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Abstract. As software-defined networking (SDN) is growing increas-
ingly common within the networking industry, the lack of accessible
and reliable automated methods for updating network configurations be-
comes more apparent. Any computer network is a complex distributed
system and changes to its configuration may result in policy violations
during the transient phase when the individual routers update their for-
warding tables. We present an approach for automatic synthesis of up-
date sequences that ensures correct network functionality throughout
the entire update phase. Our approach is based on a novel translation of
the update synthesis problem into a Petri game and it is implemented
on top of the open-source model checker TAPAAL. On a large bench-
mark of synthetic and real-world network topologies, we document the
efficiency of our approach and compare its performance with state-of-
the-art tool NetSynth. Our experiments show that for several networks
with up to thousands of nodes, we are able to outperform NetSynth’s
update schedule generation.

1 Introduction

Modern computer networks are met with increasing demands on scalability, secu-
rity, reliability and performance. This stipulates the need of frequently updating
the network configurations in order to adapt to changes in flow demands, link
failures and other disturbances. The complexity of current networks shows the
limitation of the traditional manual network maintenance as the risks of intro-
ducing faulty behaviour and security leaks become too high. The software defined
networking (SDN) paradigm [2] is a recent methodology that aims to combat the
increased complexity of network operation by centralizing the network control
and hence allowing for fully automatic updates of network configurations. This
enables the option of dynamically updating networks with increased frequency
in order to optimize their performance, but it also requires a reliable way to
govern and schedule updates, so that disruption of service due to forwarding
loops or blackholes and security leaks when e.g. a critical firewall is bypassed,
can be avoided.

Even though the initial and final configurations are correct and satisfy a
number of desirable properties like reachability and waypointing (before a packet
leaves the network a certain router, e.g. a firewall, must be visited), there is no



guarantee that any transient configuration, where individual routers are updated
one by one, preserves the required policies. The update synthesis problem [10]
asks, in which order to update the routers in the network so that at any moment
there is never any policy violation.

As our first contribution, we propose to translate the update synthesis prob-
lem into a two-player Petri game between the controller and the environment.
The objective of the controller is to reach the updated network routing from
the initial one by sequentially scheduling the updates of the individual switches.
The environment can at any time interrupt the construction of the update se-
quence and initialize a check on whether the current partially constructed update
sequence satisfies the given security policies. If the policies are satisfied, the con-
troller is the winner, otherwise the environment wins. A winning strategy for the
controller then defines a transiently correct update sequence.

As a second contribution, we implement the Petri game translation on top
of the open-source model checker TAPAAL [6,12] and update its game engine
with efficient state-space exploration strategies for solving the game synthesis
problem. Our fully automated tool chain accepts the descriptions of network
topologies and the initial and final routings as a JSON file, together with policy
properties that include loop-freedom, reachability and waypointing. The tool
then outputs that either there does not exist any transiently correct update
sequence or it synthesizes such a sequence.

Finally, we conduct a number of experiments on both synthetic and real-world
benchmarks and compare the performance of our approach with state-of-the-art
tool NetSynth [21] that relies on counterexample-guided search and incremental
model checking techniques, and allows for the use of different model checkers in-
cluding NuSMV [5] as its backend engine. The results confirm that on two, out
of the three scalable synthetic networks, we obtain several orders of magnitude
speed up. In one case where the synthetic network shares as many possible links
in both the initial and final routing, our method is performing slower. Experi-
ments on the real-world Internet topologies, where the routings are constructed
using the common method based on shortest paths (see e.g. the Equal-Cost-
MultiPath (ECMP) [11] or the Open Shortest Path First (OSPF) [22] routing
protocols), demonstrate that both tools are able to solve smaller instances of the
update synthesis problem below once second, however, for the larger instances
our method wins by a clear margin. As an additional contribution to the research
community, we also provide a publicly available reproducibility package [7] in-
cluding both the code as well as all experimental data.

Related Work. The work on updates in SDN is heavily influenced by the work by
Reitblatt et al. [24] that defines the per-packet and per-flow consistency. In per-
packet consistency, each packet traverses the network within at most one stable
configuration, whereas per-flow guarantees that all packets in a flow traverse the
network in the same configuration. The per-packet consistency, which is also the
main focus of our work, inspired further research in this area [3,17,20]. In par-
ticular, Mahajan and Wattenhofer [20] suggest an approach that eliminates the
use of packet header rewriting and the expensive two-phase update. They devise
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a solution that preserves loop-freedom with weak consistency by examining the
dependencies of switches in a network and conclude that half of the updates with
around 100 switches only depended on zero or a single critical switch update and
in 90% of the cases, updates are only dependent on at most three switches, in
contrast to Reitblatt et al. [24] who rely on updating all switches. Their work has
since then been refined and extended to support more properties [18,1], including
waypointing [19]. However, it is known that the update synthesis problem with
waypointing and loop-freedom becomes NP-complete [18] (for a detailed com-
plexity overview see e.g. [10]). More recently, Nate Foster et. al. [21] introduce a
specialized incremental model checker NetSynth that automatically synthesises
correct update sequences from LTL specifications. In [21] the authors argue that
their tool is outperforming other existing approaches on a variety of network
topologies for ensuring reachability and waypointing policies. NetSynth essen-
tially performs a (heuristic) search through all possible update sequences and
relies on the assumption that the routings are loop-free. Our approach can verify
also the presence of loops and it uses the general concept of two-player games
instead of the explicit enumeration of all possible update sequences. Another
approach that allows to present updates in concurrent steps is given in [25].

A recent work by Christensen et. al. [4] introduces the tool Latte that models
the problem as a timed-arc colored Petri net and its main focus is on reducing
the delays between the updates of the individual routers. While it extends the
analysis with timing aspects, their work relies on obtaining a correct update
sequence from third-party tools (NetSynth in their case) and as such it does not
solve the synthesis problem and focuses purely on the timing optimization as-
pects and the discovery of possible concurrent updates. Another line of work by
Finkbeiner et. al. [9,8] focuses on verifying concurrent network updates against
Flow-LTL specifications, using Petri nets extended with transits as the under-
lying modelling formalism and circuit model checking as the backend engine.
The experiments show that their tool can verify in minutes networks up to a
hundred of routers, however, similarly as Latte [4], they can only verify but not
synthesise update sequences. To the best of our knowledge, our approach is the
first one that employs the game semantics of Petri nets and allows hence for fully
automate update synthesis as well as the reuse of generic game model checkers
like TAPAAL. As such, the generated update sequences can be then further
optimized, e.g. for the timing and concurrent aspects, by the above mentioned
approaches.

2 Update Synthesis

We shall now formalize the notion of a network and routing in a network, define
some essential routing properties and formulate the update synthesis problem.

Definition 1 (Network). A network is a directed graph G = (V,E) where V
is a finite set of nodes (switches), and E ⊆ V × V is a set of edges (links) such
that (v, v) /∈ E for all v ∈ V .
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v1 v2

v3 v4

R(v1) = v2

R(v2) = v3

R(v3) = v4

R(v4) is undefined

Fig. 1: A network with routing R depicted by the red dashed arrows (the black
arrows represent existing links that are not used in R)

A network defines the set of links that connect the switches. For a given
packet type (given by its header and usually determined by its destination),
each switch contains a forwarding table defining the next hop. A switch contains
this information for all different packet types and we project on a certain type in
order to define its routing in a network. For the rest of this section, let G = (V,E)
be a fixed network.

Definition 2 (Routing). A routing in G is a partial function R : V ↪→ V
such that (u,R(u)) ∈ E for all u ∈ V where R(u) is defined.

Consider the network in Figure 1 with a routing R, indicated by the dashed
edges. The routing naturally defines a path, which is a (unique) sequence of next
hops. A path can be either infinite or finite. Any infinite path, or finite path that
ends in a node with undefined next hop, is called a maximal path.

Definition 3 (Path). A path π under a routing R is a sequence of nodes
v1v2...vn... ∈ V ∗∪V ω such that R(vi) = vi+1 for all i. A maximal path is either
an infinite path or a finite path that ends in a node v where R(v) is undefined.

Our example in Figure 1 contains the maximal path v1v2v3v4. This path
demonstrates reachability between v1 and v4 and the routing does not contain
any infinite path. Moreover, the path starting in v1 contains the switch v2 before
v4 is reached. A switch with this property is called a waypoint. We shall now
formally define these basic properties of a routing function.

Definition 4 (Routing Properties). Let u, v and w be three different nodes
in a network. A routing R satisfies

– the reachability property reach(u, v) if there is a path π = v1v2...vn under
R such that v1 = u and vn = v,

– the waypointing property wp(u, v, w) if for every path π = v1v2...vn under R
where v1 = u and vn = v there exists an i, 1 < i < n, such that vi = w, and

– the loop-freedom property loopfree(u) if the maximal path under R starting
in u is finite.

We shall note that (i) the waypointing property wp(u, v, w) is trivially satis-
fied whenever there is no path under R from u to v, e.g. in our running example
the property wp(v3, v1, v4) holds and (ii) any infinite path under a given routing
must form a loop after some finite initial prefix (as the number of nodes is finite).
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v1 v2

v3 v4

(a) Routing R

v1 v2

v3 v4

(b) R1 = R(v2,v4)

v1 v2

v3 v4

(c) R2 = R
(v3,v2)
1

v1 v2

v3 v4

(d) R3 = R
(v1,v3)
2

Fig. 2: A correct update sequence for reach(v1, v4) and wp(v1, v4, v2)

2.1 Network Updates

In order to be able to change the given routing (and therefore to influence the
routing path) we introduce the notion of an update. An update can either change
the forwarding function of a given node to an alternative next hop, or it can
undefine the routing function (remove the entry from the forwarding table).

Definition 5 (Update). Given a routing R, an update is an element e ∈
E ∪ (V × {undefined}). For a given update e = (u, u′), the updated routing Re

is given by

R(u,u′)(v) =

{
R(v) if v 6= u (1a)

u′ if v = u. (1b)

In order to update one routing into another, a number of updates must be
performed in a sequence (a so-called update sequence), executing the updates
from left to right.

Definition 6 (Update Sequence). Given a routing R and an update se-
quence ω = e1e2...en ∈ (E ∪ (V × {undefined}))∗, we inductively define the
final routing Rω by (i) Rε = R and (ii) Reω = (Re)ω for any e ∈ E and any
ω ∈ (E ∪ V × {undefined})∗.

Finally, we must guarantee that an update sequence transiently satisfies a
given set of properties P, containing e.g. reach(u, v), wp(u, v, w) and loopfree(u).

Definition 7 (Correct Update Sequence). We say that ω is a correct up-
date sequence for R with respect to a set of properties P if for every prefix ω′ of
ω the routing Rω

′
satisfies every property from P.

Figure 2 shows the steps of a correct update sequence ω = (v2, v4) ◦ (v3, v2) ◦
(v1, v3) on our running example, for P = {reach(v1, v4), wp(v1, v4, v2)}. At any
moment during the update sequence, the node v4 is reachable from v1 and at
the same time the node v2 (in grey) is always present on the path from v1 to v4.

The update synthesis problem is, for a given initial routing R and a final
routing R′, to find an update sequence that transforms R into R′ while preserving
a given set of path properties P. Moreover, we allow at most one update of every
node in the network. As we are modelling one fixed flow in the network, we
assume that the path properties always start with the same fixed node u ∈ V .
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v1 v3

v2

v4

v5

(a) Initial routing

v1 v3

v2

v4

v5

(b) Final routing

Fig. 3: A network with no solution preserving reach(v1 , v5 ) and wp(v1 , v5 , v3 )

Definition 8 (Update Synthesis Problem). The update synthesis problem
is a tuple U = (G,R,R′,Pu) where G is a network, R is an initial routing, R′

is a final routing, and Pu ⊆ {wp(u, v ,w), reach(u, v), loopfree(u) | v, w ∈ V } for
some fixed u ∈ V is the set of path properties. The question is whether there
exists a correct update sequence ω ∈ (E ∪ (V × {undefined}))∗ with respect to
Pu such that Rω = R′ and where every v ∈ V appears in ω at most once as a
source node. We then say that ω is a solution to the update synthesis problem.

The update synthesis problem in NP-complete [18]. Figure 2 shows a solu-
tion to the update synthesis problem transforming the routing R into R3 while
preserving reach(v1, v4) and wp(v1, v4, v2). We notice that this is in fact the only
solution. If we in the routing R first update the router v1, we break the way-
pointing property and if we instead decide to update first v3, we create a loop
and invalidate the reachability property. Similarly, in the routing R1 the only
choice is to first update v3, as updating v1 in R1 will avoid the waypoint. Lastly,
in Figure 3 we give an example of an update synthesis problem that does not
have a solution for preserving the properties reach(v1 , v5 ) and wp(v1 , v5 , v3 ). If
v3 is updated before v2, a loop is created and reach(v1 , v5 ) is violated and if v2
is updated before v3, the property wp(v1 , v5 , v3 ) is violated.

3 Petri Games

A Petri net (see e.g. [23]) is a mathematical model of distributed systems that
allows us to model concurrent and nondeterministic behaviour. A Petri game
extends P/T nets by introducing the controllable and environmental transitions.
This kind of games were studied in [13] also including the timing aspects.

Let N0 be the set of natural numbers including 0 and let N∞ be the set
of natural numbers extended with the symbol ∞ that is larger than any other
natural number.

Definition 9 (Petri Game). A Petri game is a 4-tuple N = (P, T,W, I)
where P is a finite set of places, T is a finite set of transitions partitioned into
the controllable Tctrl and environmental Tenv ones s.t. T = Tctrl ] Tenv and
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Src Router

R1 disabled

Dst

•

Env

R2 disabled

Inject

Disable R1

Route 2

Route 1

Disable R2

(a) A Petri game

M σ(M)

Env + Src Inject

Env + Router Route 1

R1 Disabled + Src Inject

R1 Disabled + Router Route 2

R2 Disabled + Src Inject

R2 Disabled + Router Route 1

(b) A control strategy
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(c) All runs under strategy σ, invariantly
satisfying ¬deadlock ∨Dst = 1

Fig. 4: A Petri game example

P ∩ T = ∅, the function W : (P × T )∪ (T × P )→ N0 assigns weights to normal
arcs, and the function I : P × T → N∞ assigns weights to inhibitor arcs.

Let N = (P, T,W, I) be a fixed Petri game. Places in a Petri game are
depicted as circles, controllable transitions by filled rectangles and environmental
by empty rectangles and whenever W (p, t) > 0 or W (t, p) > 0 we draw an arc
between p and t, resp. t and p, labeled by the corresponding weight (no label
stands for the weight 1, and if I(p, t) < ∞ we draw an inhibitor arc depicted
circle-head between p and t and annotated by the weight. An example of Petri
game is given in Figure 4a and it models a scenario where a packet must travel
through a network from Src to Dst through one of two possible routes Route 1
or Route 2 . However, the environment can disable one of the two routes, and
depending on which it disables we must choose the remaining route.

A marking M on N is a total function M : P → N0 that marks each place
with 0 or more tokens. Let M(N) bet the set of all markings on N . We can
represent a marking as a formal sum k0p0 + k1p1 + · · ·+ knpn where ki denotes
the number of tokens present in pi. A marking is graphically denoted by dots
in places. A transition t ∈ T is enabled in a marking M if W (p, t) ≤ M(p)
and I(p, t) > M(p) for all p ∈ P . If a transition t ∈ T is enabled in a marking

M , it can fire resulting in the marking M ′, written M
t−→ M ′, where M ′(p) =

M(p) +W (p, t)−W (t, p) for all p ∈ P .

The controller’s choice of which controllable transition to select in each mark-
ing, is given by the concept of a (memoryless) strategy.
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Definition 10 (Strategy). Let N = (P, T,W, I) be a Petri game. A strategy

σ : M(N) ↪→ Tctrl is a partial function such that if σ(M) = t then M
t−→M ′ for

some M ′ and σ(M) is undefined iff there is no t ∈ Tctrl enabled in M .

An example of a strategy for the game net from Figure 4a is given in Fig-
ure 4b. A strategy determines the set of runs such that from every marking
either any environmental transition or the transition proposed by the strategy
can be executed. A set of all runs in our running example, organized into a tree
where run prefixes are shared, is given in Figure 4c. Controllable transitions are
depicted with solid lines and environmental with dashed lines.

Definition 11 (Run). Let N = (P, T,W, I) be a Petri game with an ini-
tial marking M0 and a strategy σ. The set of finite and infinite runs under

σ is given by runsσ(M0) = {M0M1M2... | for all i holds Mi
t−→ Mi+1 s.t. t ∈

Tenv or Mi
σ(Mi)−−−−→Mi+1 if σ(Mi) is defined}.

The goal of the controller in the game is to invariantly preserve a given safety
objective, expressed as a marking predicate ϕ given by a Boolean combination
of expressions of the form e ./ e or deadlock where

e ::= p |n | e+ e | e− e | e ∗ e

such that p ∈ P , ./∈ {≤, <, =, 6=, ≥, >} and n ∈ N0. We write M |= deadlock
if there are no enabled transitions in M and the semantics of the Boolean con-
nectives as well as of the expressions e ./ e is given in a natural way, assuming
that p stands for |M(p)|. If a marking M satisfies a predicate ϕ, we write M |= ϕ.

Definition 12 (Winning Control Strategy). Let N = (P, T,W, I) be a
Petri game with the initial marking M0 and let ϕ be a marking predicate. We
write M0 |= control : AG ϕ if there exists a strategy σ such that for every run
M0M1M2... ∈ runsσ(M0) we have Mi |= ϕ for all relevant i. If such a strategy
exists, we say that σ is a winning strategy.

In Figure 4a we have Env + Src |= control : AG (¬deadlock ∨Dst = 1 ) as
the strategy defined in Figure 4b is a winning strategy for the safety objective
¬deadlock ∨Dst = 1 . This can be verified by exploring the possible runs under
the strategy given in Figure 4c and noticing that all deadlocked markings have
a token in the place Dst . In general, for any bounded Petri game the existence
of a winning control strategy is decidable (see e.g. [15]).

4 From Update Synthesis Problem to Petri Games

We shall now present a reduction from the update synthesis problem into a
Petri game. The reduction idea is that the controller is allowed to step-wise
generate any possible sequence of updates and a given control strategy fixes a
concrete update sequence. The environment can at any moment decide to stop
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pu

pv

pv′

t(u,v)

if R(u) = v

t(u,v′)

if R′(u) = v′

(a) Network topology

•

Controller

•

pinit
u pfinal

u

pupdate
u

t(u,v)

if R(u) = v

t(u,v′)

if R′(u) = v′

(b) Switch for each u where R(u) 6= R′(u)

pvisited
u pvisited

v
t(u,v)

2

(c) Arcs connected to t(u,v)

•

Controller pu

pvisited
uInject Packet

(d) Packet injection for properties Pu

Fig. 5: Translation components

the generation process and inject a packet into the network in order to verify
whether the current prefix of the update sequence satisfies the given properties.
If this is not the case, the environment wins, otherwise the controller has a
winning strategy that corresponds to a correct update sequence.

The reduction, for a given update synthesis problem (G,R,R′,Pu), is split
into the creation of the following components:

1. Network topology component based on G.
2. Switch components based on R and R′.
3. Visited places to track how many times a node is visited.
4. Packet injection component to start the verification phase.
5. Satefy objective based on Pu.

For clarity reasons, we decompose our Petri net construction into separate
components. If the same place or transition name appears in multiple compo-
nents, we refer to them as shared and indicate this by surrounding them with a
dashed line. We assume that the shared places and transitions are merged.

4.1 Translation to Petri Games

Let U = (G,R,R′,Pu) be an update synthesis problem such that G = (V,E)
is the underlying network. We create a Petri game N(U) = (P, T, I,W ) where
T = Tctrl ] Tenv by defining the different components mentioned above.
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1. Network topology components. For all u ∈ V where R(u) or R′(u) is defined
create the place pu and
– If R(u) = v we create a shared transition t(u,v) ∈ Tctrl and a place pv.
– If R′(u) = v′ we create a shared transition t(u,v′) ∈ Tctrl and a place pv′ .

The created places and transitions are then connected by normal arcs as
illustrated in Figure 5a.

2. Switch components. For every u ∈ V where R(u) 6= R′(u), we create a
switch component with a controllable transition pupdate

u ∈ Tctrl connected
to a globally shared place Controller and two places pinitu (initially marked)
and pfinalu as in Figure 5b. Moreover,
– if R(u) = v, we add the arcs pinitu to t(u,v) and t(u,v) to pinitu , and
– if R′(u) = v′, we add the arcs pfinalu to t(u,v′) and t(u,v′) to pfinalu .

3. Visited places. For each place pu that was already created, we create a dual
place pvisitedu as illustrated in Figure 5c where
– for all v ∈ V such that there exists a u ∈ V where R(u) = v or R′(u) = v

we add an arc from t(u,v) to pvisitedv , and
– for all u ∈ V such that R(u) = v or R′(u) = v we add an inhibitor arc

with weight of 2 from pvisitedu to tu,v.
4. Packet injection component. Here we add (the only) environmental transi-

tion Inject Packet ∈ Tenv that connects, as depicted in Figure 5d, the place
Controller (initially marked with a token) to the places pu and pvisited

u where
u is the initial node fixed in the set of properties Pu.

5. Verification queries. For the given set of properties Pu = {P1, P2, . . . , Pk}
we construct the safety objective control : AG ϕP1

∧ ϕP2
. . . ∧ ϕPk

where:
– ϕloopfree(u) ≡

∧
u∈V p

visited
u < 2

– ϕreach(u,v) ≡ ¬deadlock ∨ pvisitedv ≥ 1
– ϕwp(u,v ,w) ≡ pvisitedw ≥ 1 ∨ pvisitedv = 0

The translation is illustrated by a small example in Figure 6. For the network
in Figure 6a, we want to update the initial routing via v1, v2 and v4 to the final
routing v1, v3 and v4, while preserving the reachability between v1 and v4. The
translation of the switch components is given in Figure 6b and the translation
of the renaming components in Figure 6c, where the place Controller as well as
the transitions t(1,2), t(1,3), t(2,4) and t(3,4) are shared between the two figures.
We note that since R(v4) = R′(v4) = undefined , we do not create a switch
component for v4.

Finally, we notice the once the environmental Inject Packet transition fires,
a token is removed from the place Controller and it is no longer possible to
change the current transient routing. The construction guarantees that token
injected to p1 now follows exactly the path corresponding to the current routing
and every time a place receives a token, the corresponding visited place also
gets a token. Should there be a loop, the first marking where one of the visited
places obtains a second token deadlocks due to the introduction of the inhibitor
arcs. The constructed Petri game is so guaranteed to be bounded. The property
we wish to preserve is reach(v1 , v4 ) and it translates to the safety objective
¬deadlock∨pvisited4 ≥ 1. This guarantees that during the execution of the routing
path we do not deadlock (which can be caused either by a blackhole or a loop)
before the target place p4 is reached.

10



v1

v2

v3

v4

P = {reach(v1, v4)}

(a) Initial routing in solid
lines, final in dashed lines

•
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•
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pfinal
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•
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pfinal

3
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pupdate
1

t(1,3) t(2,4)
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3

t(3,4)

(b) Switch components

•

Controller

p1

p2

p3

p4

control : AG ¬deadlock ∨ pvisited4 ≥ 1

pvisited
2

pvisited
3

pvisited
1 pvisited

4Inject Packet

t(1,2) t(2,4)

t(1,3) t(3,4)

2

2

2

2

(c) Topology, visited places and packet injection components

Fig. 6: Translation example

4.2 Translation Correctness

Let U = (G,R,R′,Pu) be an update synthesis problem and let N(U) be the
constructed Petri game with the initial marking M0 and the safety objective ϕ.
The main correctness theorem is stated as follows.

Theorem 1. The problem U has a solution iff M0 |= control : AGϕ in N(U).

We shall first observe that all runs in the constructed Petri game are finite.

Lemma 1. The net N(U) contains no infinite run from the initial marking M0.

Proof. Assume by contradiction that there is an infinite run from M0. Clearly,
the firing of each pupdate

u can happen at most once for each u, so necessarily
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the transition Inject Packet must fire during such a sequence, initializing the
execution in the topology component. There must be now a transition t(u,v)
that fires at least twice in the infinite run. Each time t(u,v) fires, a new token is

deposited into pvisited
v and hence the place contains two tokens after the second

time t(u,v) is fired. However, all outgoing transitions from the place pv (containing
a token after t(u,v) is fired) are disabled due to the inhibitor arcs of weight 2

from pvisited
v . Hence the net deadlocks and this contradicts the existence of the

infinite run. ut

Now we prove Theorem 1 by establishing each direction of the claim.

Lemma 2. If ω is a correct update sequence for U then in N(U) there is a
winning control strategy σ for the formula control : AG ϕ.

Proof. Let ω = e1e2...en be a correct update sequence such that ei = (ui, u
′
i)

where ui ∈ V and u′i ∈ V ∪{undefined}. We shall now define a winning strategy
σ for the controller, given the initial marking M0, as follows: σ(M0) = pupdateu1

and we let M0

pupdate
u1−−−−−→ M1; we continue to define σ(Mi−1) = pupdateui

for all i,

1 < i ≤ n, where we let Mi−1
pupdate
ui−−−−−→ Mi. For all other markings M , we let

σ(M) = M ′ for an arbitrary M ′ such that M
M−→
t

′
and t ∈ Tctrl , if such marking

M ′ exists; otherwise is σ(M) undefined. In other words, the controller fires the
controllable pupdateui

transitions in the order specified in the update sequence ω.
We also notice that once the Inject Packet transition is fired by the environment,
there is in any reachable marking at most one enabled controllable transition,
exactly simulating the path under the currently generated sequence of updates.
As stated in Lemma 1, this path is finite as the net deadlocks as soon as the
same node is visited the second time.

Now we argue that the strategy σ is a winning control strategy by showing
that every marking M reachable under the strategy σ satisfies ϕ. As ϕ is a
conjunction of marking predicates of three different types (depending on the
properties in Pu), we discuss the three cases.

– ϕloopfree(u) ≡
∧
u∈V p

visited
u < 2. Before the environment fires Inject Packet ,

no token can be placed in any pvisitedu and the invariant is satisfied. If
Inject Packet is fired, because ω is a correct update sequence it follows by
Definition 7 that the currently generated prefix of ω yields a loop-free routing
and therefore any reachable marking satisfies pvisitedu < 2.

– ϕreach(u,v) ≡ ¬deadlock ∨ pvisitedv ≥ 1. Before firing Inject Packet , the net
cannot deadlock as Inject Packet is still enabled and hence the property
holds. Once Inject Packet is fired, due to our assumption that the currently
generated prefix of ω is correct and the corresponding routing hence even-
tually reaches the node v, and because the Petri net faithfully mimics the
routing path, we know that the Petri net execution eventually marks the
place pvisited

v and cannot deadlock before this: there cannot be any black-
hole as this contradicts the reachability of v and there cannot be any node
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visited twice either before reaching v, as the path is deterministic and it will
imply the existence of a loop and contradict the reachability of v. Hence
¬deadlock ∨ pvisitedv ≥ 1 invariantly holds.

– ϕwp(u,v ,w) ≡ pvisitedw ≥ 1 ∨ pvisitedv = 0. Before firing Inject Packet the

invariant clearly holds as none of the places pvisitedu can be marked for all
nodes u, including v. After Inject Packet is fired, as we assume that any
prefix of ω corresponds to a correct routing, meaning that the node v cannot
be marked before the node w. Hence the invariant holds also in this case. ut

Lemma 3. If σ is a winning control strategy in N(U) for the formula control :
AG ϕ then there exists a correct update sequence ω solving U.

Proof. Assume that σ is a winning strategy for the formula control : AG ϕ.
Given the initial marking M0, the strategy σ generates the sequence of markings

M0,M1, . . . ,Mn such that σ(Mi−1) = pupdateui
and Mi−1

pupdate
ui−−−−−→ Mi for all i,

1 ≤ i ≤ n. This sequence naturally defines the update sequence ω = e1e2...en
where ei = (ui, R

′(ui)) for all i, 1 ≤ i ≤ n.
We know that once Inject Packet fires at a marking Mi, there exists a unique

path in the Petri net, following exactly the routing defined by update sequence
e1e2 . . . ei. As σ is a winning control strategy, we know that ϕ holds in every
marking on such a path. We shall argue by case analysis that the routing after
applying the update sequence e1e2 . . . ei satisfies every path property P ∈ Pu.

– P ≡ loopfree(u). Then the path in the Petri net satisfies the marking prop-
erty ϕloopfree(u) ≡

∧
u∈V p

visited
u < 2 which by the net construction implies

that the path must be finite.
– P ≡ reach(u, v). Then the path in the Petri net satisfies ϕreach(u,v) ≡
¬deadlock ∨ pvisitedv ≥ 1. This implies that the net cannot deadlock be-
fore marking the place v, which gives that v must be necessarily reached as
there is no infinite run due to Lemma 1. The property P hence holds.

– P ≡ wp(u, v ,w). Then every marking in the path satisfies ϕwp(u,v ,w) ≡
pvisitedw ≥ 1∨pvisitedv = 0, exactly formulating the requirement that pv cannot
be marked before pw gets marked, again implying the property P . ut

4.3 Optimization for Reachability and Waypointing

It is a natural requirement that every transient routing in an update sequence
should preserve at least the reachability between the source and the target node.
We may also assume that once the target node is reached, any further routing
from the target becomes undefined as the packet is considered delivered. In this
case, the preservation of reachability also implies loop freedom. Finally, we may
also allow to use multiple waypointing properties for different waypoints, as
long as they are between the source and the destination that are connected in
every transient routing. Formally, we define a set of reachability and waypointing
properties for a given source u ∈ V and target v ∈ V as

P(u,v) = {reach(u, v)} ∪ {wp(u, v, w) | w ∈W}
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where W ⊆ V is a given set of waypoints. For this restricted set of path prop-
erties, we can notice that the construction of the Petri game solving the update
synthesis problem can be optimized as follows.

Let U = (G,R,R′,P(u,v)) be an update synthesis problem with the set of
reachability and waypointing properties P(u,v) such that G = (V,E) is the un-
derlying network. We partition all relevant switches u ∈ V where R(u) 6= R′(u)
into three categories:

– V init = {u ∈ V | R(u) 6= R′(u), R(u) is undefined },
– V final = {u ∈ V | R(u) 6= R′(u), R′(u) is undefined }, and
– V both = {u ∈ V | R(u) 6= R′(u), both R(u) and R′(u) are defined }.

We shall now observe that if there is a correct update sequence transforming
the routing R into R′ while preserving P(u,v) then there is also one where all
switches from V init are placed (in arbitrary order) at the beginning of the update
sequence and all switches from V final can be (again in arbitrary order) updated
at the very end of the update sequence.

Lemma 4. Let ω be a correct update sequence for the update synthesis prob-
lem U = (G,R,R′,P(u,v)) with reachability and waypointing property set P(u,v).
Let ω′ be a subsequence of ω containing only updates of the form (u, u′) where
u ∈ V both . Let ωinit = (v1, R

′(v1)) ◦ . . . ◦ (vk, R
′(vk)) be a sequence of updates

of all nodes from the set V init = {v1, . . . , vk}. Let ωfinal = (u1, undefined) ◦
. . . ◦ (u`, undefined) be a sequence of updates of all nodes from the set V final =
{u1, . . . , u`}. Then ωinit ◦ ω′ ◦ ωfinal is also a correct update sequence.

Proof. Let ω be a correct update sequence such that ω = ω1 ◦ (x, x′) ◦ ω2 where
either (i) x ∈ V init meaning that R(x) is undefined, or (ii) x ∈ V final meaning
that R′(x) is undefined. We want to show that in case (i) (x, x′) ◦ω1 ◦ω2 and in
case (ii) ω1 ◦ω2 ◦ (x, x′) is also a correct update sequence. These two facts imply
the statement in the lemma.

In case (i), we know that for any prefix of ω1, the corresponding routing path
always connects u and v a hence it cannot pass thought the node x for which
the next hop is undefined. Hence moving (x, x′) to the beginning of the update
sequence does not change the routing path and after the sequence of updates
(x, x′) ◦ ω1 and ω1 ◦ (x, x′) we arrive to the identical switch configuration.

In case (ii), we know that the reachability between u and v is preserved all
the time during the update sequence ω. As the update (x, undefined) creates a
blackhole, after the sequence ω1 is applied, the switch x cannot be part of the
prefix of the routing path from u until v is reached. This implies that moving
the update to the end does not influence the given set of path properties. ut

We can apply this lemma to improve the efficiency of our translation by
creating a reduced Petri gameN ′(U) where from the original netN(U) we remove
the whole switch component for every u where u ∈ V init ∪ V final . This means
that for the switches in V init , the final routing will be enabled already from the
start of the net execution and for the switches from V final we never undefine the
routing function. We can so conclude with the following theorem.

14



Theorem 2. Let U = (G,R,R′,P(u,v)) be an update synthesis problem with
reachability and waypointing properties P(u,v). Let N ′(U) be the reduced Petri
game with the initial marking M0 defined above and ϕ the safety objective con-
structed from P(u,v). Then U has a solution iff M0 |= control : AG ϕ in N ′(U).

v1

v2

v3

v4

P = {reach(v1, v4)}

Fig. 7: Counter example

In Figure 7 we show that Theorem 2 does
not hold e.g. for the property loopfree(v1)
alone. As usual, the initial routing is in black
solid lines and the final routing in dashed
red lines. Clearly, (v1, v3) ◦ (v3, v4) ◦ (v4, v2) ◦
(v2, undefined) is a correct update sequence
transforming the initial routing to the final
one. However, even though the final routing
for the node v4 is undefined, it is not possible
to move this update to the beginning of the
update sequence as updating first the node v4
creates a forwarding loop and hence breaks the loopfree(v1) property.

5 Implementation and Experiments

We implemented a prototype tool in Python that translates the update synthesis
problem into Petri game. Our tool accepts a JSON file with the description of
the network topology, initial and final routing as well as the list of required se-
curity policies: reachability, loop-freedom and (multiple) waypointing. The tool
provides three types of output: (i) update synthesis problem definition in Net-
Synth [21] input format, (ii) XML file with Petri game and a safety query to
be opened in the GUI of TAPAAL model checker [6], and (iii) XML Petri game
model file and query file to be used with the command-line engine verifypn

(part of the TAPAAL framework).
The game engine verifypn is based on the algorithms presented in [13,15],

utilizing PTries for efficient state-storage [14], and we designed a new state-space
exploration strategy in order to speedup the game synthesis algorithm. The
engine verifypn is further extended to output the synthetized game strategy
from which the update sequence can be derived. In order to experiment with
network topologies in the standard gml format as used e.g. in the Topology
Zoo dataset [16], our tool also facilitates the generation of update synthesis
problems (in the TAPAAL and NetSynths formats) directly from the gml input
files. We evaluate the performance of our tool (using the engine verifypn from
the TAPAAL model checker) on both synthetic and real-world ISP topologies.

5.1 Synthetic Network Topologies

The synthetic topologies presented in Figure 8 define scalable network update
problems that model two extreme situations where the initial and final routing
paths are either disjoint or fully dependent, as well as a third, more realistic,
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src dst

... ...

... ...

(a) Disjoint

src

dst

(b) Dependent

src dst

...

...

(c) Shared

Fig. 8: Synthetic network topologies; initial routing in black solid lines and final
routing in red dashed lines

scenario where the two routing paths share a number of waypoints, while still
using independent routers in between.

The disjoint network template from Figure 8a follows the structure used in
NetSynth benchmarks from [21]. The size of the update problem is scaled by
increasing the lengths of the disjoint paths. The dependent network type in
Figure 8b aims to minimize the number of correct update sequences as many of
the possible update sequences either create a loop or avoid the waypoint drawn
in gray. The problem is scaled by sequentially concatenating (repeating) the
same structure number of times. Finally, the shared topology from Figure 8c
combines a number of shared nodes that are connected by short disjoint paths
of length two. The scaling is achieved by repeating the depicted pattern several
times. The verified properties in all synthetic networks are reach(src, dst) in
conjunction with wp(src, dst ,w) where w is a single selected waypoint that is
shared on the initial and final routing path (for disjoint topology there is exactly
one such node drawn in gray). For the case of dependent topologies, we also study
the variant with multiple waypoint properties.

5.2 Topology Zoo Benchmark

The topology Zoo database [16] contains 261 network topologies (with up to
700 nodes) from real internet service providers. In order to achieve additional
scaling and larger instances, we combine existing topologies by further nest-
ing/concatenating them. To create realistic initial and final routing paths, we
emulate the standard protocols like OSPF [22] and ECMP [11] that are based on
routing along the shortest paths in the weighted network (the weights are typi-
cally manually assigned by network operators). For each topology, we compute
the diameter of the graph in order to identify the source src and destination
dst nodes that maximize the smallest number of hops between them (for large
network configurations, only a random subset of nodes are chosen in order to
limit the computational effort for generating the test-cases). We randomly assign
the weights up to 5 to every edge and set the initial routing path as one of the
shortest paths between src and dst . We then increase the weights on the initial
path that enforces a change in the set of shortest paths between src and dst in
order to determine an alternative final routing path. The verified properties are
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(e) Shared network
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Fig. 9: Cactus plots where x-axis shows the increasing problem instances and y-
axis depicts (on logarithmic scale) the synthesis time; n is the number of nodes

reach(src, dst) in conjunction with wp(src, dst ,w) where w is a randomly chosen
waypoint that is shared by both the initial and final path (routing paths with
no common waypoint are discarded).

5.3 Results

We compare the performance of our tool translating the update synthesis prob-
lem into a Petri game and using the TAPAAL engine as the backend (this tool
chain is referred to as TAPAAL in the plots) against the state-of-the-art update
synthesis tool NetSynth [21]. The results are presented in the form of cactus
plots where the synthesis times used by each tool are (independently of each
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other) sorted in nondecreasing sequence and plotted on the x-axis, while the y-
axis shows the concrete runtime for each instance. These graphs do not provide
instance-to-instance runtime comparison but instead give an overall picture of
the tools performances. All of our experiments are conducted using the Linux
5.8.0 kernel running on AMD EPYC 7551 processors with hyperthreading dis-
abled and limited to 7 GB of memory (the memory limit was though never
exceeded). The tool source code as well as the experimental setup that allows us
to rerun all experiments is available in [7].

Figure 9a shows the cactus plot for the disjoint network experiment. While
NetSynth uses 57 seconds to solve the largest instance with 1000 nodes, our tool
with TAPAAL backend uses only 0.15 seconds (contributed mainly to the fre-
quent applicability of Lemma 4). For the case of dependent networks in Figure 9b
with a single waypoint, the NetSynth incremental algorithm with build-in loop
detection check outperforms TAPAAL, as many update sequence candidates cre-
ate forwarding loops that TAPAAL is less efficient to detect. As a result, we need
almost 386 seconds to solve the largest instance while NetSynth can synthetise
the update sequence in about 16 seconds. However, once we require that every
10th node must be a waypoint, the relative performance of TAPAAL improves
as seen in Figure 9c and once every 5th node is set as a waypoint, we already
outperform NetSynth as shown in Figure 9d. This demonstrates that our ap-
proach scales better with increasing complexity of the required path properties.
Moreover, our performance on the more realistic shared network in Figure 9e is
several orders of magnitude faster than NetSynth and NetSynth only solves 21
instances within the 1000 second timeout, while we need less than 37 seconds to
solve even the largest instance.

Finally, Figure 9f shows the performance on the dataset of existing networks
emulating a realistic network operators behaviour. Here the routing paths are
computed via a shortest path algorithm. We observe that our approach is in the
middle case 8.9 times faster than NetSynth. We manage to solve the majority
(933 instances) of problems in less than 1 second, while NetSynth solved only 689
instances within 1 second. We also remark that NetSynth is unable to solve 42
problems within the time limit of 100 seconds while TAPAAL manages to solve
all but the 12 hardest instances (not surprising as already deciding the existence
of a correct update sequence is an NP-complete problem [18]). In particular,
we notice that NetSynth is noticeably slower at providing answers for problems
where no update sequence exists.

6 Conclusion

We presented a fully automatic approach for synthetising correct-by-construction
update sequences in programmable networks. The obtained update sequences
are guaranteed to satisfy a number of network policies like preservation of reach-
ability, loop-freedom and additional waypointing requirements. Our approach
is based on reducing the problem to Petri games and employing the generic
model checker TAPAAL for solving the game synthesis problem. The experi-
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ments demonstrate that our method is significantly outperforming the state-of-
the-art tool NetSynth, except for the case of fully dependent networks where
both the initial and final routings share every single node in the network. How-
ever, this scenario is unlikely to appear during the operation of real networks
as the packets are commonly routed along the shortest paths in the network.
Indeed, the experiments on over one thousand of real network topologies, using
the shortest paths routing algorithms like OSPF and ECMP, document that we
are consistently (in median 8.9 times) faster in synthetising the correct update
sequences compared to NetSynth. In particular, we are able to solve majority
of the realistic update synthesis problems in less than 1 second, which is im-
portant in nowadays dependable networks that must be promptly updated with
increasing frequencies in order to react e.g. to sudden changes in the traffic.

The Petri net model and the generated update sequence is well suited for a
further integration with the tool Latte [4], a plug-in to TAPAAL that extends
the model with timing features and enables further reduction of the duration of
network updates. In the future work, we plan to directly integrate the two tools
into a single tool chain in order to reduce the overhead from parsing/exchanging
of different file formats. We will also consider adding more network update poli-
cies like service chaining (where a given sequence of switches must be visited in
a prescribed order); we expect that this will require only smaller modifications
to our reduction.
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21. J. McClurg, H. Hojjat, P. Černy, and N. Foster. Efficient synthesis of network
updates. ACM Sigplan Notices, 50(6):196–207, 2015.

22. J. Moy. RFC2328: OSPF version 2, 1998. https://tools.ietf.org/html/rfc2328.
23. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989.
24. M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions

for network update. In ACM SIGCOMM’12, pages 323–334. ACM, 2012.
25. S. Vissicchio and L. Cittadini. FLIP the (flow) table: Fast lightweight policy-

preserving SDN updates. In INFOCOM’16, pages 1–9. IEEE, 2016.

20


