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Abstract Dependency graphs, invented by Liu and

Smolka in 1998, are oriented graphs with hyperedges

that represent dependencies among the values of the

vertices. Numerous model checking problems are re-

ducible to a computation of the minimum fixed-point

vertex assignment. Recent works successfully extended

the assignments in dependency graphs from the Boolean

domain into more general domains in order to speed

up the fixed-point computation or to apply the for-

malism to a more general setting of e.g. weighted log-

ics. All these extensions require separate correctness

proofs of the fixed-point algorithm as well as a one-

purpose implementation. We suggest the notion of ex-

tended abstract dependency graphs where the vertex as-

signment is defined over an abstract algebraic struc-

ture of Noetherian partial orders with the least element,
and where we allow both monotonic and nonmonotonic

functions. We show that existing approaches are con-

crete instances of our general framework and provide

an open-source C++ library that implements the ab-

stract algorithm. We demonstrate that the performance

of our generic implementation is comparable to, and

sometimes even outperforms, dedicated special-purpose

algorithms presented in the literature.

1 Introduction

Dependency Graphs (DG) [21] have demonstrated a

wide applicability with respect to verification and syn-

thesis of reactive systems, e.g. checking behavioural

equivalences between systems [7], model checking sys-

tems with respect to temporal logical properties [12,
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15,4], as well as synthesizing missing components of

systems [19]. The DG approach offers a general and of-

ten performance-optimal way to solve these problems.

Most recently, the DG approach to CTL model check-

ing of Petri nets [6], implemented in the model checker

TAPAAL [8], won the gold medal at the annual Model

Checking Contests 2018 and 2019 [17,16].

A DG consists of a finite set of vertices and a finite

set of hyperedges that connect a vertex to a number

of child vertices. The computation problem is to find

a point-wise minimal assignment of Boolean values 0

and 1 to the vertices such that the assignment is sta-

ble: whenever there is a hyperedge where all children

have the value 1 then also the parent of the hyper-

edge has the value 1. The main contribution of Liu and

Smolka [21] is a linear-time, on-the-fly algorithm to find

such a minimum stable assignment.

Recent works (for a survey consult [10]) success-

fully extend the DG approach from the Boolean domain

to more general domains, including synthesis for timed

systems [3], model checking for weighted systems [12]

as well as probabilistic systems [23]. However, each of

these extensions have required separate correctness ar-

guments as well as ad-hoc specialized implementations

that are to a large extent similar to other implemen-

tations of dependency graphs (as they are all based on

the general principle of computing fixed points by local

exploration). The contribution of our paper is a notion

of Abstract Dependency Graph (ADG) where the val-

ues of vertices come from an abstract domain given as

an Noetherian partial order (with least element). As we

demonstrate, this notion of ADG covers many existing

extensions of DG as concrete instances. We also sug-

gest an extension of ADG, called extended ADG, that

permits nonmonotonic functions. Finally, we implement

our abstract algorithms in C++ and make them avail-
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able as an open-source library. We run a number of

experiments to justify that our generic approach does

not sacrifice any significant performance and sometimes

even outperforms existing implementations.

Related Work. The aim of Liu and Smolka [21] was

to find a unifying formalism allowing for a local (on-

the-fly) fixed-point algorithm running in linear time. In

our work, we generalize their formalism from the sim-

ple Boolean domain to general Noetherian partial or-

ders over potentially infinite domains. This requires a

non-trivial extension to their algorithm and the insight

of how to (in the general setting) optimize the perfor-

mance, as well as new proofs of the more general loop

invariants and correctness arguments.

Recent extensions of the DG framework with certain-

zero [6], integer [12] and even probabilistic [23] do-

mains generalized Liu and Smolka’s approach and be-

come concrete instances of our abstract dependency

graphs. The formalism of Boolean Equation Systems

(BES) provides a similar and independently developed

framework [18,1,22,24] pre-dating that of DG. How-

ever, BES may be encoded as DG [21] and hence they

also become an instance of our abstract dependency

graphs.

This journal article is an extension of our conference

paper [9] with full proofs and it further broadens the

framework with nonmonotonic functions, allowing us

to include a new set of experiments for CTL model

checking (with CTL formulae that contain negation).

2 Preliminaries

A set D together with a binary relation v⊆ D×D that

is reflexive (x v x for any x ∈ D), transitive (for any

x, y, z ∈ D, if x v y and y v x then also x v z) and

anti-symmetric (for any x, y ∈ D, if x v y and y v x

then x = y) is called a partial order and denoted as a

pair (D,v). We write x @ y if x v y and x 6= y. A

function f : D → D′ from a partial order (D,v) to a

partial order (D′,v′) is monotonic if whenever x v y

for x, y ∈ D then also f(x) v′ f(y). We shall now define

a particular partial order that will be used throughout

this paper.

Definition 2.1 (NOR) Noetherian Ordering Relation

with least element (NOR) is a triple D = (D,v,⊥)

where (D,v) is a partial order, ⊥ ∈ D is its least el-

ement such that for all d ∈ D we have ⊥ v d, and v
satisfies the ascending chain condition: for any infinite

chain d1 v d2 v d3 v . . . there is an integer k such that

dk = dk+j for all j > 0.

We can notice that any finite partial order with a

least element is a NOR; however, there are also such

relations with infinitely many elements in the domain

as shown by the following example.

Example 2.1 Consider the partial order D =

(N0 ∪ {∞},≥,∞) over the set of natural numbers

extended with ∞ and the natural larger-than-or-equal

comparison on integers. As the relation is reversed, this

implies that ∞ is the least element of the domain. We

observe that D is NOR. Consider any infinite sequence

d1 ≥ d2 ≥ d3 . . . . Then either di =∞ for all i, or there

exists i such that di ∈ N0, and the sequence must in

both cases eventually stabilize, i.e. there is a number k

such that dk = dk+j for all j > 0.

New NORs can be constructed by using the Carte-

sian product. Let Di = (Di,vi,⊥i) for all i, 1 ≤ i ≤ n,

be NORs. We define Dn = (Dn,vn,⊥n) such that

Dn = D1 × D2 × · · · × Dn and where (d1, . . . , dn) vn

(d′1, . . . , d
′
n) if di vi d

′
i for all i, 1 ≤ i ≤ k, and where

⊥n = (⊥1, . . . ,⊥n).

Proposition 2.1 Let Di be a NOR for all i, 1 ≤ i ≤ n.

Then Dn = (Dn,vn,⊥n) is also a NOR.

Proof From the definition of Dn and vn above, it can

be shown that (Dn,vn) is a partial order with ⊥n being

its least element. We need to show that it also satisfies

the ascending chain condition. For the sake of contra-

diction, assume that Dn violates the ascending chain

condition, implying that there is an infinite sequence

d1 @ d2 @ d3 @ . . . in Dn that does not stabilize. How-

ever, as there are only finitely many components in the

Cartesian product, there must be at least one such com-

ponent i that violates the condition by containing an

infinite strictly increasing chain of elements. This con-

tradicts our assumption that Di is NOR. ut

In the rest of this paper, we consider only NORs

(D,v,⊥) that are effectively computable, meaning that

the elements of D can be represented by finite strings,

and that given the finite representations of two elements

x and y from D, there is an algorithm that decides

whether x v y. Similarly, we consider only functions f :

D → D′ from an effectively computable NOR (D,v,⊥)

to an effectively computable NOR (D′,v′,⊥′) that are

effectively computable, meaning that there is an algo-

rithm that for a given finite representation of an ele-

ment x ∈ D terminates and returns the finite represen-

tation of the element f(x) ∈ D′. Let F(D, n), where

D = (D,v,⊥) is an effectively computable NOR and n

is a natural number, stand for the collection of all effec-

tively computable functions f : Dn → D of arity n and

let F(D) =
⋃

n≥0 F(D, n) be a collection of all such
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(a) Abstract dependency graph

A B C D E F

A⊥ 0 0 0 0 0 0
F (A⊥) 0 1 1 0 1 0
F 2(A⊥) 1 1 1 0 1 0
F 3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation

Fig. 1: Abstract dependency graph over NOR ({0, 1},≤, 0)

functions. Let FM (D) be the subset of all monotonic

functions in F(D).

For a set X, let X∗ be the set of all finite strings over

X. For a string w ∈ X∗ we let |w| denote the length of

w and for every i, 1 ≤ i ≤ |w|, we let wi stand for the

i’th symbol in w.

3 Abstract Dependency Graphs

We are now ready to define the notion of an abstract de-

pendency graph that depends on the use of monotonic

functions (in Section 6 we shall extend the method also

for nonmonotonic functions).

Definition 3.1 (Abstract Dependency Graph)

An abstract dependency graph (ADG) is a tuple G =

(V,E,D, E) where

– V is a finite set of vertices,

– E : V → V ∗ is an edge function from vertices to

sequences of vertices such that E(v)i 6= E(v)j for

every v ∈ V and every 1 ≤ i < j ≤ |E(v)|, i.e. the

co-domain of E contains only strings over V where

no symbol appears more than once,

– D is an effectively computable NOR, and

– E is a labelling function E : V → FM (D) such that

E(v) ∈ FM (D, |E(v)|) for each v ∈ V , i.e. each edge

E(v) is labelled by an effectively computable mono-

tonic function f of arity that corresponds to the

length of the string E(v).

Example 3.1 An example of an ADG over the NOR

D = ({0, 1}, {(0, 0), (0, 1), (1, 1)}, 0) is shown in Fig-

ure 1a. Here 0 (interpreted as false) is below the value

1 (interpreted as true) and the monotonic functions for

vertices are displayed as vertex annotations. For exam-

ple E(A) = B · C · D and E(A) is a ternary function

such that E(A)(x, y, z) = x ∨ (y ∧ z), and E(B) = ε

(empty sequence of vertices) such that E(B) = 1 is a

constant labelling function. All functions used in our

example are monotonic and effectively computable.

Let us now assume a fixed ADG G = (V,E,D, E)

over an effectively computable NOR D = (D,v,⊥). We

first define an assignment of an ADG.

Definition 3.2 (Assignment) An assignment on G

is a function A : V → D.

The set of all assignments is denoted by A. For

A,A′ ∈ A we define A ≤ A′ iff A(v) v A′(v) for all

v ∈ V . We also define the bottom assignment A⊥(v) =

⊥ for all v ∈ V that is the least element in the par-

tial order (A,≤). The following proposition is easy to

verify.

Proposition 3.1 The triple (A,≤, A⊥) is a NOR.

Proof For all v ∈ V it is the case that A(v) is a NOR.

By definition of A⊥ and ≤ over A we get from Propo-

sition 2.1 that (A,≤, A⊥) is also a NOR. ut

Finally, we define the minimum fixed-point assign-

ment Amin for a given ADG G = (V,E,D, E) as the

minimum fixed point of the function F : A → A given

by:

F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vk))

where E(v) = v1v2 . . . vk.

In the rest of this section, we shall argue that Amin

of the function F exists by following the standard rea-

soning about fixed points of monotonic functions [25].

Lemma 3.1 The function F is monotonic.

Proof For a contradiction suppose there exists some

A1 ≤ A2 such that F (A1) 6� F (A2). This

means that F (A1)(v) 6v F (A2)(v) for some v

while at the same time A1(v) v A2(v). Since

F (A)(v) = E(v)(A(v1), . . . , A(vk)) where v1 · · · vk =

E(v) this implies that E(v)(A1(v1), . . . , A1(vk)) 6v
E(v)(A2(v1), . . . , A2(vk)). However, we assume that

A1 ≤ A2 and this contradicts that E(v) is monotonic.

ut
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Let us define the notation of multiple applications of

the function F by F 0(A) = A and F i(A) = F (F i−1(A))

for i > 0.

Lemma 3.2 For all i ≥ 0 the assignment F i(A⊥) is

effectively computable, F i(A⊥) ≤ F j(A⊥) for all i ≤
j, and there exists a number k such that F k(A⊥) =

F k+j(A⊥) for all j > 0.

Proof The computability follows from the fact that the

function E(v) is computable for all v ∈ V and that

V is finite, hence F i(A⊥) is also computable. For the

other two claims, we prove first by induction on i that

F i(A⊥) ≤ F i+1(A⊥) for all i ≥ 0 from which our claim

follows by the transitivity of the relation≤. If i = 0 then

A⊥ = F 0(A⊥) ≤ F 1(A⊥) holds since A⊥ is the least

element in A. Let i > 0 and assume that F i−1(A⊥) ≤
F i(A⊥). Since by Lemma 3.1 the function F is mono-

tonic, we get F (F i−1(A⊥)) ≤ F (F i(A⊥)) which is by

definition equivalent to F i(A⊥) ≤ F i+1(A⊥). Finally,

because (A,≤, A⊥) is by Proposition 3.1 a NOR, we

have that for the infinite chain F 0(A⊥) ≤ F 1(A⊥) ≤
F 2(A⊥) ≤ · · · there must exist an integer k such that

F k(A⊥) = F k+j(A⊥) for all j > 0. ut

We can now state the main observation of this sec-

tion.

Theorem 3.1 There exists a number k such that

F j(A⊥) = Amin for all j ≥ k.

Proof From Lemma 3.2 we are guaranteed that there

is k such that F k(A⊥) = F (F k(A⊥)), implying that

F k(A⊥) is a fixed point. We need to show that F k(A⊥)

is the minimum fixed point. Let Aother be another fixed

point of F . Because A⊥ ≤ Aother and from Lemma 3.2

and the fact that F is monotonic by Lemma 3.1, we

get that for each i also F i(A⊥) ≤ F i(Aother) = Aother.

Then F k(A⊥) ≤ Aother implies that F k(A⊥) is the min-

imum fixed point Amin , hence proving the claim of the

theorem. ut

Example 3.2 The computation of the minimum fixed

point for our running example from Figure 1a is given

in Figure 1b. We can see that starting from the as-

signment where all nodes take the least element value

0, in the first iteration all constant functions increase

the value of the corresponding vertices to 1 and in the

second iteration the value 1 propagates from the ver-

tex B to A, because the function B ∨ (C ∧ D) that is

assigned to the vertex A evaluates to true due to the

fact that F (A⊥)(B) = 1. On the other hand, the val-

ues of the vertices D and F keep the assignment 0 due

to the cyclic dependencies between the two vertices. As

F 2(A⊥) = F 3(A⊥), we know that we found the mini-

mum fixed point.

As many natural verification problems can be en-

coded as a computation of the minimum fixed point on

an ADG, the result in Theorem 3.1 provides an algo-

rithmic way to compute such a fixed point and hence

solve the encoded problem. The disadvantage of this

global algorithm is that it requires that the whole de-

pendency graph is generated before the computation

can be carried out and this approach is often inefficient

in practice [12]. In the following section, we provide a

local, on-the-fly algorithm for computing the minimum

fixed-point assignment of a specific vertex, without the

need to always explore the whole abstract dependency

graph.

4 On-the-Fly Algorithm for ADGs

The idea behind the algorithm is to progressively ex-

plore the vertices of the graph, starting from a given

root vertex for which we want to find its value in the

minimum fixed-point assignment. To search the graph,

we use a waiting set that contains configurations (ver-

tices) whose assignment has the potential of being im-

proved (increased) by applying the function E . By re-

peated applications of E on the vertices of the graph

in some order maintained by the algorithm, the mini-

mum fixed-point assignment for the root vertex can be

identified without necessarily exploring the whole de-

pendency graph.

To improve the performance of the algorithm,

we make use of an optional user-provided function

Ignore(A, v) that computes, given a current assign-

ment A and a vertex v of the graph, the set of vertices

on an edge E(v) whose current and any potential fu-

ture value no longer effect the value of Amin(v). Hence,

whenever a vertex v′ is in the set Ignore(A, v), there

is no reason to explore the subgraph rooted at v′ for

the purpose of computing Amin(v) since an improved

assignment value of v′ cannot influence the assignment

of v. The soundness property of the ignore function is

formalized in the following definition. As before, we as-

sume a fixed ADG G = (V,E,D, E) over an effectively

computable NOR D = (D,v,⊥).

Definition 4.1 (Sound Ignore Function) A func-

tion Ignore : A × V → 2V is sound if for any two

assignments A,A′ ∈ A where A ≤ A′ and every i such

that E(v)i ∈ Ignore(A, v) holds that

E(v)(A′(v1), A′(v2), . . . ,A(vi), . . . , A
′(vk−1), A′(vk))

=

E(v)(A′(v1), A′(v2), . . . ,A′(vi), . . . , A
′(vk−1), A′(vk))

where k = |E(v)|.
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From now on, we shall consider only sound and effec-

tively computable ignore functions. Furthermore, and

without loss of generality, we only consider Ignore

functions that satisfy Ignore(A, v) ⊆ Ignore(A′, v)

whenever A ≤ A′ because if a vertex can be ignored

at the assignment A then it can be ignored also at any

greater assignment A′.

Note that there is always a trivially sound Ignore

function that returns for every assignment and every

vertex the empty set. A more interesting and univer-

sally sound ignore function may be defined by

Ignore(A, v) ={
{E(v)i | 1 ≤ i ≤ |E(v)|} if d v A(v) for all d ∈ D
∅ otherwise

that returns the set of all vertices on an edge E(v) once

A(v) reached its maximal possible value. This will avoid

the exploration of the children of the vertex v once the

value of v in the current assignment cannot be improved

any more. Already this can have a significant impact

on the improved performance of the algorithm; how-

ever, for concrete instances of our general framework,

the user can provide more precise and case-specific ig-

nore functions in order to tune the performance of the

fixed-point algorithm, as shown by the next example.

Example 4.1 Consider the ADG from Figure 1a in an

assignment where the value of B is already known to be

1. As the vertex A has the labelling function B∨(C∧D),

we can see that the assignment of A will get the value 1,

irrespective of what are the assignments for the vertices

C and D. Hence, in this assignment, we can move the

vertices C and D to the ignore set of A and avoid the

exploration of the subgraphs rooted by C and D.

The following lemma formalizes the fact that once

the ignore function of a vertex contains all its children

and the vertex value has been updated by evaluating

the associated monotonic function, then its current as-

signment value is equal to the vertex value in the min-

imum fixed-point assignment.

Lemma 4.1 Let A be an assignment such that A ≤
Amin . If vi ∈ Ignore(A, v) for all i, 1 ≤ i ≤ k, where

E(v) = v1 · · · vk and A(v) = E(v)(A(v1), . . . , A(vk))

then A(v) = Amin(v).

Proof Since we have vi ∈ Ignore(A, v) for all i,

1 ≤ i ≤ k, and at the same time A(v) =

E(v)(A(v1), . . . , A(vk)) where E(v) = v1 · · · vk, we get

from Definition 4.1 that for every A′ ∈ A where

A ≤ A′ necessarily A(v) = E(v)(A(v1), . . . , A(vk)) =

E(v)(A′(v1), . . . , A′(vk)). This implies that F (A)(v) =

Input: An effectively computable ADG
G = (V,E,D, E) and v0 ∈ V .

Output: Amin(v0)
1 A := A⊥ ; Dep(v) := ∅ for all v
2 W := {v0} ; Passed := ∅
3 while W 6= ∅ do
4 let v ∈W ; W := W \ {v}
5 UpdateDependents (v)
6 if v = v0 or Dep(v) 6= ∅ then
7 let v1v2 · · · vk = E(v)
8 d := E(v)(A(v1), . . . , A(vk))
9 if A(v) @ d then

10 W := W∪{u ∈ Dep(v) | v /∈ Ignore(A, u)}
11 A(v) := d
12 if v = v0 and

{v1, . . . , vk} ⊆ Ignore(A, v0) then
13 ”break out of the while loop”

14 if v /∈ Passed then
15 Passed := Passed ∪ {v}
16 for all vi ∈ {v1, . . . , vk} \ Ignore(A, v) do
17 Dep(vi) := Dep(vi) ∪ {v}
18 W := W ∪ {vi}
19 return A(v0)
20 Procedure UpdateDependents(v):
21 C := {u ∈ Dep(v) | v ∈ Ignore(A, u)}
22 Dep(v) := Dep(v) \ C
23 if Dep(v) = ∅ and C 6= ∅ then
24 Passed := Passed \ {v}
25 UpdateDependentsRec (v)

26 Procedure UpdateDependentsRec(v):
27 for v′ ∈ E(v) do
28 C := Dep(v′) ∩ {v}
29 Dep(v′) := Dep(v′) \ {v}
30 if Dep(v′) = ∅ and C 6= ∅ then
31 UpdateDependentsRec (v′)
32 Passed := Passed \ {v′}

Algorithm 1: Minimum fixed-point computation

A(v) and because A ≤ Amin we get that A(v) =

Amin(v). ut

In Algorithm 1 we now present our local (on-the-fly)

minimum fixed-point computation. The algorithm uses

the following internal data structures:

– A is the currently computed assignment that is ini-

tialized to A⊥,

– W is the waiting set of pending vertices to be ex-

plored,

– Passed is the set of explored vertices, and

– Dep : V → 2V is a dependency function that for

each vertex v returns a set of vertices that should

be reevaluated whenever the assignment value of v

improves.

The algorithm starts by inserting the root vertex v0 into

the waiting set. In each iteration of the while-loop it re-

moves a vertex v from the waiting set and performs a

check whether there is some other vertex that depends

on the value of v. If this is not the case, we are not
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going to explore the vertex v and recursively propagate

this information to the children of v. After this, we try

to improve the current assignment of A(v) and if this

succeeds, we update the waiting set by adding all ver-

tices that depend on the value of v to W , and we test

if the algorithm can terminate early (should the root

vertex v0 get its final value). Otherwise, if the vertex

v has not been explored yet, we add all its children to

the waiting set and update the dependencies.

The call to UpdateDependents at line 5 is an op-

timization and it can be disregarded without affecting

correctness. For a vertex v, in UpdateDependents

all parent vertices who now ignore v (wrt. to A) are

removed from the dependencies of v. If the dependency

set of v becomes empty then the implication is that any

future value of v no longer has any effect on the value of

the parents. The call to UpdateDependentsRec then

removes v from the dependency set of its children, and

if the children’s dependency sets become empty then it

recursively performs the check again.

We shall now state the termination and correctness

of our algorithm based on the following lemmas.

Lemma 4.2 Let A be the assignment at any given

point in the execution of Algorithm 1, and A′ the as-

signment at any later point. Then A ≤ A′.

Proof Let A be the assignment in Algorithm 1 at some

point in the execution. The assignment is only modified

at line 11 by setting the value to d for a vertex v. If

this happens, then from line 9 we have that A(v) @ d

implying that the assignment increased, and the lemma

follows from the transitivity of v. ut

Lemma 4.3 (Termination) Algorithm 1 terminates.

Proof In each iteration a vertex is removed from the

waiting set W . Since the dependency graph is finite

it has only finitely many vertices and a vertex is only

added to W at line 10 or line 18. We argue that either

line is only executed a finite number of times.

The NOR D has no infinite sequence wrt. @ because

it satisfies the ascending chain condition, so line 10 can

only run a finite number of times since it is guarded by

line 9. Line 18 only runs if previously in the iteration we

had v /∈ Passed, which is the case for all vertices ini-

tially. Then line 15 has also run and added v to Passed.

For line 18 to run again, v must first be removed from

Passed which can only happen at line 24 and line 32.

We argue that both lines only run a finite number of

times.

Suppose line 24 executes. Then Dep(v) became

empty for some vertex v because v ∈ Ignore(A, u)

at line 21. Then for all future assignments A′ ≥ A we

still have that v ∈ Ignore(A′, u) and since Dep(v) is

only enlarged at line 17 when v is not ignored, this can

at most happen |V | times wrt. to v.

Line 32 can only run if UpdateDependentsRec

was called at line 25 when there was some call to Up-

dateDependents earlier in the iteration. But this im-

plies line 24 also ran which it only does at most once

per iteration and a limited number of times in total as

shown previously.

Since both line 10 and line 18 can only happen a

finite number of times and in each iteration we remove

a vertex from W , we can conclude that the algorithm

terminates. ut

Lemma 4.4 (Soundness) Algorithm 1 at all times

satisfies A ≤ Amin .

Proof The property initially holds after initializing A

into A⊥. Assume that A ≤ Amin holds before the exe-

cution of the while-loop and we show that this property

is preserved also after the body of the while-loop is exe-

cuted. The only place where A is increased is at line 11,

which only happens if A(v) @ E(v)(A(v1), . . . , A(vk))

for the vertex v that was just removed from the waiting

set. By definition of F , and the fact that F is mono-

tonic (Lemma 3.1), we get E(v)(A(v1), . . . , A(vk)) v
F (Amin)(v) = Amin(v). This implies that the update

to A(v) at line 11 maintains the invariant. ut

Lemma 4.5 (While-Loop Invariant) At the begin-

ning of each iteration of the loop at line 3 of Algo-

rithm 1, for any vertex v ∈ V holds that either:

1. A(v) = Amin(v), or

2. v ∈W , or

3. v 6= v0 and Dep(v) = ∅, or

4. A(v) = E(v)(A(v1), . . . , A(vk)) where v1 · · · vk =

E(v) and for all i, 1 ≤ i ≤ k, whenever vi /∈
Ignore(A, v) then also v ∈ Dep(vi).

Proof Initially, the invariant holds just after the ini-

tialization as v0 ∈ W which implies condition (2) for

the root v0, and for any other vertex v where v 6= v0
condition (3) holds because Dep(v) = ∅. We shall now

prove that if the loop invariant holds before the execu-

tion of the body of the while-loop then it will hold also

at the end of the execution of the body. We perform

a case analysis, depending on which of the four condi-

tions holds for a given vertex v before the beginning of

the execution of the while-loop body.

1. Assume that v ∈ V satisfies condition (1). The only

place where A(v) is changed is at line 11, provided

that v was picked from W at line 4 and A(v) @ d.

However, the assignment A(v) := d can never be

executed because in the beginning of the loop ex-

ecution we assumed that A(v) = Amin(v) and by
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Lemma 4.4 we know that A(v) v Amin(v) at any

time of the algorithm execution. Hence the vertex v

satisfies condition (1) also at the end of the execu-

tion of the while-loop.

2. Assume that v ∈ V satisfies condition (2), meaning

that v ∈ W . This can only be violated if v gets

removed from W at line 4.

– Once we get to line 6, the body of the while-

loop can immediately finish should the test at

line 6 fail, meaning that v 6= v0 and Dep(v) = ∅.
However, then the vertex v satisfies condition (3)

and the loop invariant is restored.

– If the test succeeds, the control flow proceeds to

evaluate the body of the if-statement. If A(v) @
d at line 9 evaluates to true and d = Amin(v)

then the loop invariant is restored as the vertex

v now satisfies condition (1).

– Otherwise, we consider the situation d 6=
Amin(v) implying that A(v) @ Amin(v) due to

Lemma 4.4. By the assignment at line 11 we sat-

isfy the first part of condition (4). For the sec-

ond part of condition (4), we observe that by

Lemma 4.1 there must exist i, 1 ≤ i ≤ k, where

v1v2 · · · vk = E(v) such that vi /∈ Ignore(A, v),

which implies that the if-test at line 12 fails and

we proceed to test if v /∈ Passed. If v /∈ Passed

is true then line 17 ensures that also the sec-

ond part of condition (4) holds and this restores

the loop-invariant. If v ∈ Passed then v has al-

ready been added to Dep(vi) for all relevant i at

line 17 in an earlier iteration of the while-loop

and the subtraction of v from the dependency set

Dep(vi) at line 22 is not applicable as C may not

contain v due to the fact that vi 6∈ Ignore(A, v).

From this also follows that the recursive proce-

dure UpdateDependentsRec is never called

with the vertex v as an argument and hence nei-

ther line 29 can remove v from Dep(vi). As a re-

sult, the second part of condition (4) holds also

in this case and the while-loop invariant is es-

tablished.

3. Assume that v ∈ V satisfies condition (3). Condition

(3) can be violated only at line 17 by adding a vertex

to Dep(v), however, then v is at line 18 added to the

set W and this establishes the while-loop invariant

by satisfying condition (2).

4. Assume that v ∈ V satisfies condition (4) and none

of the other three conditions. Let condition (4) get

violated during the execution of the body, mean-

ing that either (i) A(v) @ E(v)(A(v1), . . . , A(vk))

or (ii) there is some vi /∈ Ignore(A, v) such that

v 6∈ Dep(vi).

– Case (i) can only happen if some vertex vi that

is a child of v is taken from the waiting set at

line 4 and the value of A(vi) improves by the

assignment at line 11. However, at the previous

line 10 the vertex v was immediately added to

the set W and hence condition (2) of the invari-

ant is restored.

– For case (ii) we observe that v may be re-

moved from Dep(vi) at line 22 during the call

to UpdateDependents(vi), however, as con-

dition (4) only considers those vi where vi /∈
Ignore(A, v), clearly v cannot be in the set

C that is subtracted from Dep(vi) at line 22.

Hence in this case condition (4) continues to

hold. The second place where v may be removed

from Dep(vi) is at line 29. The only way to reach

this statement is if Dep(v) = ∅, at line 22, or an

earlier call to UpdateDependentsRec which

can happen only if Dep(v) = ∅ at line 30. As in

both cases Dep(v) = ∅, we conclude that now

condition (3) holds for v and the loop invariant

is established also in this case. ut

We can now conclude with the correctness theorem.

Theorem 4.1 Algorithm 1 terminates and returns the

value Amin(v0).

Proof Termination is proved in Lemma 4.3. From

Lemma 4.4 we know that A ≤ Amin . If Algorithm 1

terminates early at line 13, we know that A(v0) =

Amin(v0) due to Lemma 4.1. Assume that Algorithm 1

terminates at line 19. This line is reachable only if

the waiting set W is empty and hence condition (2)

of Lemma 4.5 cannot not hold for any v ∈ V . Sup-

pose that condition (1) of Lemma 4.5 holds for v0,

then this case is trivial as condition (1) implies that

A(v0) = Amin(v0). If neither condition (1) nor (2) hold

for v0 then condition (4) must hold as v0 never satisfies

condition (3). We finish the proof by arguing that A is

a fixed-point assignment for all the explored vertices of

the graph, i.e. F (A)(v) = A(v) for every vertex v such

that Dep(v) 6= ∅, which includes also all children of the

vertex v0 that do not belong to the set Ignore(A, v0).

As Amin is the minimum fixed-point assignment, this

will imply that Amin(v) v A(v) which together with

A ≤ Amin gives us A(v) = Amin(v). Let v be a ver-

tex such that Dep(v) 6= ∅. We need to argue that

A(v) = E(v)(A(v1), . . . , A(vk)). The vertex v must sat-

isfy condition (1) or condition (4) of Lemma 4.5 as the

other two options are not possible due to our assump-

tions W = ∅ and Dep(v) 6= ∅. If v satisfies condition (1),

meaning that A(v) = Amin(v), then the claim holds

due the fact that A(v) cannot be increased anymore by
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applying the function E(v) because by Lemma 4.4 we

know that A ≤ Amin . Otherwise v must satisfy condi-

tion (4) which directly implies our claim. ut

5 Applications of Abstract Dependency Graphs

We shall now describe applications of our general frame-

work to previously studied instances of dependency

graphs in order to demonstrate the direct applicabil-

ity of our framework. Together with an efficient im-

plementation of the algorithm, this provides a solution

to many verification problems studied in the literature.

We start with the classical notion of dependency graphs

suggested by Liu and Smolka.

5.1 Liu and Smolka Dependency Graphs

In the dependency graph framework introduced by

Liu and Smolka [20], a dependency graph is represented

as G = (V,H) where V is a finite set of vertices and

H ⊆ V ×2V is the set of hyperedges. An assignment is a

function A : V → {0, 1}. A given assignment is a fixed-

point assignment if (A)(v) = max(v,T )∈H minv′∈T A(v′)

for all v ∈ V . In other words, A is a fixed-point assign-

ment if for every hyperedge (v, T ) where T ⊆ V holds

that if A(v′) = 1 for every v′ ∈ T then also A(v) = 1.

Liu and Smolka suggest both a global and a local algo-

rithm [20] to compute the minimum fixed-point assign-

ment for a given dependency graph.

We shall now argue how to instantiate abstract de-

pendency graphs for the Liu and Smolka’s framework.

Let (V,H) be a fixed dependency graph. We consider

a NOR D = ({0, 1},≤, 0) where 0 < 1 and construct

an abstract dependency graph G′ = (V,E,D, E). Here

E : V → V ∗ is defined

E(v) = v1 · · · vk s.t. {v1, . . . , vk} =
⋃

(v,T )∈H

T

such that E(v) contains (in some fixed order) all ver-

tices that appear on at least one hyperedge rooted with

v. The labelling function E is now defined as expected

E(v)(d1, . . . , dk) = max
(v,T )∈H

min
vi∈T

di

mimicking the computation in dependency graphs. For

the efficiency of fixed-point computation in abstract de-

pendency graphs it is important to provide an Ignore

function that includes as many vertices as possible. We

shall use the following one

Ignore(A, v) =


{E(v)i | 1 ≤ i ≤ |E(v)|}

if ∃(v, T ) ∈ H.∀u ∈ T.A(u) = 1

∅ otherwise

meaning that once there is a hyperedge with all the tar-

get vertices with value 1 (that propagates the value 1 to

the root of the hyperedge), then the vertices of all other

hyperedges can be ignored. This ignore function is, as

we observed when running experiments, more efficient

than this simpler one

Ignore(A, v) =


{E(v)i | 1 ≤ i ≤ |E(v)|}

if A(v) = 1

∅ otherwise

because it avoids the exploration of vertices that can

be ignored before the root v is picked from the waiting

set. Our encoding hence provides a generic and efficient

way to model and solve problems described by Boolean

equations [2] and dependency graphs [20].

5.2 Certain-Zero Dependency Graphs

Liu and Smolka’s on-the-fly algorithm for dependency

graphs significantly benefits from the fact that if there

is a hyperedge with all target vertices having the value

1 then this hyperedge can propagate this value to the

source of the hyperedge without the need to explore

the remaining hyperedges. Moreover, the algorithm can

terminate early should the root vertex v0 get the value

1. On the other hand, if the final value of the root is 0

then the whole graph has to be explored and no early

termination is possible. Recently, it has been noticed [5]

that the speed of fixed-point computation by Liu and

Smolka’s algorithm can been considerably improved by

considering also certain-zero value in the assignment

that can, in certain situations, propagate from children

vertices to their parents and once it reaches the root

vertex, the algorithm can terminate early.

We shall demonstrate that this extension can be di-

rectly implemented in our generic framework, requiring

only a minor modification of the abstract dependency

graph. Let G = (V,H) be a given dependency graph.

We consider now a NOR D = ({⊥, 0, 1},v,⊥) where

⊥ @ 0 and ⊥ @ 1 but 0 and 1, the ‘certain’ values, are

incomparable. We use the labelling function

E(v)(d1, . . . , dk) =


1 if ∃(v, T ) ∈ H.∀vi ∈ T.di = 1

0 if ∀(v, T ) ∈ H.∃vi ∈ T.di = 0

⊥ otherwise

so that it rephrases the method described in [5]. In or-

der to achieve a competitive performance, we use the

following ignore function.
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Ignore(A, v) =

{E(v)i | 1 ≤ i ≤ |E(v)|}
if ∃(v, T ) ∈ H.∀u ∈ T.A(u) = 1

{E(v)i | 1 ≤ i ≤ |E(v)|}
if ∀(v, T ) ∈ H.∃u ∈ T.A(u) = 0

∅ otherwise

Our experiments presented in Section 7 show a clear

advantage of the certain-zero algorithm over the classi-

cal one, as also demonstrated in [5].

5.3 Weighted Symbolic Dependency Graphs

In this section we show an application that instead of a

finite NOR considers an ordering with infinitely many

elements. This allows us to encode e.g. the model check-

ing problem for weighted CTL logic as demonstrated

in [11,12]. The main difference, compared to the de-

pendency graphs in Section 5.1, is the addition of cover-

edges and hyperedges with weight.

A weighted symbolic dependency graph, as intro-

duced in [11], is a triple G = (V,H,C), where V is

a finite set of vertices, H ⊆ V × 2(N
0×V ) is a finite

set of hyperedges and C ⊆ V × N0 × V a finite set of

cover-edges. We assume the natural ordering relation >

on natural numbers such that ∞ > n for any n ∈ N0.

An assignment A : V → N0 ∪ {∞} is a mapping from

configurations to values. A fixed-point assignment is an
assignment A such that

A(v) =

0 if ∃(v, w, u) ∈ C s.t. A(u) ≤ w
min

(v,T )∈H

(
max{A(u) + w | (w, u) ∈ T}

)
else

where we assume that max ∅ = 0 and min ∅ =∞. As be-

fore, we are interested in computing the value Amin(v0)

for a given vertex v0 where Amin is the minimum fixed-

point assignment.

In order to instantiate weighted symbolic depen-

dency graphs in our framework, we use the NOR

D = (N0 ∪ {∞},≥,∞) as introduced in Exam-

ple 2.1 and define an abstract dependency graph

G′ = (V,E,D, E). We let E : V → V ∗ be de-

fined as E(v) = v1 · · · vmc1 · · · cn where {v1, . . . , vm} =⋃
(v,T )∈H

⋃
(w,vi)∈T {vi} is the set (in some fixed or-

der) of all vertices that are used in hyperedges and

{c1, . . . , cn} =
⋃

(v,w,u)∈C{u} is the set (in some fixed

order) of all vertices connected to cover-edges. Finally,

we define the labelling function E as

E(v)(d1, . . . , dm, e1, . . . , en) =0 if ∃(v, w, ci) ∈ C. w ≥ ei
min

(v,T )∈H
max

(w,vi)∈T
w + di otherwise.

In our experiments, we consider the following ignore

function.

Ignore(A, v) =

{E(v)i | 1 ≤ i ≤ |E(v)|}
if ∃(v, w, u) ∈ C. A(u) ≤ w

{E(v)i | 1 ≤ i ≤ |E(v)|, A(E(v)i) = 0}
otherwise

This shows that also the formalism of weighted sym-

bolic dependency graphs can be modelled in our frame-

work and the experimental evaluation in Section 7 doc-

uments that it outperforms the existing implementa-

tion.

6 Addition of Nonmonotonic Functions

The restriction that E(v) must be monotonic may limit

the usability of the framework for certain applications,

for instance, to support model checking of logics with

negation. In Figure 2 we have an ADG with E(X)

being the exclusive-or of the assignment to Y and

Z. Figure 2b shows the resulting evaluation of E(X)

with increasing assignments. The introduction of non-

monotonic functions invalidates Theorem 3.1 and The-

orem 4.1.

X

E(X) = Y XORZ

Y Z

(a) Abstract dependency graph with XOR

A(Y ) A(Z) E(X)(A)

0 0 0
1 0 1
1 1 0

(b) Assignment evaluation

Fig. 2: ADG with nonmonotonic function

To permit arbitrary functions, we apply a similar

strategy as that used to support negation for CTL with

EDG in [5], but adapt it for our more general frame-

work. We define extended abstract dependency graphs



10 Søren Enevoldsen et al.

where vertices are no longer restricted to only being

labelled with monotonic functions (E(v) ∈ FM ), but

rather any function (E(v) ∈ F).

Let G = (V,E,D, E) be an ADG. We write v → u

if u = E(v)i for some 1 ≤ i ≤ |E(v)| and write →+

for the transitive closure of →. We also write v ⇒A

v′ if v → v′ and v′ /∈ Ignore(A, v), and ⇒+
A for the

transitive closure.

Definition 6.1 (Extended Abstract Dependency

Graph) An extended abstract dependency graph

(EADG) is a tuple G = (V,E,D, E) where V , E, D
are defined as for ADGs in Definition 3.1, with the fol-

lowing changes to E :

– vertices can be labelled by any effectively com-

putable function E : V → F(D) (not restricted to

monotonic functions), and

– no vertex labelled with a nonmonotonic function

(E(v) /∈ FM ) may be in a cycle i.e. for every v where

E(v) /∈ FM we have v 6→+ v.

Now the example in Figure 2 can be considered as

EADG. Because of the restriction that there may not

be any cycles involving vertices labelled with nonmono-

tonic functions, for any path there is a maximal number

of such vertices, and we can define the distance of a ver-

tex as follows:

dist(v) = max{m | v = v0 → v1 → v2 → . . . ,

m = |{vi | E(vi) /∈ FM and i ≥ 0}|}.

Since there are no cycles involving vertices v where

E(v) /∈ FM , dist is well defined and induces subgraph

components Ci of G where Vi = {v ∈ V | dist(v) ≤ i}
and i ∈ N0. We note that component C0 is never

empty and contains only vertices labelled with mono-

tonic functions. Figure 3 shows an EADG with multiple

components, C0, C1 and C2. The vertices with double

borders are labelled with nonmonotonic functions.

C0

C1

C2

Fig. 3: EADG with three components

We then define F0(A)(v) = E(v)(A(v1), . . . , A(vk))

for all v ∈ V0 and where E(v) = v1v2 . . . vk. This defi-

nition is identical to F defined earlier and thus Theo-

rem 3.1 also applies to F0. We denote the minimal fixed

point of F0 as AC0
min .

For each component Ci where i > 0, we define Fi :

A → A such that

Fi(A)(v) =

E(v)(A(v1), A(v2), . . . , A(vk))

if E(v) ∈ FM

E(v)(A
Ci−1

min (v1), A
Ci−1

min (v2), . . . , A
Ci−1

min (vk))

if E(v) /∈ FM

where E(v) = v1v2 . . . vk, and ACi
min is the fixed point

of Fi. The value of ACi
min is defined inductively in terms

of A
Ci−1

min except for AC0
min whose fixed point can be

calculated on its own. For EADG G let distmax =

maxv∈V dist(v). We define Amin(v) = A
Cdistmax
min (v).

The following Lemma 6.1, Lemma 6.2 and Theo-

rem 6.1 restate for Fi what Lemma 3.1, Lemma 3.2 and

Theorem 3.1, respectively, claimed for F . Their proofs

are straightforward generalizations by induction on i.

Lemma 6.1 The function Fi is monotonic for all in-

dices i ≥ 0.

Lemma 6.2 For all i, j ≥ 0 the assignment F j
i (A⊥) is

effectively computable, F j
i (A⊥) ≤ F k

i (A⊥) for all j ≤
k, and there exists a number m such that Fm

i (A⊥) =

Fm+j
i (A⊥) for all j > 0.

Theorem 6.1 For all i there exists a number k such

that F j
i (A⊥) = ACi

min for all j ≥ k and all i ≥ 0.

In Algorithm 2 we can now give a modified fixed-

point algorithm that permits nonmonotonic functions.

The under-dotted lines mark the changes compared to

Algorithm 1. It is crucial that vertices labelled by non-

monotonic functions are not evaluated unless the values

of the relevant children are final, i.e. for all children u /∈
Ignore(A, v) in E(v) we must have A(u) = Amin(u).

Only then is it guaranteed that A(v) v Fi(A)(v) for

such vertices. To ensure that vertices are only evalu-

ated when it is safe, we make use of a special predicate

pickable defined below.

Definition 6.2 Given an assignment A, a vertex v ∈
W is pickable in Algorithm 2 if either

A. E(v) ∈ FM , or

B. E(v) /∈ FM and v /∈ Passed, or

C. E(v) /∈ FM and for all u where v ⇒+
A u

(a) u /∈W , and

(b) E(u)(A(E(u)1), . . . , A(E(u)k)) = A(u).
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Input: An effectively computable ADG
G = (V,E,D, E) and v0 ∈ V .

Output: Amin(v0)
1 A := A⊥ ; Dep(v) := ∅ for all v
2 W := {v0} ; Passed := ∅
3 while W 6= ∅ do
4 let v ∈W where v is pickable

5 if v /∈ Passed and E(v) /∈ FM then
6 goto line 18

7 W := W \ {v}
8 UpdateDependents (v)
9 if v = v0 or Dep(v) 6= ∅ then

10 let v1v2 · · · vk = E(v)
11 d := E(v2)(A(v1), . . . , A(vk))
12 if A(v) @ d then
13 W := W∪{u ∈ Dep(v) | v /∈ Ignore(A, u)}
14 A(v) := d
15 if v = v0 and

{v1, . . . , vk} ⊆ Ignore(A, v0) then
16 ”break out of the while loop”

17 if v /∈ Passed then
18 Passed := Passed ∪ {v}
19 for all vi ∈ {v1, . . . , vk} \ Ignore(A, v) do
20 Dep(vi) := Dep(vi) ∪ {v}
21 W := W ∪ {vi}
22 return A(v0)
23 Procedure UpdateDependents(v):
24 C := {u ∈ Dep(v) | v ∈ Ignore(A, u)}
25 Dep(v) := Dep(v) \ C
26 if Dep(v) = ∅ and C 6= ∅ then
27 Passed := Passed \ {v}
28 UpdateDependentsRec (v)

29 Procedure UpdateDependentsRec(v):
30 for v′ ∈ E(v) do
31 C := Dep(v′) ∩ {v}
32 Dep(v′) := Dep(v′) \ {v}
33 if Dep(v′) = ∅ and C 6= ∅ then
34 UpdateDependentsRec (v′)
35 Passed := Passed \ {v′}

Algorithm 2: Minimum fixed-point computation

on an EADG. The underlined fragments are the

additions made to Algorithm 1.

Lemma 6.3 In Algorithm 2, if W is not empty then

there exists v ∈W such that v is pickable.

Proof If there exists some v ∈W such that E(v) ∈ FM

then v is pickable. Otherwise assume that for all v ∈W
we have that E(v) /∈ FM . For a contradiction, assume

that there is no pickable vertex v ∈W . This means that

for all v ∈W :

1. v ∈ Passed, and

2. there exists u where v ⇒+
A u such that either

(a) u ∈W , or

(b) E(u)(A(E(u)1), . . . , A(E(u)k)) 6= A(u).

Let v be any vertex in W with minimal dist . Since

v has minimal dist then for all u where v ⇒+
A u and

E(u) /∈ FM we have u /∈ W . Since v ∈ Passed

we must have added all u′ where v ⇒+
A u′ to W at

some point (and they were later removed from W ). As-

sume now that there is some u where v ⇒+
A u that

E(u)(A(E(u)1), . . . , A(E(u)k)) 6= A(u).

– Let E(u) ∈ FM . Then E(u) was evaluated at least

once, and if A(u′) for some child u⇒A u′ increased

then u was added to W such that later E(u) may

be reevaluated. Since no such u is (any longer) in

W , this reevaluation must have happened and we

cannot have E(u)(A(E(u)1), . . . , A(E(u)k)) 6= A(u).

– Let E(u) /∈ FM . Since u is no longer in W it

must have been picked from W implying that it was

pickable (u satisfied pickable condition C) and then

evaluated for A(u). This evaluation contradicts that

E(u)(A(E(u)1), . . . , A(E(u)k)) 6= A(u). ut

Lemma 6.4 Let A be the assignment at any given

point in the execution of Algorithm 2, and A′ the as-

signment at any later point. Then A ≤ A′.

Proof Identical to proof for Lemma 4.2. ut

Lemma 6.5 (Termination) Algorithm 2 terminates.

Proof The proof argument is the same as in Lemma 4.3.

However, it is no longer the case that in each iteration

a vertex is removed from W because of the added con-

dition and goto starting at line 5 and 6.

Vertices can only be added to W at line 13 and

line 21. For line 13 to be evaluated, we must have that

the assignment increases (in order to enter the body of

the if-statement in line 12) which can only happen a fi-

nite number of times. Line 21 only runs if v /∈ Passed,

in which case v is added to Passed and, by same argu-

ment as in Lemma 4.3, a vertex can only be removed

from Passed a finite number of times. In the iterations

where v is not removed from W because of the goto

at line 6, the vertex v is still added to Passed. Since

v can only be removed from Passed a finite number of

times, eventually v will picked in some iteration where

v ∈ Passed and removed from W .

Since there is only a finite number of additions to

W and finite number of iterations where no vertex is

removed from W , eventually W becomes empty and

the algorithm terminates, if not earlier due to line 16.

ut

Lemma 6.6 In Algorithm 2, if E(v) /∈ FM , and v ∈
Passed and v is pickable, then A(u) = Amin(u) for all

u such that v ⇒+
A u.

Proof Assume for some pickable vertex v that E(v) /∈
FM and v ∈ Passed. We prove that A(u) = Amin(u)

for all v ⇒+
A u by induction on dist(u). Note that there

are no v ∈ V with E(v) /∈ FM such that dist(v) = 0.
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– Assume dist(u) = 0. From Condition C(b)

in the definition of pickable we know that

E(u)(A(E(u)1), . . . , A(E(u)k)) = A(u). Then by

definition of F0 we have reached a fixed point w.r.t.

u. Since, initially A = A⊥, it must be the minimum

fixed point.

– Assume dist(u) = m > 1.

– Let E(u) /∈ FM . Then all for all u ⇒+
A u′ we

have dist(u′) < m and by I.H. we get A(u′) =

Amin(u′). For u to no longer be on the waiting

set it must have satisfied pickable condition C

and been picked earlier (condition B keeps it in

W ). During the iteration it was picked from W ,

we must have evaluated Amin(u) = Fm(A)(u) =

E(u)(Amin(u1), Amin(u2), . . . , Amin(uk)) where

E(u) = u1u2 . . . uk and assigned the value to

A(u).

– Let E(u) ∈ FM . From Condition C(b)

in the definition of pickable we have that

E(u)(A(E(u)1), . . . , A(E(u)k)) = A(u) =

Fm(A)(u). Then by definition of Fm we have

reached a fixed point w.r.t. u. Since, initially

A = A⊥, it must be the minimum fixed point.

ut

Lemma 6.7 (Soundness) Algorithm 2 at all times

satisfies A ≤ Amin .

Proof Initially we have A = A⊥ ≤ Amin . Assume

that A ≤ Amin . The only place where A is in-

creased is at line 14, which only happens if A(v) @
E(v)(A(v1), . . . , A(vk)), where E(v) = v1v2 . . . vk, for

the vertex v that was just removed from the waiting

set.

– Assume the vertex v picked was monotonic

(E(v) ∈ FM ). By definition of F , and the

fact that F is monotonic (Lemma 6.1), we get

E(v)(A(v1), . . . , A(vk)) v F (Amin)(v) = Amin(v).

This implies that the update to A(v) at line 14 main-

tains the invariant.

– Assume the vertex v picked was nonmonotonic

(E(v) /∈ FM ). In order for line 14 to run, we must

have v ∈ Passed. Then by Lemma 6.6, for all u

where v ⇒+
A u we haveA(u) = Amin(u). Then for all

v → u either u ∈ Ignore(A, v) or A(u) = Amin(u)

and from the definition of Ignore we then get that

E(v)(A(v1), . . . , A(vk)) = Amin(v).

ut

Lemma 6.8 (While-Loop Invariant) At the begin-

ning of each iteration of the loop at line 3 of Algo-

rithm 2, for any vertex v ∈ V it holds that either:

1. A(v) = Amin(v), or

2. v ∈W , or

3. v 6= v0 and Dep(v) = ∅, or

4. E(v) ∈ FM and A(v) = E(v)(A(v1), . . . , A(vk))

where v1 · · · vk = E(v) and for all i, 1 ≤ i ≤ k,

whenever vi /∈ Ignore(A, v) then also v ∈ Dep(vi).

Proof The proof is identical to that for Lemma 4.5 in

the case where a vertex is labelled with monotonic func-

tions. Here we concern only the cases needed for non-

monotonic vertices (E(v) /∈ FM ). We first show that

the invariant holds before the first iteration, and then

prove for each case that the invariant is maintained.

Initially Dep(v) = ∅ for all v except v0 for which we

have v0 ∈ W . Let now assume that the invariant holds

before the execution of the body of the while-loop. Let

v ∈ V such that E(v) /∈ FM . There are now four cases.

1. Let A(v) = Amin(v). If A(v) is modified then we

must have A(v) @ d. However, from Lemma 6.7

we always have that A ≤ Amin implying A(v) ≤
Amin(v) and since A(v) is never decreased, we also

have that A(v) = Amin(v) after the iteration.

2. Let v ∈W . Now suppose v is removed from W . This

can only happen if v ∈ Passed due to line 7. From

Lemma 6.6 we have that A(u) = Amin(u) for all u

such that v ⇒+
A u. Then the evaluation of E(v) and

following assignment sets A(v) = Amin(v).

3. Let Dep(v) = ∅. It can only be violated at line 20

but then the case v ∈W is established.

4. Our assumption here is that E(v) ∈ FM , so this case

does not apply. ut

Theorem 6.2 Algorithm 2 terminates and returns the

value Amin(v0).

Proof The proof argument is the same as in Theo-

rem 4.1, but with Lemma 4.4 replaced by Lemma 6.7,

and Lemma 4.5 replaced by Lemma 6.8. ut

Implementability of Pickable. The definition of

pickable given in Definition 6.2 is impractical to im-

plement since it requires examing all descendants of a

vertex and hence breaks the possibility for on-the-fly

search. For implementation purposes, we instead treat

W as a last-in-first-out stack where pushing a vertex

that is already in W does nothing (hence W still be-

haves as a set). First, it effectively enforces a depth-

first-like search. Secondly, after removing any vertex v

where E(v) /∈ FM from W , because there are no cycles

among vertices labelled with non-monotonic functions,

we know that there are no descendants u where v →+ u

in W . We show that for a non-empty stack the top el-

ement is always pickable.

Lemma 6.9 If W is non-empty then the vertex on top

of the stack W is pickable.
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Proof Let v be the top-most vertex on the stack W . We

prove the lemma by induction on dist(v).

– Assume dist(v) = 0. Then E(v) ∈ FM and pickable

condition A is true.

– Assume dist(v) = m > 0. If E(v) ∈ FM then

pickable condition A is true. Otherwise we must

have E(v) /∈ FM . If v /∈ Passed then pickable

condition B is true. If v ∈ Passed then we must

have added all u where v ⇒A u to stack W and

we have dist(u) < m. Then by the I.H. for each

such u it must have been pickable when it was last

on top of the stack using either pickable condition

A or C (since B keeps it in W ) and evaluated to

A(u) = E(u)(A(E(u)1), . . . , A(E(u)k)). Then v sat-

isfies pickable condition C. ut

7 Implementation and Experimental Evaluation

We implemented the fixed-point algorithm for EADG

in C++ and the signature of the user-provided interface

is given in Figure 4. The structure ADG is the main in-

terface the algorithm uses. It assumes the definition of

the type Value that represents the NOR, and the type

VertexRef that represents a light-weight reference to a

vertex and the bottom element. The type aliased as VRA

contains both a Value and a VertexRef and represents

the assignment of a vertex. The user must also provide

the implementation of the functions: initialVertex

that returns the root vertex v0, getEdge that returns

ordered successors for a given vertex, compute that

computes E(v) for a given assignment of v and its suc-

cessors, and updateIgnored that receives the assign-

ment of a vertex and its successors and sets the ignore

flags.

We instantiate this interface to three different ap-

plications as discussed in Section 5. The source code

of the algorithm and its instantiations is available at

https://launchpad.net/adg-tool/.

We shall now present a number of experiments

showing that our generic implementation of abstract

dependency graph algorithm is competitive with single-

purpose implementations mentioned in the literature.

The first two experiments (bisimulation checking for

CCS processes and CTL model checking of Petri nets)

were run on a Linux cluster with AMD Opteron 6376

processors running Ubuntu 14.04. We marked an ex-

periment as OOT if it ran for more than one hour

and OOM if it used more than 16GB of RAM. The

final experiment for WCTL model checking required

to be executed on a personal computer as the tool

we compare to is written in JavaScript, so each prob-

lem instance was run on a Lenovo ThinkPad T450s

struct Value {
bool operator ==( const Value &);
bool operator !=( const Value &);
bool operator <(const Value &);

};

struct VertexRef {
bool operator ==( const VertexRef &);
bool operator <(const VertexRef &);
bool isMonotone ();

};

struct ADG {
using Value = Value;
using VertexRef = VertexRef;
using EdgeTuple = vector <VertexRef >;
static Value BOTTOM;
VertexRef initialVertex ();
EdgeTuple getEdge(VertexRef& v);
using VRA =

typename algorithm:VertexRefAssignment <ADG >;
Value compute(const VRA*, const VRA**, size_t n);
void updateIgnored(const VRA*, const VRA**,

size_t n, vector <bool >& ignore );
bool ignoreSingle(const VRA* v, const VRA* u);

};

Fig. 4: The C++ interface

laptop with an Intel Core i7-5600U CPU @ 2.60GHz

and 12 GB of memory. The reproducibility package for

the experiments discussed in this paper is available at

https://doi.org/10.5281/zenodo.3691837.

7.1 Bisimulation Checking for CCS Processes

In our first experiment, we encode using ADG a num-

ber of weak bisimulation checking problems for the pro-

cess algebra CCS. The encoding was described in [7]

where the authors use classical Liu and Smolka’s de-

pendency graphs to solve the problems and they also

provide a C++ implementation (referred to as DG in

the tables). We compare the verification time needed to

answer both positive and negative instances of the test

cases described in [7].

Figure 5 shows the results where DG refers to the

implementation from [7] and ADG is our implementa-

tion using abstract dependency graphs. It displays the

verification time in seconds and peak memory consump-

tions in MB for both implementations as well as the

relative improvement in percents. We can see that the

performance of both algorithms is comparable, slightly

in favour of our algorithm, sometimes showing up to

103% speedup like in the case of nonbisimilar processes

in leader election of size 8. For nonbisimilar processes

modelling alternating bit protocol of size 5 we observe

a 19% slowdown caused by the different search strate-

gies so that the counter-example to bisimilarity is found

faster by the implementation from [7]. Memory-wise,

the experiments are in favour of our implementation.

https://launchpad.net/adg-tool/
https://doi.org/10.5281/zenodo.3691837
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Size Time [s] Memory [MB]
DG ADG Speedup DG ADG Reduction

Lossy Alternating Bit Protocol – Bisimilar
3 83.03 78.08 +6% 71 58 +22%
4 2489.08 2375.10 +5% 995 810 +23%

Lossy Alternating Bit Protocol — Nonbisimilar
4 6.04 5.07 +19% 25 18 +39%
5 4.10 5.08 −19% 69 61 +13%
6 9.04 6.06 +49% 251 244 +3%

Ring Based Leader-Election — Bisimilar
8 21.09 18.06 +17% 31 23 +35%
9 190.01 186.05 +2% 79 71 +11%

10 2002.05 1978.04 +1% 298 233 +28%
Ring Based Leader-Election — Nonbisimilar

8 4.09 2.01 +103% 59 52 +13%
9 16.02 15.07 +6% 185 174 +6%

10 125.06 126.01 −1% 647 638 +1%

Fig. 5: Weak bisimulation checking comparison

We further evaluated the performance for weak sim-

ulation checking on task graph scheduling problems.

We verified 180 task graphs from the Standard Task

Graph Set as used in [7] where we check for the possi-

bility to complete all tasks within a fixed deadline. Both

DG and ADG solved 35 task graphs using the classical

Liu Smolka approach. However, once we allow for the

certain-zero optimization in our approach (requiring to

change only a few lines of code in the user-defined func-

tions), we can solve 107 of the task graph scheduling

problems.

7.2 CTL Model Checking of Petri Nets

In this experiment, we compare the performance of the

tool TAPAAL [8] and its engine VerifyPN [13], version

2.1.0, on the Petri net models and CTL queries from

the 2018 Model Checking Contest [17]. The database

consists of 767 models and we run all ‘CTLCardinality’

queries of which there are 16 for each model. This re-

sulted in 12272 model checking instances1. Because the

CTL queries allow for negation, we employ here our

extension with nonmonotonic functions.

The results comparing the speed of model check-

ing are shown in Figure 6. The model checking execu-

tions are ordered by the ratio of the verification time

of VerifyPN vs. ADG and include 7555 model check-

ing instances where at least one of the tools provided

an answer (except for two inconsistent cases that were

removed). In the result table we show the best two in-

stances for our tool, the middle eleven instances and

1 During the experiments we turned off the query prepro-
cessing using linear programming as it solves a large number
of queries by applying logical equivalences instead of perform-
ing the state-space search that we are interested in.

the worst two instances. The memory requirements for

these executions are included as well. The results sig-

nificantly vary on some instances as both algorithms

are on-the-fly with early termination and certain-zero

detection and depending on the search strategy the ver-

ification times can be largely different. Nevertheless, we

can observe that on the average (middle) experiments

our generic approach is only 7% slower than the one-

purpose and highly optimized model checking engine

VerifyPN. The median peak memory shows that we are

using on average 12% more memory (we are not pre-

senting the memory table as all 11 middle cases Veri-

fyPN used 7MB and we used 8MB).

Out of the 12272 model checking executions, Ver-

ifyPN solves 7318 instances including 1351 exclusive

answers that our implementation ADG does not solve.

ADG solves 6186 instances including 219 exclusive an-

swers that VerifyPN does not solve. We analyzed the

1351 executions that we do not solve and except for

39 executions, they all run out of memory. This shows

that on these memory demanding instances, VerifyPN

allows for a more efficient storage of the state-space.

We believe that this is due to the use of the waiting

set where we store directly vertices (allowing for a fast

access to their assignment), compared to storing ref-

erences to hyperedges in the VerifyPN implementation

(saving the memory). In both proposed algorithms, the

call to UpdateDependents (line 8 in Algorithm 2)

is an optional optimization; however, without it ADG

only solves 4150 of the instances compared to 6186 an-

swers in case that the optimization is employed.

In conclusion, the CTL experiments demonstrate

that the performance of the award-winning tool

TAPAAL and its engine VerifyPN are comparable on

the median cases to our generic model checking ap-
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Name Speedup Memory reduction
VerifyPN ADG Speedup VerifyPN ADG Reduction

VerifyPN/ADG Best 2
Angiogenesis-PT-20:02 OOM 0.01 +∞ OOM 6 +∞
AutoFlight-PT-02b:04 OOM 0.01 +∞ OOM 6 +∞

VerifyPN/ADG Middle 11
CloudReconfiguration-PT-301:16 637.67 684.23 −7% 5610 8361 −33%
NeoElection-PT-3:15 37.26 40.01 −7% 479 773 −38%
Referendum-PT-0500:15 12.77 13.72 −7% 151 263 −43%
BridgeAndVehicles-PT-V80P50N20:08 1.47 1.58 −7% 43 62 −31%
ASLink-PT-04a:15 105.66 113.61 −7% 1109 1580 −30%
NeoElection-PT-3:14 38.09 40.96 −7% 479 773 −38%
PolyORBLF-PT-S04J04T06:08 55.63 59.85 −7% 912 1419 −36%
Referendum-PT-0200:06 0.39 0.42 −7% 20 25 −20%
Angiogenesis-PT-05:08 0.13 0.14 −7% 12 16 −25%
DES-PT-02a:06 0.13 0.14 −7% 9 11 −18%
Diffusion2D-PT-D30N150:05 1.04 1.12 −7% 35 53 −34%

VerifyPN/ADG Worst 2
TriangularGrid-PT-3026:09 0.01 OOM −∞ 6 OOM −∞
TriangularGrid-PT-3026:11 0.01 OOM −∞ 6 OOM −∞

Fig. 6: Time and peak memory comparison for CTL model checking (in seconds)

Instance Time [s] Satisfied?
WKTool ADG Speedup

Alternating Bit Protocol: EF [≤ Y ] delivered = X
B=5 X=7 Y=35 7.10 0.83 +755% yes
B=5 X=8 Y=40 4.17 1.05 +297% yes
B=6 X=5 Y=30 7.58 1.44 +426% yes
Alternating Bit Protocol: EF (send0 && deliver1 ) ‖ (send1 && deliver0 )
B=5, M=7 7.09 1.39 +410% no
B=5, M=8 4.64 1.60 +190% no
B=6, M=5 7.75 2.37 +227% no

Leader Election: EF leader > 1
N=10 5.88 1.98 +197% no
N=11 25.19 9.35 +169% no
N=12 117.00 41.57 +181% no

Leader Election: EF [≤ X] leader
N=11 X=11 24.36 2.47 +886% yes
N=12 X=12 101.22 11.02 +819% yes
N=11 X=10 25.42 9.00 +182% no

Task Graphs: EF [≤ 10] done = 9
T=0 26.20 22.17 +18% no
T=1 6.13 5.04 +22% no
T=2 200.69 50.78 +295% no

Fig. 7: Speed comparison for WCTL (B–buffer size, M–number of messages, N–number of processes, T–task graph)

proach, showing only a 7% slowdown in the running

time and 12% higher memory requirement. Compared

to the results in conference version of this paper [9], this

is the case also for CTL queries with negation that re-

quired our novel extension of ADG with nonmonotonic

functions.

7.3 Weighted CTL Model Checking

Our last experiment compares the performance on

the model checking of weighted CTL against weighted

Kripke structures as used in the WKTool [12]. We im-

plemented the weighted symbolic dependency graphs

in our generic interface and run the experiments on

the benchmark from [12]. This includes experiments for

leader election and alternating bit protocol as well as

task graph scheduling problems for two processors. The

systems are described in a weighted extension of CCS

where the weight is associated to sending messages in

the first two protocols and it represents passing of time

in the scheduling problem. The measurements are pre-

sented in Figure 7 and each result is the median over 3

runs. The results demonstrate in some cases speedups

of almost 9 times with over half the cases being more
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than 2 times faster. We remark that because WKTool

is written in JavaScript, it was impossible to gather its

peak memory consumption.

8 Conclusion

We defined a formal framework for minimum fixed-

point computation on dependency graphs over an ab-

stract domain of Noetherian orderings with the least

element, and extended this approach so that it can

deal also with nonmonotonic functions. Our framework

generalizes a number of variants of dependency graphs

recently published in the literature. We suggested an

efficient, on-the-fly algorithm for computing the mini-

mum fixed-point assignment, including performance op-

timization features, and we proved its correctness.

On a number of examples, we demonstrated the ap-

plicability of our framework, showing that its perfor-

mance is matching those of specialized algorithms al-

ready published in the literature. Last but not least, we

provided an open source C++ library that allows the

user to specify only a few domain-specific functions in

order to employ the generic algorithm described in this

paper. Experimential results show that we are competi-

tive with e.g. the tool TAPAAL, winner of the 2018 and

2019 Model Checking Contest in the CTL category [17,

16], showing similar time and memory performance on

the median instances of the model checking problem.

In the future work, we shall apply our approach

to other application domains (in particular prob-

abilistic model checking), develop and test generic

heuristic search strategies as well as provide a paral-

lel/distributed implementation of our general algorithm

(that is already available for some of its concrete in-

stances [14,6]) in order to further enhance the applica-

bility of the framework.
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