable
w representing the water level, we will rewrite

clock w = 100; // water level in pond [cm]

into

clock w = //TAG_w; // water level in pond [cm]

7 While writing the paper, the name of the framework has changed from StrategoUtil
to STOMPC. In pip the framework is currently still accessible through the old name.

8 M. Goorden et al.

Notice that after the tag there is still the semicolon “;”, as only the placeholder
will be replaced by the initial value of that variable. The Uppaal Stratego
GUI will now also start to give a syntax error on the next line, as it cannot find
the closing semicolon.

After inserting all the placeholders in the Uppaal Stratego model, we
have to create a model configuration file. This file tells the STOMPC framework
which variables it needs to keep track of during MPC, and what their initial
values are for the very first step. The model configuration file has to be a yaml
file, but you can use a custom name. For this case, we have the following “pond -
experiment config.yaml” file:

t : 0 . 0
ra in : 0 . 0
S UC : 0 .0
w: 0 . 0
c : 0 . 0
Open : 1 . 0
o : 0 . 0
Rain . ra inLoc : 0

Finally, we have to specify the learning and other query parameters. This is
also done in a separate yaml-file. Below you can find the content of the “verifyta -
config.yaml” file for the storm water pond (with some arbitrary numbers that
ensure fast calculations). In Section A.4 we will indicate in python which files
contain the model and strategy configurations. This file contains pairs of the
setting name and its value, where the setting name is the one used for the
command line interface of Uppaal Stratego. In case a certain parameter does
not have a value, for example nosummary, you just leave the value field empty.

l ea rn ing - method : 4
good - runs : 10
to ta l - runs : 20
runs - pr - s t a t e : 5
eval - runs : 5
d i s c r e t i z a t i o n : 0 . 5
f i l t e r : 2
nosummary :
s i l e n c e - p rog r e s s :

A.3 Specializing the SafeMPCSetup class from STOMPC

The STOMPC framework provides several classes that can be tailored for the
case you want to use it for.

– MPCSetup. This class is the primary class an end-user should specialize for his
or her case. It implements the basic MPC scheme as explained in Section 2.

The STOMPC framework 9

It assumes that Uppaal Stratego will always success in synthesizing a
safe and optimal strategy.

– SafeMPCSetup. This class inherits from MPCSetup, yet it monitors and de-
tects whether Uppaal Stratego has successfully synthesized a strategy. If
not, it will run Uppaal Stratego with an alternative query, which has to
be specified by the user, as it depends on the model what a safe query would
be.

For the storm water detention pond, the primary goal is to synthesize a strategy
that ensures no overflow (safety) while maximizing particle sedimentation (op-
timality). Nonetheless, it might be the case that overflow cannot be prevented
by any strategy, thus Uppaal Stratego will fail. Therefore, the SafeMPCSetup
class should be specialized.

Below the specialized class MPCSetupPond is defined. As can be seen, we
override three methods for the pond case: create query file, create alter-

native query file, and perform at start iteration.

1 import s t r a t e g o u t i l as stompc
2 import w e a t h e r f o r e c a s t g e n e r a t i o n as weather
3 import datet ime
4
5 class MPCSetupPond(stompc . SafeMPCSetup) :
6 def c r e a t e q u e r y f i l e (s e l f , hor izon , per iod , f i n a l) :
7 ”””
8 Create the query f i l e f o r each s t ep o f the pond model .
9 Current content w i l l be o v e rwr i t t en .

10
11 Overr ides SafeMPCsetup . c r e a t e q u e r y f i l e () .
12 ”””
13 with open(s e l f . q u e r y f i l e , ”w”) as f :
14 l i n e 1 = f ” s t r a t e g y opt = minE (c) [<={hor izon }∗{ per iod }] :
15 <> (t=={ f i n a l } && o <= 0)\n”
16 f . wr i t e (l i n e 1)
17 f . wr i t e (”\n”)
18 l i n e 2 = f ” s imulate 1 [<={per iod }+1] {{
19 { s e l f . c o n t r o l l e r . g e t v a r n a m e s a s s t r i n g ()} }}
20 under opt\n”
21 f . wr i t e (l i n e 2)
22
23 def c r e a t e a l t e r n a t i v e q u e r y f i l e (s e l f , hor izon , per iod ,
24 f i n a l) :
25 ”””
26 Create an a l t e r n a t i v e query f i l e in case the o r i g i n a l
27 query cou ld not be s a t i s f i e d by Stra tego , i . e . , i t cou ld
28 not f i nd a s t r a t e g y . Current content w i l l be o v e rwr i t t en .
29
30 Overr ides SafeMPCsetup . c r e a t e a l t e r n a t i v e q u e r y f i l e () .
31 ”””
32 with open(s e l f . q u e r y f i l e , ”w”) as f :

10 M. Goorden et al.

33 l i n e 1 = f ” s t r a t e g y opt = minE (w) [<={hor izon }∗{ per iod }] :
34 <> (t=={ f i n a l })\n”
35 f . wr i t e (l i n e 1)
36 f . wr i t e (”\n”)
37 l i n e 2 = f ” s imulate 1 [<={per iod }+1] {{
38 { s e l f . c o n t r o l l e r . g e t v a r n a m e s a s s t r i n g ()} }}
39 under opt\n”
40 f . wr i t e (l i n e 2)
41
42 def p e r f o r m a t s t a r t i t e r a t i o n (s e l f , c on t ro lpe r i od , hor izon ,
43 durat ion , step , ∗∗kwargs) :
44 ”””
45 Performs some cus tomi zab l e p r ep roce s s ing s t e p s at the
46 s t a r t o f each MPC i t e r a t i o n .
47
48 Overr ides SafeMPCsetup . p e r f o rm a t s t a r t i t e r a t i o n () .
49 ”””
50 cu r r en t da t e = kwargs [” s t a r t d a t e ”] +
51 datet ime . t imede l ta (hours=step)
52 weather . c r e a t e w e a t h e r f o r e c a s t (
53 kwargs [” h i s t o r i c a l r a i n d a t a p a t h ”] ,
54 kwargs [” w e a t h e r f o r e c a s t p a t h ”] , cur rent date ,
55 hor i zon ∗ cont ro lpe r i od , kwargs [” unce r ta in ty ”])

In method create query file we specify the strategy synthesis query. For
the pond case, we have this defined at line 14-15. It states that we want to
synthesize a strategy that we call opt that minimizes the expected value of clock
variable c (representing the cost in the model) where all runs have a maximum
duration of the number of periods (denoted by horizon) and Uppaal Stratego
time units per period (denoted by period) such that eventually the time variable
t reaches its final value and accumulated overflow duration o is zero or less.

Furthermore, we have a simulate query in this method. Only the first period
is simulated to obtain the first control action of the synthesized strategy opt.

The second method create alternative query file specifies the query in
case there is overflow and Uppaal Stratego fails to synthesize a safe strat-
egy. We have almost the same strategy synthesis query, except we removed the
requirement that no overflow can occur (o ≤ 0) and we want to minimize the
water level w instead of the cost c.

Finally, at the start of each MPC iteration, we need to create a weather fore-
cast. These are generated from historical rain data and, similarly to real weather
forecasts, these change over time. Therefore, we create new ones each iteration.
A separate custom library contains methods to generate weather forecasts.

A.4 Define experiment variables

We can now define and set all the experiment variables. These include, for ex-
ample, file paths to the Uppaal Stratego and SWMM models.

The STOMPC framework 11

1 import yaml
2
3 i f name == ” main ” :
4 # SWMM f i l e s .
5 swmm inputf i le = ”swmm simulation . inp ”
6 r a i n d a t a f i l e = ”swmm 5061 . dat”
7
8 # Other v a r i a b l e s o f swimm.
9 o r i f i c e i d = ”OR1”

10 b a s i n i d = ”SU1”
11 t ime s t ep = 60 ∗ 60 # durat ion o f SWMM simu la t i on s t ep in
12 # seconds .
13 swmm results = ” swmm resu l t s on l ine . csv ”
14
15 # Now we s p e c i f y the Uppaal f i l e s .
16 model template path = ” pond experiment . xml”
17 q u e r y f i l e p a t h = ” pond exper iment query . q”
18 mode l con f i g path = ” pond exper iment con f ig . yaml”
19 l e a r n i n g c o n f i g p a t h = ” v e r i f y t a c o n f i g . yaml”
20 w e a t h e r f o r e c a s t p a t h = ” w e a t h e r f o r e c a s t . csv ”
21 o u t p u t f i l e p a t h = ” s t r a t e g o r e s u l t . txt ”
22 verifyta command = ” v e r i f y t a - s t ra t ego -8 -7 ”
23
24 # Define MPC model v a r i a b l e s .
25 a c t i o n v a r i a b l e = ”Open” # Name of the con t r o l v a r i a b l e .
26 debug = True # Whether to run in debug mode .
27 per iod = 60 # Contro l per iod in S t ra t e go time un i t s
28 # (minutes) .
29 hor i zon = 12 # How many per i od s to compute s t r a t e g y f o r .
30 unce r ta in ty = 0 .1 # The unce r t a in t y in the weather
31 # fo r e c a s t genera t ion .

After this we load the two configuration files:

1 # Get model and l e a rn ing con f i g d i c t i o n a r i e s from f i l e s .
2 with open(mode l conf ig path , ” r ”) as y a m l f i l e :
3 m o d e l c f g d i c t = yaml . s a f e l o a d (y a m l f i l e)
4 with open(l e a r n i n g c o n f i g p a t h , ” r ”) as y a m l f i l e :
5 l e a r n i n g c f g d i c t = yaml . s a f e l o a d (y a m l f i l e)

Finally, we can create the MPC object from our MPCSetupPond class:

1 # Construct the MPC ob j e c t .
2 c o n t r o l l e r = MPCSetupPond(model template path ,
3 o u t p u t f i l e p a t h ,
4 q u e r y f i l e=q u e r y f i l e p a t h ,
5 m o d e l c f g d i c t=mode l c f g d i c t ,
6 l e a r n i n g a r g s=l e a r n i n g c f g d i c t ,
7 verifyta command=verifyta command ,
8 e x t e r n a l s i m u l a t o r=False ,

12 M. Goorden et al.

9 a c t i o n v a r i a b l e=a c t i o n v a r i a b l e ,
10 debug=debug)

A.5 Combining strategy synthesis and simulation

Finally, we need to actually define how STOMPC should combine Upp-
aal Stratego and SWMM together. Because SWMM is a stateful simulator
from which we cannot extract the full state through the pySWMM API, we can-
not use the default SafeMPCSetup.run method to perform MPC. Therefore, we
will ‘pause’ the SWMM simulator after each step and let SafeMPCSetup perform
a single MPC step instead.

The method below will start and run the SWMM simulation, and after each
step ask for the next control setting.

1 from pyswmm import Simulat ion , Nodes , Links
2 import csv
3
4 def swmm control (swmm inputf i le , o r i f i c e i d , ba s in id ,
5 t ime step , swmm results , c o n t r o l l e r , per iod ,
6 horizon , r a i n d a t a f i l e ,
7 weathe r f o r e ca s t pa th , unce r ta in ty) :
8 # Arrays f o r s t o r i n g s imu la t i on r e s u l t s b e f o r e wr i t i n g i t
9 # to f i l e .

10 t i m e s e r i e s = []
11 water depth = []
12 o r i f i c e s e t t i n g s = []
13
14 with Simulat ion (swmm inputf i le) as sim :
15 # Get the pond and o r i f i c e o b j e c t s from the s imu la t i on .
16 pond = Nodes (sim) [b a s i n i d]
17 o r i f i c e = Links (sim) [o r i f i c e i d]
18
19 sim . step advance (t ime s t ep)
20 cur r en t t ime = sim . s t a r t t i m e
21
22 # Ask f o r the f i r s t c on t r o l s e t t i n g .
23 o r i f i c e . t a r g e t s e t t i n g = g e t c o n t r o l s t r a t e g y (pond . depth ,
24 current t ime , c o n t r o l l e r , per iod , hor izon ,
25 r a i n d a t a f i l e , wea the r f o r e ca s t pa th , unce r ta in ty)
26
27 # Get the i n i t i a l data po in t s .
28 o r i f i c e s e t t i n g s . append (o r i f i c e . t a r g e t s e t t i n g)
29 t i m e s e r i e s . append (sim . s t a r t t i m e)
30 water depth . append (pond . depth)
31
32 for s tep in sim :
33 cur r ent t ime = sim . cur r ent t ime
34 t i m e s e r i e s . append (cur r ent t ime)

The STOMPC framework 13

35 water depth . append (pond . depth)
36
37 # Get and s e t the con t r o l parameter f o r the next per iod .
38 o r i f i c e . t a r g e t s e t t i n g = g e t c o n t r o l s t r a t e g y (pond . depth ,
39 current t ime , c o n t r o l l e r , per iod , hor izon ,
40 r a i n d a t a f i l e , wea the r f o r e ca s t pa th , unce r ta in ty)
41 o r i f i c e s e t t i n g s . append (o r i f i c e . t a r g e t s e t t i n g)
42
43 # Write r e s u l t s to f i l e .
44 with open(swmm results , ”w”) as f :
45 w r i t e r = csv . w r i t e r (f)
46 for i , j , k in zip (t i m e s e r i e s , water depth ,
47 o r i f i c e s e t t i n g s) :
48 i = i . s t r f t i m e (’%Y-%m-%d %H:%M’)
49 w r i t e r . writerow ([i , j , k])

The method get control strategy that gets the next control setting is
defined below. It first updates the state of the controller by updating the value
of the water level w as obtained by the SWMM simulation. Subsequently, it
performs the run single method that performs a single MPC step. This method
returns the control setting for the next period.

1 def g e t c o n t r o l s t r a t e g y (c u r r e n t w a t e r l e v e l , cur rent t ime ,
2 c o n t r o l l e r , per iod , hor izon ,
3 r a i n d a t a f i l e , wea the r f o r e ca s t pa th ,
4 unce r ta in ty) :
5 c o n t r o l l e r . c o n t r o l l e r . update s ta t e (
6 { ’w ’ : c u r r e n t w a t e r l e v e l ∗ 100}) # Conversion from m to cm
7 c o n t r o l s e t t i n g = c o n t r o l l e r . r u n s i n g l e (per iod , hor izon ,
8 s t a r t d a t e=current t ime ,
9 h i s t o r i c a l r a i n d a t a p a t h=r a i n d a t a f i l e ,

10 w e a t h e r f o r e c a s t p a t h=weathe r f o r e ca s t pa th ,
11 unce r ta in ty=unce r ta in ty)
12
13 return c o n t r o l s e t t i n g

Finally, we have to start everything in our main block. We do this by simply
calling swmm control with the necessary inputs.

1 swmm control (swmm inputf i le , o r i f i c e i d , ba s in id ,
2 t ime step , swmm results , c o n t r o l l e r , per iod ,
3 hor izon , r a i n d a t a f i l e , wea the r f o r e ca s t pa th ,
4 unce r ta in ty)

