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Abstract Dependency graphs, as introduced more

than 20 years ago by Liu and Smolka, are oriented

graphs with hyperedges that connect nodes with sets

of target nodes in order to represent causal depen-

dencies in the graph. Numerous verification problems

can be reduced into the problem of computing a min-

imum or maximum fixed-point assignment on depen-

dency graphs. In the original definition, assignments

link each node with a Boolean value, however, in the re-

cent work the assignment domains have been extended

to more general setting, even including infinite domains.

In this survey paper, we present an overview of the

recent results on extensions of dependency graphs in

order to deal with verification of quantitative, proba-

bilistic, parameterized and timed systems.

Keywords Dependency graphs · verification · fixed-

point computation · on-the-fly algorithms

1 Model Verification

The scale of computational systems nowadays varies

from simple toggle-buttons to various embedded sys-

tems and network routers up to complex multi-purpose

computers. In safety critical applications, we need to

provide guarantees about system behaviour in all sit-

uations/configurations that the system can encounter.

Such guarantees are classically provided by first cre-

ating a formal model of the system (at an appropri-

ate abstraction level) and then using formal methods

such as model checking and equivalence checking to rig-

orously argue about the behaviour of the models. At
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the highest abstraction level, systems are usually mod-

elled as labelled transition systems or Kripke structures

(see [8] for an introduction). In labelled transition sys-

tems (LTS), a process changes its (unobservable) inter-

nal states by performing visible actions. Kripke struc-

tures on the other hand allow to observe the validity of

a number of atomic predicates revealing some (partial)

information about the current state of a given process,

whereas the state changes are not labelled by any visi-

ble actions.

An example of LTS modelling a simple traffic light

is given in Figure 1a. Although the states are named

for convenience, they are considered opaque. Instead,

this formalism uses the action-based perspective where

the actions of the transitions are considered visible. For

example from R1 there is a transition to R′1 labelled

with a ‘wait’ action that allows to extend the duration

of the red color, after which only the action ‘to green’

is available. A slight variant of the LTS is given in Fig-

ure 1b where from G2 it is possible to enter directly the

state R′2 by performing the ‘to red’ action. We can now

ask the (equivalence checking) question whether the two

systems are equivalent up to some given notion of be-

havioural equivalence [29], e.g. bisimilarity [47], which

is not the case in our example.

The simple traffic light can also be modelled as a

Kripke structure that is depicted in Figure 2a. Here

the transitions are not labelled by any actions while

the states are labelled with the propositions ‘red’ and

‘green’ that indicate the status of the light in that state.

We note that the states R and R′ are indistinguishable

as they are labelled by the same proposition ‘red’. We

can now ask the (model checking) question whether the

initial state R satisfies the property that on any exe-

cution the proposition ‘green’ will eventually hold and

until this happens the light is in ‘red’. This can be e.g.
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(b) A variant of traffic light LTS
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(c) Dependency graph with root (R1, R2) for bisimulation checking

Iteration A(R1, R2) A(R′1, R
′
2) A(G1, G2) A(R1, R′2)

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 1 1 1 1

(d) Iterative minimum fixed-point computation by using the global algorithm

Fig. 1: Traffic light LTS variants

expressed by the CTL property ‘A red U green’ and it

indeed holds for R in the depicted Kripke structure.

1.1 On-the-Fly Verification

The challenge is how to decide the equivalence and

model checking problems even for systems described

in high level formalism such as automata networks or

Petri nets. These formalisms allow for a compact repre-

sentation of the system behaviour, meaning that even

though their configurations and transitions can still be

given as a labelled transition system or a Kripke struc-

ture, the size of these can be exponential in the size of

the input formalism. This phenomena is known as the

state-space explosion problem and it makes (in many

cases) the full enumeration of the state-space infeasible

for practical applications. In order to deal with state-

space explosion, on-the-fly verification algorithms are

preferable as they construct the reachable state-space

step by step and hence avoid the (expensive) a pri-

ory enumeration of all system configurations. In case

a conclusive answer about the system behaviour can be

drawn by exploring only a part of the state-space, this

may grant a considerable speed up in the verification

time.

The idea of local or on-the-fly model checking was

discovered simultaneously and independently by vari-
ous people in the end of the 80s all engaged in mak-

ing model checking and equivalence checking tools for

various process algebras, e.g. the Concurrency Work-

bench CWB [19]. Due to its high expressive power—

as demonstrated in [20, 48]—particular focus was on

truly local model-checking algorithms for the modal

mu-calculus [37]. Several discussions and exchanges of

ideas between Henrik Reif Andersen, Kim G. Larsen,

Colin Stirling and Glynn Winskel lead to the first lo-

cal model-checking methods [5,13,38,39,49,51]. Besides

the CWB these were implemented in the model check-

ing tools TAV [12, 30] for CCS and EPSILON [16] for

timed CCS.

Simultaneously, in France a tool named VESAR [1]

was developed that combined the model checking idea

(from the Sifakis team in Grenoble) and the simulation

world (from Roland Groz at CNET Lannion and Claude

Jard in Rennes, who were checking properties on-the-

fly using observers). The VESAR tool was developed

by a French company named Verilog and its technology



Dependency Graphs with Applications to Verification 3

G{green}

R{red} R′ {red}

(a) Traffic light Kripke structure

R,A red U green

v1

R, green

v2

R, red

v3

R′, A red U green

v4

R′, green

v5

R′, red

v6

G,A red U green

v7

G, green

v8

G, red

v9

∅

∅ ∅

(b) Dependency graph with root v1 encoding R |= A red U green

Iteration A(v1) A(v2) A(v3) A(v4) A(v5) A(v6) A(v7) A(v8) A(v9)

0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 0
2 0 0 1 0 0 1 1 1 0
3 0 0 1 1 0 1 1 1 0
4 1 0 1 1 0 1 1 1 0
5 1 0 1 1 0 1 1 1 0

(c) Interactive minimum fixed-point computation using the global algorithm

Fig. 2: Kripke structure of traffic light

was later reused for another tool named Object-Geode

from the same company, which was heavily sold in the

telecom sector [2].

As an alternative to encoding into the modal

mu-calculus, it was realized that an even simpler

formalism—Boolean equation systems (BES)—can pro-

vide a universal framework for recasting all model

checking and equivalence checking problems. Whereas

[40] introduces BES and first local algorithms, the work

in [4] provides the first optimal (linear-time) local al-

gorithm. Later extensions and adaptions of BES were

implemented in the tools CADP [46] and muCRL [31].

1.2 Dependency Graphs Related Work

We survey the (extensions) of dependency graphs [43]

(DG) introduced in 1998 Liu and Smolka. Similar to

Boolean equation systems, DG serve as a universal tool

for the representation of various model checking and

equivalence checking problems, providing us with a uni-

versal method for on-the-fly exploration of DG. The el-

egant local (on-the-fly) algorithm presented in [43] runs

in linear time with respect to the size of the DG and al-

lows for an early termination in case the chosen search

strategy manages to reveal a conclusive answer without

necessarily exploring the whole graph.

Recently, the ideas of DG have been extended to

various domains such as timed [14], weighted [33, 34]

and probabilistic [18, 44] systems as well as behav-

ioral metrics [45] and parametric model checking [17].

We shall account for some of the most notable exten-

sions and further improvements to the local algorithm

from [43] such as its parallelization. We shall start by

defining the notion of dependency graphs as introduced

by Liu and Smolka [43].

2 Dependency Graphs

Dependency graphs are a variant of directed graphs

where each edge, also called a hyperedge, may have mul-



4 Søren Enevoldsen et al.

tiple target nodes [43]. The intuition is that a property

of a given node in a dependency graph depends simul-

taneously on all the properties of the target nodes for a

given hyperedge, while different outgoing hyperedges

provide alternatives for deriving the desirable prop-

erties. Formally, a dependency graph (DG) is a pair

G = (V,E) where V is a set of nodes and E ⊆ V × 2V

is the set of hyperedges.

Figure 3a graphically depicts a dependency graph.

For example the root node v1 has two hyperedges: the

first hyperedge has the target node v2 and the second

hyperedge has two targets v3 and v4. The node v2 has

no outgoing hyperedges, while the node v3 has a sin-

gle outgoing hyperedge with no targets (shown by the

empty set).

As shown in Figure 3b it is possible to interpret the

dependencies among the nodes in dependency graph

as a system of Boolean equations, using the general

formula

v =
∨

(v,T )∈E

∧
u∈T

u

where by definition the conjunction of zero terms is

true, and the disjunction of zero terms is false. We de-

note false by ff (or 0), and true by tt (or 1).

We can now ask the question whether there is an

assignment of Boolean values to all nodes in the graph

such that all constructed Boolean equations simulta-

neously hold. Formally, an assignment is a function

A : V → {0, 1} and an assignment A is a solution if

it satisfies the equality:

A(v) =
∨

(v,T )∈E

∧
u∈T

A(u) .

In our case, there are three solutions as listed in Fig-

ure 3c. The existence of several such possible assign-

ments that solve the equations is caused by cyclic de-

pendencies in the graph as e.g. v5 depends on v6 and

at the same time v6 also depends of v5.

However, if we let the set of all possible assignments

be A and define A1 ≤ A2 if and only if A1(v) ≤ A2(v)

for all v ∈ V where A1, A2 ∈ A, then we can observe

that (A,≤) is a complete lattice [6, 23] which guaran-

tees the existence of the minimum and maximum as-

signment in the lattice.

There is a standard procedure how to compute such

a minimum/maximum solution. For example for the

minimum solution we can define a function F : A → A
that transforms an assignment as follows:

F (A)(v) =
∨

(v,T )∈E

∧
u∈T

A(u) .

Input: A dependency graph G = (V,E).
Output: Minimum fixed point Amin .

1 A := A0

2 repeat
3 A′ := A
4 forall v ∈ V do

5 A(v) :=
∨

(v,T )∈E
∧
u∈T A

′(u)

6

7 until A 6= A′

8 return A

Algorithm 1: Global algorithm for minimum

fixed point Amin

Clearly, the function F is monotonic and an assign-

ment A is a solution to a given dependency graph if and

only if A is a fixed point of A, i.e. F (A) = A. From the

Knaster-Tarski fixed-point theorem [50] we get that the

monotonic function F on the complete lattice (A,≤)

has a unique minimum fixed point (solution).

By repeatedly applying F to the initial assignment

A0 where A0(v) = 0 for all nodes v, we can iteratively

find a minimum fixed point as formulated in the follow-

ing theorem.

Theorem 1 Let Amin denote the unique minimum

fixed point of F . If there is an integer i such that

F i(A0) = F i+1(A0) then F i(A0) = Amin .

Clearly F i(A0) is a fixed point as F (F i(A0)) =

F i(A0) by the assumption of the theorem. We notice

that A0 ≤ Amin and because F is monotonic and

Amin is a fixed point, we also know that F j(A0) ≤
F j(Amin) = Amin for an arbitrary j. Then in partic-

ular F i(A0) ≤ Amin and because Amin is the mini-

mum fixed point and F i(A0) is a fixed point, necessarily

F i(A0) = Amin .

For any finite dependency graph, the iterative com-

putation of Amin as summarized in Algorithm 1, also re-

ferred to as the global algorithm, is guaranteed to termi-

nate after finitely many iterations and return the min-

imum fixed-point assignment. Dually, the iterative al-

gorithm can be used to compute maximum fixed points

on finite dependency graphs.

3 Encoding of Problems into DGs

We shall now demonstrate how equivalence and model

checking problems can be encoded into the question of

finding a minimum fixed-point assignment on depen-

dency graphs. Typically, the nodes in the dependency

graph encode the configurations of the problem in ques-

tion and the hyperedges create logical connections be-

tween the subproblems. We provide two examples show-
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v2 v3 v4 v5 v6

v7

∅

(a) Dependency graph

v1 = v2 ∨ (v3 ∧ v4)

v2 = ff

v3 = tt

v4 = (v5 ∧ v6) ∨ v7
v5 = v6

v6 = v4 ∧ v5
v7 = v4

(b) Corresponding equation system

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = tt

v6 = tt

v7 = tt

v1 = tt

v2 = ff

v3 = tt

v4 = tt

v5 = ff

v6 = ff

v7 = tt

v1 = ff

v2 = ff

v3 = tt

v4 = ff

v5 = ff

v6 = ff

v7 = ff

(c) Possible solutions

Iteration v1 v2 v3 v4 v5 v6 v7

0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
2 0 0 1 0 0 0 0

(d) Iterative minimum fixed-point computation by using the global algorithm

Fig. 3: Example of dependency graph

ing how to encode strong bisimulation checking and

CTL model checking into dependency graphs.

3.1 Encoding of Strong Bisimulation

Recall that two states s and t in a given LTS are

strongly bisimilar [47], written s ∼ t, if there is a binary

relation R over the states such that (s, t) ∈ R and

– whenever s
α−→ s′ then there is t

α−→ t′ such that

(s′, t′) ∈ R, and

– whenever t
α−→ t′ then there is s

α−→ s′ such that

(s′, t′) ∈ R.

We encode the question whether s0 ∼ t0 for given

two states s0 and t0 into a dependency graph where

the nodes (configurations) are pairs of states of the form

(s, t) and the hyperedges represent all possible ‘attacks’

on the claim that s and t are bisimilar. For example, if

one of the two states can perform an action that is not

enabled in the other state, we introduce a hyperedge

with the empty set of target nodes, meaning that the

minimum fixed-point assignment of the node (s, t) gets

the value 1 standing for the fact that s 6∼ t. In general

the aim is to construct the DG in such a way that for

s, t

s′, t′1 . . . s′, t′m s′1, t
′ . . . s′n, t

′

for all s
α−→ s′ for all t

α−→ t′

{t′1, . . . , t′m} = {t′ | t α−→ t′} {s′1, . . . , s′n} = {s′ | s α−→ s′}

Fig. 4: Encoding rule for strong bisimulation checking

any node (s, t) we have Amin((s, t)) = 0 if and only if

s ∼ t. The construction, as mentioned e.g. in [23], is

given in Figure 4. The rule says that if s can take an

α-action to s′, then the configuration (s, t) should have

a hyperedge containing all target configurations (s′, t′)

where t′ are all possible α-successors of t. Symmetri-

cally for the outgoing transitions for t that should be

matched by transitions from s.

Let us consider again the transition systems from

Figure 1. The dependency graph to decide whether R1

is bisimilar with R2 is given in Figure 1c where we can

note that the configuration (R1, R
′
2) has a hyperedge

with no target nodes. This is because R1 can perform

the ‘wait’ action that R′2 cannot match. If we now com-
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s, ϕ1 ∧ ϕ2

s, ϕ1 s, ϕ2

s, ϕ1 ∨ ϕ2

s, ϕ1 s, ϕ2

s, EXϕ

s1, ϕ sn, ϕ· · ·

s, Eϕ1Uϕ2

s1, Eϕ1Uϕ2s, ϕ1 · · ·

s, ϕ2

sn, Eϕ1Uϕ2

s,Aϕ1Uϕ2

s1, Aϕ1Uϕ2s, ϕ1

s, ϕ2

· · · sn, Aϕ1Uϕ2

Fig. 5: Encoding to determine whether s |= ϕ where

{s1, . . . , sn} = {s′ | s→ s′}

pute Amin , for example using the global algorithm in

Figure 1d, we notice that Amin((R1, R
′
2)) = 1 which

means that R1 and R′2 are not bisimilar.

3.2 Encoding of CTL Model Checking

We shall now provide an example of encoding a model

checking problem into dependency graphs. In particu-

lar, we demonstrate the encoding for CTL logic as de-

scribed e.g. in [22]. We want to check whether a state

s of a given LTS satisfies the CTL formula ϕ. We let

the nodes of the dependency graph be of the form (s, ϕ)

and these nodes are decomposed into a number of sub-

goals depending of the structure of the formula ϕ. The

encoding ensures that Amin((s, ϕ)) = 1 if and only if

s |= ϕ for any node (s, ϕ) in the dependency graph [21].

Figure 5 shows the rules for constructing such a depen-

dency graph.

Returning to our example from Figure 2, we see in

Figure 2b the constructed dependency graph for the

model checking question R |= A red U green. The

fixed-point computation using the global algorithm is

given in Figure 2c and because Amin(v1) = 1, we can

conclude that the state R indeed satisfies the CTL for-

mula A red U green. For simplicity, the encoding as

shown in Figure 5 does not include negation, but the

construction can be extended to support negation [21].

4 Local Algorithm for Dependency Graphs

The encodings of verification problems into dependency

graphs, as discussed in the previous section, construct

a graph with a root node v0 such that from the value

of the minimum fixed-point assignment of the node v0,

we can deduce the answer to the verification problem

in question.

In Algorithm 1 we have already seen a method for

computing iteratively the minimum fixed point Amin

for all nodes in the dependency graph. However, due

to the state-space explosion problem, such a graph can

be exponentially large (or even infinite) and hence it

is infeasible to explore it completely. As we are often

only interested in Amin(v0) for a given node v0, we do

not necessarily have to explore the whole dependency

graph. This is shown in Figure 7a, where we can see that

Amin(v1) = 1 due to the outgoing hyperedge from v1
with empty set of targets, and this value can propagate

directly to the node v0 and we can also conclude that

Amin(v0) = 1; all this without the need to explore the

(possibly large or even infinite) subtree with the root

v2. This idea is formalized in Liu and Smolka’s local

algorithm [43] that computes the value of Amin(v0) for

a given node v0 in an on-the-fly manner.

Algorithm 2 shows the pseudocode of the local al-

gorithm. The algorithm maintains the waiting set W of

hyperedges to be explored (initially all outgoing hyper-

edges from the root node v0) as well as the list of depen-
dencies D for every node v, such that D(v) contains the

list of all hyperedges that should be reinserted into the

waiting set in case the value of the node v changes from

0 to 1. Due to a small technical omission, the original

algorithm of Liu and Smolka did not guarantee termi-

nation even for finite dependency graph. This is fixed

in Algorithm 2 by inserting the if-test at line 10 that

makes sure that we do not reinsert the dependencies

D(v) of a node v in case that the value of v is already

known to be 1.

In Figure 6b we see the computation of the local

algorithm on the dependency graph from Figure 6a.

Under the assumption that the algorithm makes opti-

mal choices when picking among hyperedges from the

waiting list (third column in the table), we can see that

only a subset of nodes is ever visited and the value of

Amin(v1) can be determined by exploring only the mid-

dle subtree of v1 because once in the 6th iteration the

value A(v1) is improved from 0 to 1, we terminate early

and announce the answer.
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v1

v2

v3 v4

v5

v6 v7

v8

v9 v10 v11

∅

e1 e2 e3

e4 e5

e6
e7

e8

e9
e10

e11

(a) Example of a dependency graph

Iteration W (v, T ) ∈W A(v1) A(v2...4) A(v5) A(v6) A(v7) A(v8...11)

0 {e1, e2, e3} 0 ? ? ? ? ?
1 {e1, e2, e3} e2 0 ? 0 ? ? ?
2 {e1, e3, e6} e6 0 ? 0 ? 0 ?
3 {e1, e3, e11} e11 0 ? 0 0 0 ?
4 {e1, e3, e10} e10 0 ? 0 1 0 ?
5 {e1, e3, e11} e11 0 ? 0 1 1 ?
6 {e1, e3, e6} e6 0 ? 1 1 1 ?
7 {e1, e2, e3} e2 1 ? 1 1 1 ?

(b) Execution of local algorithm for computing Amin(v1)

Fig. 6: Demonstration of local algorithm for minimum fixed-point computation

Input: A dependency graph G = (V,E) and a node
v0 ∈ V .

Output: Amin(v0)
1 forall v ∈ V do
2 A(v) := ?
3 A(v0) := 0
4 D(v0) := ∅
5 W := {(v0, T ) | (v0, T ) ∈ E}
6 while W 6= ∅ do
7 e := (v, T ) ∈W
8 W := W \ {e}
9 if A(v′) = 1 for all v′ ∈ T then

10 if A(v) 6= 1 then

11 A(v) := 1
12 W := W ∪D(v)

13 else if ∃v′ ∈ T such that A(v′) = 0 then

14 D(v′) := D(v′) ∪ {e}
15 else if ∃v′ ∈ T such that A(v′) = ? then
16 A(v′) := 0
17 D(v′) := ∅
18 W := W ∪ {(v′, U) | (v′, U) ∈ E}
19 return A(v0)

Algorithm 2: Liu and Smolka’s local algorithm

computing Amin(v0)

4.1 Optimizations of the Local Algorithm

The local algorithm begins with all nodes being as-

signed ? such that whenever a new node is discovered

during the forward search, it gets the value 0 and this

value may be possibly increased to 1. Hence the assign-

ment values grow as shown in Figure 7b. As soon as the

root receives the value 1, the local algorithm can termi-

nate. If the root never receives the value 1, we need to

explore the whole graph and wait until the waiting set

is empty before we can terminate and return the value

0. Hence during the computation, the value 0 of a node

is ‘uncertain’ as it can be possibly increased to 1 in the

future.

Consider the dependency graph in Figure 7c. In or-

der to compute Amin(v0), the local algorithm computes

first the minimum fixed-point assignment both for v1
and v2 before it can terminate with the answer that

the final value for the root is 0. However, we can ac-

tually conclude that Amin(v1) = 0 as the final value

of the node v1 is clearly 0 and hence v0 can never be

upgraded to 1, irrelevant of the value of Amin(v2).

This fact was noticed in [22] where the authors sug-

gest to extend the possible values of nodes with the

notation of certain-zero (see Figure 7d for the value or-

dering), i.e. once the assignment of a node becomes 0,

its value can never be improved anymore to 1. The cer-

tain zero value can be back-propagated and once the

root receives the certain-zero value, the algorithm can

terminate early and hence speed up the computation
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v0

v1 v2

. . .∅

(a) Value of Amin(v2) is unnecessary for concluding that
Amin(v0) = 1

1

0

?

(b) Liu&Smolka value ordering

v0

v1 v2

. . .

(c) Value of Amin(v2) is unnecessary for concluding that
Amin(v0) = 0

1 0

−

?

(d) Certain-zero value ordering

Fig. 7: Certain-zero optimization

of the fixed-point value for the root. The efficiency of

the certain-zero optimization was demonstrated for ex-

ample on the implementation of dependency graphs for

CTL model checking of Petri nets [22] and for other

verification problems in the more general setting of ab-

stract dependency graphs [27].

4.2 Distributed Implementation

State-space explosion problem means that the size of

dependency graphs may become too large to fit into

the memory of a single machine and/or the verifica-

tion time may become infeasible. In [23] the authors

describe a distributed fixed-point algorithm for depen-
dency graphs that distributes the workload over several

machines. The algorithm is based on message passing

where the nodes of the dependency graphs are parti-

tioned among the workers and each worker is responsi-

ble for computing the fixed-point values for the nodes it

owns, sometimes requiring messages to be sent once the

target nodes of an hyperedge are not own by the same

worker as the root of the hyperedge. The experiments

confirm an average speed up of around 25 times for 64

workers (CPUs) and 6 times for 8 workers. This is a

satisfactory performance as the problem is P-complete

(recall that we showed in Section 3 a polynomial time

reduction from the P-complete problem of strong bisim-

ulation checking [9] into fixed-point computation on de-

pendency graphs), and hence inherently believed hard

to parallelize. Moreover, the distributed algorithm can

be used ‘out-of-the-box’ for a number for model ver-

ification problems (all those that can be encoded into

dependency graphs), instead of designing single purpose

distributed algorithms for each individual problem.

5 Abstract Dependency Graphs

Dependency graphs have recently been extended in sev-

eral directions in order to reason about more complex

problems. Extended dependency graphs (EDG), intro-

duced in [22], add a new type of edge to dependency

graphs to handle negation. Another extension with

weights, called symbolic dependency graphs (SDG) [34],

extends the value annotation of nodes from the 0-1 do-

main into the set of natural numbers together with a

new type of so-called cover-edges. Recently an exten-

sion presented in [18] considers as the value-assignment

domain the set of piece-wise constant functions in or-

der to be able to encode weighted PCTL [32] model

checking. Because the constructed dependency graphs

in these extensions are different for each problem that

we consider, we need to implement single-purpose al-

gorithms to compute the fixed points on such extended

dependency graphs, as depicted in Figure 8a.

In [27] abstract dependency graphs (ADG) are sug-

gested that permit a more general, user-defined domain

for the node assignments together with user-defined

functions for evaluating the fixed-point assignments. As

a result, a number of verification problems can be now

encoded as ADG and a single (optimized) algorithm

can be used for computing the minimum fixed point as

depicted in Figure 8b.

In ADG the values of node assignments have to

form a Noetherian Ordering Relation with least element

(NOR), which is a triple D = (D,v,⊥) where (D,v)

is a partial order, ⊥ ∈ D is its least element, and v
satisfies the ascending chain condition: for any infinite

chain d1 v d2 v d3 v . . . there is an integer k such that

dk = dk+j for all j > 0. For algorithmic purposes, we
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CCS, ≈ CTL, |= WCTL, |= . . .

Encoding1 Encoding2 Encoding3
. . .

DG EDG SDG . . .

Algorithm1 Algorithm2 Algorithm3
. . .

Amin Amin Amin . . .

(a) Single-purpose algorithms for minimum fixed-point computation

CCS, ≈ CTL |= WCTL |= . . .

Encoding1 Encoding2 Encoding3
. . .

ADG

Algorithm

Amin

(b) Abstract Dependency Graph (ADG) solution

Fig. 8: Model verification without and with abstract dependency graphs

assume that such a domain together with the ordering
relation is effective (computable).

Instead of hyperedges, each node in an ADG has

an ordered sequence of target nodes together with a

monotonic function f : Dn → D of the same arity as

the number of its target nodes. The function is used

to evaluate the values of the node during an iterative,

local fixed-point computation.

An assignment A : V → D is now a function that to

each node assigns a value from the domain D and we

define a function F as

F (A)(v) = E(v)(A(v1), A(v2), . . . , A(vn))

where E(v) stands for the monotonic function assigned

to node v and v1, v2, . . . vn are all (ordered) target nodes

of v.

The presence of the least element ⊥ ∈ D means that

the assignment A⊥ where A⊥(v) = ⊥ for all v ∈ V is

the least of all assignments (when ordered component-

wise). Moreover, the requirement that (D,v,⊥) satis-

fies the ascending chain condition ensures that assign-

ments cannot increase indefinitely and guarantees that

we eventually reach the minimum fixed-point assign-

ment as formulated in the next theorem.

Theorem 2 There exists a number i such that

F i(A⊥) = F i+1(A⊥) = Amin .

Remark 1 The ascending chain condition in the defini-

tion of NOR is only a sufficient condition for the va-

lidity of Theorem 2. There are partial orders that do

not satisfy the ascending chain condition but where the

fixed-point iteration still terminates on the concrete ap-

plications, as demonstrated in Sections 6.4 and 6.6.

An example of ADG over the NOR D =

({0, 1}, {(0, 1)}, 0) that represents the classical Liu and

Smolka dependency graph framework is shown in Fig-

ure 9a. Here 0 (interpreted as false) is below the value

1 (interpreted as true) and the monotonic functions for

nodes are displayed as node annotations. In Figure 9b

we demonstrate the fixed-point iterations computing

the minimum fixed-point assignment.
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A

B ∨ (C ∧D)

B

1

C

1

D

E ∧ F

E1 F E ∧D

(a) Abstract dependency graph over NOR ({0, 1},≤, 0)

A B C D E F

A⊥ 0 0 0 0 0 0
F (A⊥) 0 1 1 0 1 0
F2(A⊥) 1 1 1 0 1 0
F3(A⊥) 1 1 1 0 1 0

(b) Fixed-point computation of Figure 9a

A 0 if B ≤ 5 else ∞

B max{C,D + 3}Cmin{D,E}

D 0E3

(c) Abstract dependency graph over NOR (N∪{∞},≥,∞)

A B C D E

A⊥ ∞ ∞ ∞ ∞ ∞
F (A⊥) ∞ ∞ ∞ 0 3
F2(A⊥) ∞ ∞ 0 0 3
F3(A⊥) ∞ 3 0 0 3
F4(A⊥) 0 3 0 0 3

(d) Fixed-point computation of Figure 9c

Fig. 9: Abstract dependency graphs

A more interesting instance of ADG with an in-

finite value domain is given in Figure 9c. The ADG

encodes an example of a symbolic dependency graph

(SDG) from [34] (with the added node E). The nodes

are assigned nonnegative integer values (note that we

use the ordering relation in the reverse order here) with

the initial value being ∞ and the ‘best’ value (the one

that cannot be improved anymore) being 0. The fixed-

point computation is shown in Figure 9d.

The authors in [27] devise an efficient local (on-the-

fly) algorithm for ADGs and provide a publicly avail-

able implementation in a form of C++ library. The ex-

perimental results confirm that the general algorithm

on ADGs is competitive with the single-purpose op-

timized algorithms for the particular instances of the

framework.

6 Applications of Dependency Graphs

We shall finish our survey paper with an overview of

selected applications of dependency graphs and ab-

stract dependency graphs for various verification prob-

lems. These problems cover CTL model checking for a

range of models including Petri Nets, weighted Kripke

structures, parametric weighted Kripke structures and

Markov reward models. We also show how abstract de-

pendency graphs may be used to decide existence of

winning strategies for timed games as well as compute

bisimulation metric distances between weighted Kripke

structures.

6.1 Petri Nets and CTL Model Checking

The CTL model checking engine of the award-winning

tool TAPAAL [25] applies dependency graphs with

certain-zero optimization [21,22]. Other Petri net game

engines employ dependency graphs as well. In [35] syn-

thesis for safety games for timed-arc Petri net games is

introduced, demonstrating (and exploiting) equivalence

between continuous-time and discrete-time setting. Fi-

nally, in [11] partial order reduction for synthesis of

reachability games on Petri nets is obtained based on

the dependency graph framework.

In order to demonstrate the basic idea of CTL model

checking for Petri nets via dependency graphs (includ-

ing the certain-zero optimization), we consider the sim-

ple Petri net in Figure 10a. A marking of the Petri net

is written as a triple (x1, x2, x3) where xi denotes the

number of tokens in the place pi. For example, by fir-

ing the transition t1 from the initial marking (1, 0, 0),

we reach the marking (0, 1, 1) where a token is re-

moved from each pre-place of t1 (i.e. the place p1 in

our case) and a new token is created in each post-

place of t1 (i.e. in the places p2 and p3 in our case).

Clearly, by firing repeatedly the transitions t1 and t3,

we can see that the number of tokens in the place

p2 grows beyond any bound, meaning that the Petri

net is unbounded. We now ask the question whether

the initial marking (1, 0, 0) satisfies the CTL formula

A (p1 = 1) U (p2 = 2), stating that on any computa-

tion starting in the initial marking, we eventually reach

a marking with 2 tokens in the place p2 and before this

happens, the place p1 must always contain one token.

The formula is not satisfied in our example and we can

demonstrate this by building a dependency graph as

described by the rules in Figure 5, using the NOR from

Figure 7d so that the local algorithm can propagate

the certain-zero value from children to the parent. Even

though the constructed dependency graph given in Fig-

ure 10b is infinite, depending on the search strategy



Dependency Graphs with Applications to Verification 11

p1

p2

p3

t1 t2

t3

(a) A Petri net where (1, 0, 0) 6|= ϕ

(1, 0, 0), ϕ

v1

(1, 0, 0), p2 = 2

v2

(1, 0, 0), p1 = 1

v3

(0, 1, 1), ϕ

v4

∅ (0, 1, 1), p2 = 2

v5

(0, 1, 1), p1 = 1

v6

(1, 1, 0), ϕ

v7

. . .

(b) Corresponding dependency graph

Fig. 10: Petri net model checking example for ϕ ≡ A (p1 = 1) U (p2 = 2)

(e.g. BFS) it is possible that the local algorithm termi-

nates with a negative answer. A search using the local

algorithm, called from the root node v1, may start by

exploring the node v2 and marking it as a certain-zero

because it has no outgoing transitions—the marking

(1, 0, 0) clearly does not satisfy the atomic proposition

p2 = 2. Assume that the next explored node is v4 from

which we visit v5 and mark it as a certain-zero. Next,

suppose that we visit the node v6 that is as well marked

as a certain zero. The certain-zero value is now back-

propagated to v4, without the need to explore the nodes

v7 and v1 (that are in conjunction with a certain-zero

node). As both v2 and v4 now have a certain-zero value,

we can (again without the need to explore the node v3)

back-propagate this value to the root node v1 and the

algorithm can terminate early while announcing that

the formula ϕ does not hold in the initial marking. This

can be achieved, without ever exploring the node v7
and its (infinitely many) successors, meaning that the

certain-zero algorithm terminates on our example, even

though the classical local and global algorithms by Liu

and Smolka keep exploring the whole (infinite) depen-

dency graph, irrelevant of the chosen search strategy.

6.2 Weighted CTL Model Checking

In [33, 34] ADGs—called symbolic DGs at the time of

writing of the papers—are used for efficient on-the-fly

model checking for WKS (weighted Kripke structures)

with respect to weighted extensions of CTL. The result-

ing on-the-fly algorithm is implemented in the on-line

tool WKTool1.

Figure 11a shows an example of a WKS with two

atomic propositions a and b. For model checking WCTL

with upper bounds on the cost, the model checking

problem is encoded into a symbolic dependency graph,

where the nodes in the DG are pairs of the form (s, ϕ)

where s is a state of the weighted Kripke structure and

ϕ is a WCTL formula. For the assignment we use the

NOR D = (N∪{∞},≥,∞). The assignment value for a

node (s, ϕ) is then an upper bound on the cost for which

the state s is known to satisfy ϕ, with a value of∞ im-

plying it is not known yet whether the state s satisfies

ϕ. The DG is constructed from the WCTL formula in

a syntax-driven way, similarly as for unweighted CTL.

The DG contains weighted hyperedges where each

hyperedge (v, T ) ∈ H contains multiple target pairs

(w, v′) ∈ T where w ∈ N ∪ {∞} is a cost and v′ the

target node. The naive non-symbolic approach uses an

encoding based only on these hyperedges and creates a

dependency graph where nodes contain the same for-

mula but with different cost values, resulting in expo-

nential explosion in the number of nodes. However, by

noticing that e.g. s1 |= EF≤2 ϕ implies s1 |= EF≤3 ϕ,

we can improve the encoding (as explained in [33]) by

introducing the so-called cover-edges. A cover-edge is

a triple (v, k, v′) ∈ C where v is the source node and

v′ is the target node, while k is a nonnegative integer

representing the cover condition. The introduction of

1 http://wktool.jonasfj.dk/

http://wktool.jonasfj.dk/
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s1

{a}

s2s3

{b}

2

1

3

(a) WKS with two atomic propositions a and b

s1,EF≤5 b

v1

s1,EF≤? b

v2

s1, b

v3

s3,EF≤? b

v4

s2,EF≤? b

v5

s3, b

v6

s2, b

v7

∅

5

3

2

1

(b) Dependency graph encoding for s1 |= EF≤5 b

v1 v2 v3 v4 v5 v6 v7

A⊥ ∞ ∞ ∞ ∞ ∞ ∞ ∞
F (A⊥) ∞ ∞ ∞ ∞ ∞ 0 ∞
F2(A⊥) ∞ ∞ ∞ 0 ∞ 0 ∞
F3(A⊥) ∞ 3 ∞ 0 ∞ 0 ∞
F4(A⊥) 0 3 ∞ 0 ∞ 0 ∞
F5(A⊥) 0 3 ∞ 0 ∞ 0 ∞

(c) Fixed point computation of Figure 11b

Fig. 11: Model checking WCTL on Kripke structure.

cover-edges reduces the size of the DG substantionally

and its use is demonstrated in Figure 11b that shows

the dependency graph constructed for the model check-

ing problem s1 |= EF≤5 b. The dashed edge indicates

the cover-edge.

The value for a node is computed by the following

monotonic function where A is the current assignment:

F (A)(v) =



0 if ∃(v, k, v′) ∈ C s.t. A(v′) ≤ k <∞
or A(v′) < k =∞

min
(v,T )∈H

(max{w +A(v′) | (w, v′) ∈ T})

otherwise .

The function F (A)(v) computes the lowest upper-

bound cost. For a hyperedge the intuition is that it

propagates a cost that is the most expensive way to get

to any of its targets. Each hyperedge represents a possi-

bility to satisfy the formula in a different way, so we take

the minimum over all hyperedges outgoing from a given

node. For example the cost to satisfy (s1,EF≤? b) is the

lowest of the cost to satisfy either (s1, b), (s3,EF≤? b)

plus 3, or (s2,EF≤? b) plus 2. A formula with a con-

junction may induce a node in the DG that has a hyper-

edge with multiple targets. For cover-edges with weight

k the intuition is that if the cost-free formula can be

satisfied with cost k′ such that k′ ≤ k then the cost-

bounded formula is also satisfied. After constructing the

DG, the model checking problem s |= ϕ is then equiv-

alent to checking whether Amin((s, ϕ)) = 0. Table 11c

shows the global fixed-point computation of the DG.

6.3 Parametric Model Checking

For parametric model-checking of Weighted Transi-

tion Systems (WTS) with respect to weighted CTL

(WCTL), the work in [17] extends the transition re-

lation to allow for parametric weights. Concretely, the

transition relation is of the form →⊆ S × E× S where

S is the set of states and E is the set of all linear ex-

pressions (with rational coefficients) over a finite set of

parameters. As any such parametric weighted transition

system (PWTS) encodes an infinite number of regular

WTSs, the model-checking problem changes from pro-

ducing yes/no answers to synthesizing constraints on

the parameters. These constraints are resolved by in-

terpretations, being functions of the form i : E → N,

mapping each parameter to a natural number2. Syn-

thesizing an interpretation that solves the parametric

constraints given by the model-checking procedure then

induces a concrete WTS that enjoys the property of in-

terest. We will let I denote the set of all interpretations.

An example PWTS can be seen in Figure 12a.

As a specification language, WCTL extends CTL

by imposing (possibly parametric) upper bounds on

all path-formulae, restricting the allowed accumulated

weight of any satisfying path. As an example, con-

sider again the PWTS in Figure 12a and the property

ϕ ≡ E bU≤5[a∧EX≤7+q b]. Notice that the inner next-

modality is bounded by a parametric expression. It is

easy to verify that the satisfaction of ϕ in state s1 relies

on the constraint q ≤ 5 ∧ p ≤ 7 + q being satisfied.

The dependency graph encoding is given in Fig-

ure 12b. Nodes are pairs (s, ϕ) and (s, ϕ?) where s

is a PWTS state, ϕ is a WCTL formula and ϕ? is a

WCTL formula with missing cost bound(s). The value

of each node is a function of type I : I → N ∪ {∞}. In

many cases these values are simple parametric expres-

sions such as p+q+5 that, by an interpretation such as

i(p) = i(q) = 2, yields a natural number i(p+ q + 5) =

i(p) + i(q) + 5 = 9. Hence, for the ADG encoding we

consider the NOR D = ({I | I : I → N ∪ {∞}},≥,∞)

2 The restriction to the naturals imposed by [17] is in fact
not necessary for the fixed point computation. One may con-
sider real-valued parameters while preserving all results of
the paper as long as the parameter coefficients are rational
numbers.
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s1

{b}

s2

{a}

q

p

3

(a) Simple PWTS

s1, E bU≤5[a ∧ EX≤7+q b]v1

s1, E bU [a ∧ EX≤7+q b]v2

s2, E bU [a ∧ EX≤7+q b]

v3

s1, a ∧ EX≤7+q bv10

s1, EX≤7+q bv12s1, av11 s2, a ∧ EX≤7+q b v4

s1, EX bv13 s2, EX≤7+q bv5 s2, a v6

∅

s2, EX b

v7

s1, b v8

∅

s2, bv9

5

q

3

p

7 + q

q
7 + q

p3

(b) Dependency graph encoding for s1 |= E bU≤5[a ∧ EX≤7+q b]

v1 v2 v3 v4 v5 v6 v7 v8 v9 . . . v13

A⊥ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
F (A⊥) ∞ ∞ ∞ ∞ ∞ 0 ∞ 0 ∞
F2(A⊥) ∞ ∞ ∞ ∞ ∞ 0 p 0 ∞

F3(A⊥) ∞ ∞ ∞ ∞ f1(p, q) =

{
0 if p ≤ 7 + q

∞ otherwise
0 p 0 ∞

F4(A⊥) ∞ ∞ ∞ f1(p, q) f1(p, q) 0 p 0 ∞
F5(A⊥) ∞ ∞ f1(p, q) f1(p, q) f1(p, q) 0 p 0 ∞
F6(A⊥) ∞ q + f1(p, q) f1(p, q) f1(p, q) f1(p, q) 0 p 0 ∞

F7(A⊥)

{
0 if q + f1(p, q) ≤ 5

∞ otherwise
q + f1(p, q) f1(p, q) f1(p, q) f1(p, q)) 0 p 0 ∞

F8(A⊥)

{
0 if q + f1(p, q) ≤ 5

∞ otherwise
q + f1(p, q) f1(p, q) f1(p, q)) f1(p, q)) 0 p 0 ∞

(c) Fixed point computation of Figure 12b

Fig. 12: Parametric model checking, from [17]

where ≥ is the point-wise ordering on functions. The

values ∞ and 0 are interpreted false and true, respec-

tively.

If a node vi in a given assignment A has an outgoing

dashed edge labelled by an expression e, pointing to

node vj , its value is given by the monotonic function

F (A)(vi), defined for any i ∈ I as

F (A)(vi)(i) =

{
0 if A(vj)(i) ≤ i(e)
∞ otherwise

.

If a node has no outgoing edges, its value is the con-

stant function returning ∞ and any node with a single

edge pointing to ∅ has the constant value 0. In the case

that a node has a number of outgoing hyper-edges, a

minimum is computed over all hyper-edges and for each

hyper-edge a maximum over all sub-edges is computed,

where a sum of the edge weight and target node value

is computed. In case the edge weight is missing from a

sub-edge, it is assumed to be 0. As an example, consider

node v2 which has value

F (A)(v2) = min {A(v10),max{q +A(v3), A(v8)}} .
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Table 12c contains the values for all nodes during the

fixed point computation. After 7 iterations, the fixed

point value to each node has been computed. The fixed

point value for the root node v1 is given by the function

f2(p, q) =

{
0 if q + f1(p, q) ≤ 5

∞ otherwise
.

In order for f2(p, q) = 0 to hold true, it is clear that

q + f1(p, q) ≤ 5 must hold true, which in turn implies

that q ≤ 5 and p ≤ 7 + q must hold true, by definition

of f1(p, q). Hence, the constraints that describe the pa-

rameter valuations for which the assignment to the root

is 0 (true) is q ≤ 5 ∧ p ≤ 7 + q, as expected.

6.4 Probabilistic CTL Model Checking

For model checking Markov Reward Models (MRMs)

with respect to (multi) weighted PCTL (PWCTL), the

work in [18, 44] provides an on-the-fly algorithm using

dependency graphs.

An example of an MRM is depicted in Figure 14a.

Notice that each transition is equipped with a (strictly

positive) natural number and a probability. As for clas-

sical Markov chains, for each state of the model, the

sum of all probabilities on outgoing transitions must

be 1. As a specification language, PWCTL extends

PCTL with upper bounds on all path formulae, while

requiring lower bounds on the probabilistic modality. In

general, both MRM weights and PWCTL upper bounds

are natural-valued vectors, but for simplicity, we focus

here on the case where all weights are (strictly positive)

scalars. Informally, the PWCTL formula ϕ ≡ P≥ 5
8
(ψ)

with ψ ≡ aU≤13 b is satisfied by a state s if the probabil-

ity of picking a path from s that satisfies path-formula

ψ, is greater than or equal to 5
8 . Paths that satisfy ψ

are paths that satisfy the CTL path-formula aU b in

the classical sense, and at the same do not accumulate

weight beyond the cost-bound 13. As the weights are

assumed strictly positive, these paths are necessarily fi-

nite. One can verify that ϕ is satisfied by state s of the

MRM in Figure 14a.

The ADG encoding of the problem s |= ϕ is de-

picted in Figure 14b. Each node is assigned a value,

being a function of type p : R≥0 → [0, 1], ordered by

the point-wise ordering on functions, denoted here by

≤. We will by P denote the set of all such functions.

Thus, the least element is the function p0 ∈ P , given

for all c ∈ R≥0 by p0(c) = 0. Similarly, p1 is the great-

est element with p1(c) = 1 for all c ∈ R≥0. Hence, a

candidate ordering for an ADG is D = (P,≤, p0). Note

that the ordering does not satisfy the ascending chain

condition and is therefore not a NOR. Hence, we can-

not apply Theorem 2 directly to argue for termination.

However, as pointing out in Remark 1, the ascending

chain condition is a sufficient but not necessary condi-

tion for termination. In this case, it is proven in [18,44]

that termination is ensured by the assumption that all

weights are strictly positive, in combination with cost-

bounds being upper bounds.

For the fixed-point computations, the most impor-

tant operation on node value is calculating weighted

sums. As the node values are functions, summation is

well-defined. The weighted sum can then be computed

by considering a sum of “shifted” node values. Infor-

mally, shift : P × R≥0 × [0, 1] → P is a function that

“shifts” an existing node value by a given weight and

probability. Formally, for any p ∈ P , c, c∗ ∈ R≥0 and

λ ∈ [0, 1], shift(p, c, λ)(c∗) is defined as

shift(p, c, λ)(c∗) =

{
p(c∗ − c) · λ if c ≤ c∗

0 otherwise
.

As an example, consider the plots in Figure 13. Fig-

ure 13b depicts the shifting of constant function p1 by

the weight 3 and probability 1
2 . As can be seen, this

introduces a “step” at 3 with a “height” of 1
2 . As Fig-

ure 13c shows, further shifting moves the step to the

right and reduces the height by multiplying the old

height with the given probability. Finally, Figure 13d

shows the resulting sum. In general, shifting by a weight

c and probability λ moves all the steps of the function

to the right by c and the height of each step is reduced

by multiplying the existing height by λ. In fact, during

the fixed-point computation, any node value will be a

piecewise constant function with finitely many pieces,

also known as a step function.

Generally, nodes of the dependency graphs are of the

form (s, ϕ) where s is an MRM state and ϕ a PWCTL

formula. These are referred to as concrete nodes. As

the model-checking approach is symbolic, another set

of symbolic nodes are introduced. These nodes are gen-

erally of the form (s, ψ?) where ψ? is a PWCTL path-

formula where the cost-bound is omitted. Nodes v2 and

v6 are typical examples of symbolic nodes, where ? indi-

cates the missing cost-bound. Nodes v5 and v9 are also

symbolic nodes, introduced to compute the weighted

sum (Σ) of a number of node values.

For all concrete nodes, the value assigned is Boolean

in the sense that the function is either p1 or p0, in-

terpreted as true and false, respectively. For symbolic

nodes of type (s, ϕ1U?ϕ2), assigning a function p to the

node indicates that for some cost-bound c, measuring

paths from s that satisfy the concrete path-formulae

ϕ1 U≤c ϕ2, yields a probability at least p(c).
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P

c

1

0

(a) p1

P

c

1

1/2

0 3

(b) p∗ = shift(p1, 3,
1
2

)

P

c

1

1/4

0 8

(c) shift(p∗, 5,
1
2

)

P

c

1

1/2
3/4

0 3 8

(d) shift(p∗, 5,
1
2

) + shift(p1, 3,
1
2

)

Fig. 13: Node values and shift operations

s {a}

s1 {b}

3, 1
2

5, 1
2

1, 1

(a) Simple MRM

s,P≥ 5
8
(aU≤13 b)v1

s, aU≤? bv2

s, a

v4
∅

s, bv3 Σ1

v5

s1, a U≤? b v6

s1, a

v8

s1, b

v7

∅

Σ2

v9

13,≥, 5
8

5, 1
2

3, 1
2

1, 1

(b) Dependency graph encoding for s |= P≥ 5
8
(aU≤13 b)

v1 v2 v3 v4 v5 v6 v7 v8 v9

A⊥ p0 p0 p0 p0 p0 p0 p0 p0 p0
F (A⊥) p0 p0 p0 p1 p0 p0 p1 p0 p0
F2(A⊥) p0 p0 p0 p1 p0 p1 p1 p0 p0
F3(A⊥) p0 p0 p0 p1 {(3, 1

2
)} p1 p1 p0 {(1, 1)}

F4(A⊥) p0 {(3, 1
2

)} p0 p1 {(3, 1
2

)} p1 p1 p0 {(1, 1)}
F5(A⊥) p0 {(3, 1

2
)} p0 p1 {(3, 1

2
), (8, 3

4
)} p1 p1 p0 {(1, 1)}

F6(A⊥) p0 {(3, 1
2

), (8, 3
4

)} p0 p1 {(3, 1
2

), (8, 3
4

)} p1 p1 p0 {(1, 1)}
F7(A⊥) p1 {(3, 1

2
), (8, 3

4
)} p0 p1 {(3, 1

2
), (8, 3

4
)} p1 p1 p0 {(1, 1)}

(c) fixed-point computation of Figure 14b

Fig. 14: Probabilstic model checking, from [18]

For the ADG monotonic functions, we consider the

same interpretation of unlabeled hyper-edges as for the

ADG encoding of the original Liu and Smolka depen-

dency graphs in Section 2, lifted to (constant) functions.

The labelled edges indicate two different kinds of edge

functions. The hyper-edges labelled by a pair of weights

and probabilities are used to calculate a weighted sum

as in Figure 13 and the dashed edges are used to per-

form a simple threshold check on the probability that

a formula holds at a given cost-bound. As an exam-

ple, consider Table 14c, where each row is an iteration

of the fixed-point operator. Concrete nontrivial values

are written as pairs of weights and probabilities e.g

{(3, 12 ), (8, 34 )} is the assignment p s.t p(c) = 0 for c < 3,

p(c) = 1
2 for 3 ≤ c < 8 and p(c) = 3

4 for c ≥ 8. Note

that this is the node value depicted in Figure 13d. All

nodes with no outgoing edges have value p0 and nodes

with a single edge pointing to ∅ have value p1.

The monotonic function applied at node v5 is de-

fined as

F (A)(v5) = shift(A(v2), 5, 12 ) + shift(A(v6), 3, 12 ) .

As a concrete example, consider F 3(A⊥)(v5). The value

is then given by

F 3(A⊥)(v5) = shift(F 2(A⊥)(v2), 5, 12 )

+ shift(F 3(A⊥)(v6), 3, 12 )

= shift(F 3(A⊥)(v6), 3, 12 ) + p0

= {(3, 12 )} .

Note that this is the function depicted in Figure 13b.

Similarly, F 5(A⊥)(v5) is the function depicted in Fig-

ure 13d.

The function applied at v1 is defined as

F (A)(v1) =

{
p1 if A(v2)(13) ≥ 5

8

p0 otherwise
.
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After 7 iterations, the root node v1 is assigned its fixed-

point assignment p1 (true) and the algorithm termi-

nates and we can conclude s |= P≤ 5
8
(aU≤13 b), wit-

nessed by F 7(A⊥)(v2)(13) = 3
4 ≥

5
8 .

6.5 Games on Timed Automata

In [14] the zone-based on-the-fly reachability algorithm

for timed automata implemented in award winning and

widely used tool UPPAAL [42] was extended with the

synthesis of reachability strategies for timed games [7].

The resulting on-the-fly algorithm—now implemented

in UPPAAL Tiga [10]—is in fact the first instance of an

ADG approach with an efficient symbolic extension of

the on-the-fly algorithm of Liu and Smolka Algoritm 2.

UPPAAL Tiga has subsequently been applied to a num-

ber of industrial cases including synthesis of climate

control for pig-stables [24] as well as optimal control

of operation of industrial hydraulic pumps [15]. More-

over UPPAAL Tiga is the main component of the new

branch UPPAAL Stratego [26], here used to provide

most permissive safety controllers used to shield sub-

sequent (reinforcement) learning towards near-optimal

controllers, subject to safety guarantees. Recent appli-

cations include safe and optimal controllers for auto-

matic cruising of cars [41] and manoeuvring of trains in

railway stations [36].

I

`

I1

`1

Ik

`k

Ik+n

`k+n

Ik+1

`k+1

· · · · · ·

g1

α1

r1

gk

αk

rk

gk+1

αk+1

rk+1

gk+n

αk+n

rk+n

(a) Timed game fragment

(`, Z)

v

(`1, Z1)

v1

(`k, Zk)

vk

(`k+n, Zk+n)

vk+n

(`k+1, Zk+1)

vk+1

· · · · · ·

(b) ADG fragment

Fig. 15: Timed game ADG encoding

In order to understand this application of ADG,

consider the timed game G in Figure 16a with six loca-

tions A,B,C,D,E and F , a single clock x, and discrete

actions a, b, c, d, y, z. As in timed automata [3], loca-

tions and edges are decorated by (simple) clock con-

straints, limiting delays in locations (invariants) and

activation of edges (guards). Also clocks may be reset

during the activation of an edge. The behaviour of a

timed game are so-called runs being maximal and alter-

nating sequences of delays and discrete actions between

states. States are pairs (`, ω), where ` is a location and

ω is a clock valuation assigning nonnegative real val-

ues to clocks. In the timed game G of Figure 16a, the

following is an example run:

ρ = (A, x = 0)
0.5−−→ y−→ (C, x = 0.5)

0−→ c−→ (D,x = 0.5)

0.5−−→ d−→ (B, x = 1)

1−→ b−→ (F, x = 2) .

Assuming that the location F is our goal location, the

run ρ is in fact a winning run. Now, G constitutes a

timed game, where the actions (and underlying edges3)

are either controllable (the actions a, b, c, d as indicated

by the full edges) or uncontrollable (the actions y, z

as indicated by the dashed edges). In fact, the runs

of the game will be the outcomes of a game between

two players, where the moves of the so-called defending

player is governed by a strategy and the environmen-

tal/uncontrollable transitions may overrule the strat-

egy in case they are enabled at earlier time point than

the strategy move. More formally, a strategy is a par-

tial function σ that, given a state (`, ω), suggests a

delay/controllable-action pair (d, α). The following is

a possible strategy for our timed game G:

σ((A, x = v)) = (0, a) when v ≤ 1

σ((B, x = v)) = (2− v, b)
σ((C, x = v)) = (0, c) when v ≤ 1

σ((D,x = v)) = (1− v, d) when v ≤ 1 .

Now the run ρ above is actually a possible outcome of

the above strategy σ in the sense that all delay-action

pairs involving a controllable action are consistent with

σ. We say that a strategy is winning if all its possible

outcomes are winning runs (in the sense that they reach

a goal location). It may be checked that the strategy σ

is indeed winning for G.

In [14], ADG are used to compute the set of states

of a timed game for which there exist a winning strat-

egy. The nodes of the ADG are symbolic states of the

3 For simplicity assume that each edge has a unique action.
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x ≤ 2

A

x ≤ 2

B

x ≤ 2

C

x ≤ 2

D

x ≤ 2

E

x ≤ 2

F

x > 1

x ≤ 1

a

x < 1

y

x < 1

z

x = 2

b

c

x ≤ 1

d

(a) A timed game G

(A, x ≤ 2)

v0

(B, x ≤ 2)

v1

(C, x ≤ 2)

v2

(D,x ≤ 2)

v3

(E, x ≤ 2)

v4

(F, x ≤ 2)

v5

(b) ADG for the timed game G

v0 v1 v2 v3 v4 v5

A⊥ ∅ ∅ ∅ ∅ ∅ ∅
F (A⊥) ∅ ∅ ∅ ∅ ∅ x ≤ 2
F2(A⊥) ∅ 1 ≤ x ≤ 2 ∅ ∅ ∅ x ≤ 2
F3(A⊥) ∅ 1 ≤ x ≤ 2 ∅ x ≤ 2 ∅ x ≤ 2
F4(A⊥) ∅ 1 ≤ x ≤ 2 x ≤ 2 x ≤ 2 ∅ x ≤ 2
F5(A⊥) x ≤ 1 x ≤ 2 x ≤ 2 x ≤ 2 ∅ x ≤ 2
F6(A⊥) x ≤ 1 x ≤ 2 x ≤ 2 x ≤ 2 ∅ x ≤ 2

(c) Fixed point computation of Figure 16b

Fig. 16: Timed game strategy synthesis

form (`, Z), where ` is a location and Z is a zone over

the set of clocks C4. The domain D of the NOR con-

sists of all subsets W described as a finite union of

sub-zones and the ordering relation v is the zone in-

clusion. Informally, the (increasing) set W associated

as the assignment value for a node (`, Z) must satisfy

that W v Z and contains the information about the

concrete states for which a winning strategy is guar-

anteed to exist (while Z describes all clock valuations

under which the location ` is reachable).

Consider the timed game fragment in Figure 15a.

For any zone Z ⊆ I, Figure 15b provides a correspond-

ing fragment of the ADG. Here Zi ⊆ Ii is the zone

4 A zone Z over C is a subset of the set of clock-valuations
C → R≥0 described by finite conjunctions of bounds on in-
dividual clocks and bounds on clock-differences. Taking the
maximum constant appearing in the timed game into account
there are only finitely many such reachable zones.

defined by5

ω ∈ Zi iff ∃ω′ ∈ Z.∃d. ω′ |= gi ∧ ω = ω′[ri] + d .

Now assume that A : V → D assigns an element of

the NOR to any node. The updated value for node v in

the assignment A is the following set of clock valuations

F (A)(v):

ω ∈ F (A)(v) iff

∃d.∃j ≤ n.(
ω + d |= gk+j ∧ (ω + d)[rj ] ∈ A(vk+j)

∧
∀d′ ≤ d.∀i ≤ k.
ω + d′ |= gi ⇒ (ω + d′)[ri] ∈ A(vi)

)
.

Informally ω ∈ F (A)(v) if after some delay one of the

controllable edges is enabled and leads to a winning

5 Notation: for ω a clock valuation and d ∈ R≥0, ω + d is
the clock valuation λx.(ω(x) + d). Similarly, for r ⊆ C, ω[r] is
the clock valuation λx.(if x ∈ r then 0 else ω(x)).
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s1

s2 s3

s4

t1

t2

t3

t4

{a}
1 2

23

3

1

124

(a) WTS with two components, based on example from [45]

d(s1, t1) ≤ 10v1

d(s1, t1)

v2

`(s1) = `(t1)

v4

(s1, s2), t1

v3

∅

(s1, s3), t1

v5

∅
∅

d(s2, t2)v6 d(s3, t2)v7

`(s3) = `(t2)v8

`(s2) = `(t2)v9

∅

(s3, s4), t2 v10

∅

d(s4, t3)v11 (s4, s3), t3 v12

`(s4) = `(t3)v13 ∅

d(s3, t4)

v14

(s3, s4), t4

v15

`(s3) = `(t4)

v16

d(s2, t4)

v17

`(s2) = `(t4)

v18

10

2
2

1
1

10 1

(b) Dependency graph encoding for d(s1, t1) ≤ 10

v1 v2 v3 v4 v5 v6 v7 v8, v9 v10 v11 v12 v13 v14 . . . v18

A⊥ 0 0 0 0 0 0 0 0 0 0 0 0 0
F (A⊥) 0 0 2 0 1 0 0 0 10 0 1 0 ∞
F2(A⊥) 0 2 2 0 10 0 10 0 10 1 1 0 ∞
F3(A⊥) 0 10 2 0 10 0 10 0 10 1 10 0 ∞
F4(A⊥) 0 10 2 0 10 0 10 0 10 10 10 0 ∞
F5(A⊥) 0 10 2 0 10 0 10 0 10 10 10 0 ∞

(c) Fixed point computation of Figure 17b

Fig. 17: WTS distance checking

state according to A, and during this delay any en-

abled uncontrollable must also lead to a winning state

according to A. Such sets of valuations can be effec-

tively represented as finite unions of zones.

The result of iterating the above fixed-point oper-

ator F on the ADG in Figure 16b obtained from the

timed game G of Figure 16a is illustrated in Figure 16c.

After 6 iterations, the root node v0 is assigned its fixed-

point assignment x ≤ 1 from which it follows that the

initial state (A, x = 0) is a winning state, i.e. there is a

strategy ensuring that all runs from (A, x = 0) eventu-

ally reach the location F .

6.6 Behavioural Metrics

The work in [45] considers simulation relations for

Weighted Transition Systems (WTSs) of the form

(S,→, `) where (i) S is the finite set of states,
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(ii) →⊆ S × Q≥0 × S is the finite transition relation

and (iii) ` : S → 2AP is the labelling function, assigning

to each state a set of labels from a finite set AP . An

example can be seen in Figure 17a. In this setting, a δ-

simulation relation on S is a binary relation R ⊆ S×S
such that whenever (s, t) ∈ R then (i) `(s) = `(t)

and (ii) if s
w−→ s′ there exists a transition t

v−→ t′

s.t |w − v| ≤ δ and (s′, t′) ∈ R. The simulation rela-

tion captures that the pointwise absolute difference in

weights, when t simulates s, must not exceed δ. If two

states s, t ∈ S are related by a δ-simulation relation, we

write s ≤δ t. Two states being related by a δ-simulation

relation induce a distance between the states6. The dis-

tance d(s, t) ∈ Q≥0 ∪ {∞} is given by the least fixed

point of the following set of equations:

d(s, t) =

∞ if `(s) 6= `(t)

max
s

w−→s′
min
t

v−→t′
max{|w − v|, d(s′, t′)} else .

In [45] it is shown that d(s, t) ≤ δ if and only if s ≤δ t.
Hence, the distance d(s, t) is the least pointwise ab-

solute deviation of weights needed for t to simulate s.

Figure 17b shows the dependency graph encoding of the

problem d(s1, t1) ≤ 10 where s1 and t1 are states of the

WTS depicted in Figure 17a. To solve the problem, we

need to calculate or approximate the distance d(s1, t1)

which, by definition, is calculated by comparing labels

and possibly taking into account the distance between

successors of s1 and t1. These sub-problems are encoded

into nodes of the graph. Nodes ((s, s′), t) encode that

state s transitioned to s′ and now t must answer the

move, in an antagonistic manner.

For the ADG encoding we consider the relation

D = (Q≥0∪{∞},≤, 0}) where∞ is interpreted as false

and 0 as true. A value of w to a node of type d(s, t)

indicates that d(s, t) ≤ w i.e. w is an upper bound on

the distance between states s and t. Note that D is not

a NOR as the ascending chain condition is not satisfied.

Hence, as in Section 6.4, termination is not guaranteed

by Theorem 2. However, as proven in [45], the algo-

rithm will indeed terminate as the increase of the value

assigned to any node is bounded from below.

For the monotonic functions, we introduce edges to

encode the functions of the distance definition. Each

hyperedge represents a maximum of its targets and as-

sociated edge weights and a minimum is computed over

all outgoing hyperedges. In case an edge weight is omit-

ted, it is assumed to be 0. Nodes with no outgoing hy-

peredges receive value ∞ and nodes with a single edge

pointing to ∅ are assigned 0.

6 The particular choice of absolute deviation is not critical.
Any monotone distance function d∗ : Q≥0×Q≥0 → Q≥∪{∞}
on the transitions weights is sufficient.

Thus, the value for node v2 is given by the mono-

tonic function F (A)(v2) = max{A(v3), A(v4), A(v5)}
and the value for v5 is given by F (A)(v5) =

min{max{1, A(v7)},max{1, A(v14)}}. The value of the

root is given by the function

F (A)(v1) =

{
0 if A(v2) ≤ 10

∞ otherwise .

Table 17c shows the value of each node during the

fixed-point computation. As the last iteration does not

change any node value, the fixed point is found and we

can conclude that d(s1, t1) ≤ 10 as the root v1 has got

the value 0 (true). The concrete distance, d(s1, t1), is

the fixed-point assignment to node v2 i.e. the value 10.

7 Conclusion

We presented the concept of dependency graphs and

their recent extensions in order to highlight the appli-

cability of the approach. We also provided an overview

of the employment of the proposed methods to numer-

ous frameworks and described a unifying concept of ab-

stract dependency graphs together with efficient tool

support. Compared to our SPIN invited paper [28], the

current journal version extends significantly Section 6

with several new applications of the technique, with in-

depth examples of the constructed dependency graphs

and their fixed-point computations.

Algorithms based on dependency graphs are im-

plemented in well-known tools like UPPAAL and

TAPAAL, as well as in the educational tool CAAL [6]

(for online demo see http://caal.cs.aau.dk/) that
supports a variety of equivalence checking as well

as model checking algorithms for recursive Hennessy-

Milner logic and CCS and timed CCS process algebra.

We believe that our overview paper provides an intu-

itive introduction to the theory of dependency graphs

and we hope that we convinced the reader about the ap-

plicability of dependency graph techniques to a variety

of different verification problems.
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