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Abstract. Dependency graph is an abstract mathematical structure
for representing complex causal dependencies among its vertices. Sev-
eral equivalence and model checking questions, boolean equation sys-
tems and other problems can be reduced to fixed-point computations on
dependency graphs. We develop a novel distributed algorithm for com-
puting such fixed points, prove its correctness and provide an efficient,
open-source implementation of the algorithm. The algorithm works in
an on-the-fly manner, eliminating the need to generate a priori the en-
tire dependency graph. We evaluate the applicability of our approach
by a number of experiments that verify weak simulation/bisimulation
equivalences between CCS processes and we compare the performance
with the well-known CWB tool. Even though the fixed-point computa-
tion, being a P-complete problem, is difficult to parallelize in theory, we
achieve significant speed-ups in the performance as demonstrated on a
Linux cluster with several hundreds of cores.

1 Introduction

Formal verification techniques are increasingly applied in industrial development
of software and hardware systems, both to ensure safe and reliable behaviour of
the final system, and to reduce cost and time by finding bugs at early develop-
ment stages. In particular industrial take-up has been boosted by the maturing
of computer aided verification, where development of a variety of techniques
helps in applying verification to critical parts of systems. Heuristics for SAT
solving, abstraction, decomposition, symbolic execution, partial order reduction,
and other techniques are used to speed up the verification of systems with vari-
ous characteristics. Still, the problem of automatic verification is hard, and some
difficult cases occur frequently in practical experience. For this reason, we aim
in this paper at exploiting the computational power of parallel and distributed
machine architectures to further enlarge the scope of automated verification.

Automated verification methods contain a large variety of model-checking
and equivalence/preorder-checking algorithms. In the former, a system model is
(dis-)proved correct with respect to a logical property expressed in a suitable
temporal logic. In the latter, the system model is compared with an abstract



model of the system with respect to a suitable behavioural equivalence or pre-
order, e.g. trace-equivalence, weak or strong bisimulation equivalence. Aiming at
providing parallel and distributed support to (essentially) all of these problems,
we design a distributed algorithm based on the notion of dependency graphs [1,2].
In particular, dependency graphs have proven a useful and universal formalism
for representing several verification problems, offering efficient analysis through
linear-time (local and global) algorithms [2] for fixed-point computation of the
corresponding dependency graph. The challenge we undertake here is to pro-
vide a distributed algorithm for this fixed-point computation. The fact that de-
pendency graphs allow for representation of bisimulation equivalences between
system models suggests that we should not expect our distributed algorithm
to exhibit linear speed-up in all cases as bisimulation equivalence is known to
be P-complete [3]. Our experiments though still document significant speed-ups
that together with the on-the-fly nature of our algorithm (where we possibly
avoid the construction of the entire dependency graph in situations where it is
not necessary) allow us to outperform the tool CWB [4] for equivalence/model
checking of processes described in the CCS process algebra [5].

Related Work. Most closely related to our work are those of [6,7,8] offering par-
allel algorithms for model-checking systems with respect to the alternation-free
modal µ-calculus. The approach in [6] is based on games and tree decomposition
but the tool prototype mentioned in the paper is not available anymore. The
work in [8] reduces µ-calculus formulae into alternation free Boolean equation
systems. Finally [7] uses a global symbolic BDD-based distributed algorithm for
modal µ-calculus but does not mention any implementation. We share the on-
the-fly technique with some of these works but our framework is more universal
in the sense that we deal with the general dependency graphs where the problems
above are reducible to. There also exist several mature tools with modern designs
like FDR3 [9], CADP [10], SPIN [11] and mCRL2 [12], some of them offering
also distributed and/or on-the-fly algorithms. The input language of the tools is
however often strictly defined and extensions to these languages as well as the
range of verification methods require nontrivial changes in the implementation.
The advantage of our approach is that we first reduce a wide range of problems
into dependency graphs and then use our optimized distributed implementation
on these generic graphs. Finally, we have recently introduced CAAL [13] as a
tool for teaching CCS and verification techniques. The tool CAAL, running in
a browser and implemented in TypeScript (a typed superset of JavaScript), is
also based on dependency graphs but offers only the sequential version of the
local algorithm by Liu and Smolka [2]. Here we provide an optimized C++ im-
plementation of the distributed algorithm thus laying the foundation for offering
CAAL verification tasks as a cloud service.

2 Definitions

A labelled transition system (LTS) is a triple (S,A,→ ) where S is a set of states,
A is a set of actions that includes the silent action τ , and →⊆ S ×A× S is the
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Fig. 1: Dependency graph for weak bisimulation

transition relation. Instead of (s, a, t) ∈→ we write s a−→ t. We also write s a
=⇒ t if

either a = τ and s τ−→
∗
t, or if a 6= τ and s τ−→

∗
s′

a−→ t′
τ−→
∗
t for some s′, t′ ∈ S.

A binary relation R ⊆ S×S over the set of states of an LTS is weak simulation
if whenever (s, t) ∈ R and s

a−→ s′ for some a ∈ A then also t a
=⇒ t′ such that

(s′, t′) ∈ R. If both R and R−1 = {(t, s) | (s, t) ∈ R} are weak simulations then
R is a weak bisimulation.

We say that s is weakly simulated by t and write s � t (resp. s and t are
weakly bisimilar and write s ≈ t) if there is a weak simulation (resp. weak
bisimulation) relation R such that (s, t) ∈ R.

Consider the LTS in Figure 1a (even though it consists of two disconnected
parts, it can still be considered as a single LTS). It is easy to see that s1
weakly simulates t1 and vice versa. For example the weak simulation relation
R = {(s1, t1), (s2, t2), (s3, t4), (s4, t5)} shows that s1 is weakly simulated by t1.
However, s1 and t1 are not weakly bisimilar. Indeed, if s1 and t1 were weakly
bisimilar, the transition t1

a−→ t3 can only be matched by s1
a−→ s2 but s2 has a

transition under the label b whereas t3 does not offer such a transition.

2.1 Dependency Graphs

A dependency graph [2] is a general structure that expresses dependencies among
the vertices of the graph and by this allows us to solve a large variety of complex
computational problems by means of fixed-point computations.

Definition 1 (Dependency Graph).
A dependency graph is a pair (V,E) where V is a set of vertices and E ⊆ V ×2V
is a set of hyperedges. For a hyperedge (v, T ) ∈ E, the vertex v ∈ V is called the
source vertex and T ⊆ V is the target set.

Let G = (V,E) be a fixed dependency graph. An assignment on G is a
function A : V → {0, 1}. Let A be the set of all assignments on G. A fixed-point
assignment is an assignment A that for all (v, T ) ∈ E satisfies the following
condition: if A(v′) = 1 for all v′ ∈ T then A(v) = 1.

Figure 2 shows an example of a dependency graph. The hyperedge (a, ∅) with
the empty target set is depicted by the arrow from a to the symbol ∅. The figure
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Fig. 2: Dependency graph G = ({a, b, c}, {(a, ∅), (b, {a, b}), (c, {b}), (c, {a})})

also denotes a particular assignment A such that vertices with a single circle have
the value 0 and vertices with a double circle have the value 1, in order words
A(a) = A(c) = 1 and A(b) = 0. It can be easily verified that the assignment A
is a fixed-point assignment.

We are interested in the minimum fixed-point assignment. Let A1, A2 ∈ A
be assignments. We write A1 v A2 if A1(v) ≤ A2(v) for all v ∈ V , where we
assume that 0 ≤ 1. Clearly (A,v) is a complete lattice. Let us also define a
function F : A → A such that F (A)(v) = 1 if there is a hyperedge (v, T ) ∈ E
such that A(v′) = 1 for all v′ ∈ T , otherwise F (A)(v) = A(v). Observe that an
assignment A is a fixed-point assignment iff F (A) = A, and that the function
F is monotonic w.r.t. v. By Knaster-Tarski theorem [14] there exists a unique
minimum fixed-point assignment, denoted by Amin. The assignment Amin on
a finite dependency graph can be computed by a repeated application of the
function F on the assignment A0 where A0(v) = 0 for all v ∈ V , and we are
guaranteed that there is a number m such that Fm(A0) = Fm+1(A0) = Amin.

Consider again our example from Figure 2 and assume that each assignment
A is represented by the vector (A(a), A(b), A(c)). We can see that A0 = (0, 0, 0),
F (A0) = (1, 0, 0) and F 2(A0) = (1, 0, 1) = F 3(A0). Hence the depicted assign-
ment (1, 0, 1) is the minimum fixed-point assignment.

2.2 Applications of Dependency Graphs

Many verification problems can be encoded as fixed-point computations on de-
pendency graphs. We shall demonstrate this on the cases of weak simulation and
bisimulation, however other equivalences and preorders from the linear/branching-
time spectrum [15] can also be encoded as dependency graphs [16] as well as
model checking problems e.g. for the CTL logic [17], reachability problems for
timed games [18] and the general framework of Boolean equation systems [2],
just to mention a few applications of dependency graphs.

Let T = (S,A,→ ) be an LTS. We define a dependency graph G≈(T ) =
(V,E) such that V = {(s, t) | s, t ∈ S} and the hyperedges are given by

E = {
(
(s, t), {(s′, t′) | t a

=⇒ t′}
)
| s a−→ s′} ∪ {

(
(s, t), {(s′, t′) | s a

=⇒ s′}
)
| t a−→ t′} .

The general construction is depicted in Figure 3 and its application to the
LTS from Figure 1a, listing only the pairs of states reachable from (s1, t1), is
shown in Figure 1b. Observe that the size of the produced dependecy graph is
polynomial with respect to the size of the input LTS.
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Fig. 3: Bisimulation reduction to dependency graph

Proposition 1. Let T = (S,A,→) be an LTS and s, t ∈ S. We have s ≈ t if
and only if Amin((s, t)) = 0 in the dependency graph G≈(T ).

Proof (Sketch). “⇒”: Let R be a weak bisimulation such that (s, t) ∈ R. The
assignment A defined as A((s′, t′)) = 0 iff (s′, t′) ∈ R can be shown to be a
fixed-point assignment. Then clearly Amin v A and because A((s, t)) = 0 then
also Amin((s, t, )) = 0. “⇐”: Let Amin((s, t)) = 0. We construct a binary relation
R = {(s′, t′) | Amin((s′, t′)) = 0}. Surely (s, t) ∈ R and we invite the reader to
verify that R is a weak bisimulation. ut

In our example in Figure 1b we can see that Amin((s1, t1)) = 1 and hence
s1 6≈ t1. The construction of the dependency graph for weak bisimulation can be
adapted to work also for the weak simulation preorder by removing the hyper-
edges that originate by transitions performed by the right hand-side process.

We know that computing Amin for a given dependency graph can be done
in linear time [19]. By the facts that deciding bisimulation on finite LTS is P-
hard [3] and the polynomial time reduction described above, we can conclude
that determining the value of a vertex in the minimum fixed-point assignment
of a given dependency graph is a P-complete problem.

Proposition 2. The problem whether Amin(v) = 1 for a given dependency
graph and a given vertex v is P-complete.

3 Distributed Fixed-Point Algorithm

We shall now describe our distributed algorithm for computing minimum fixed-
points on dependency graphs. Let G = (V,E) be a dependency graph. For the
purpose of the on-the-fly computation, we represent G by the function

Successors(v) = {(v, T ) | (v, T ) ∈ E}

that returns for each vertex v ∈ V the set of outgoing hyperedges from v.
We assume a fixed number of n workers. Let i, 1 ≤ i ≤ n, denote a worker

with id i. Each worker i uses the following local data structures.

– A local assignment function Ai : V ⇀ {0, 1}, which is a partial function
mapping each vertex to the values undefined , 0 or 1.
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– A local dependency function Di : V → 2E returning the current set of
dependent edges for each vertex.

– A local waiting setW i ⊆ E containing edges that are waiting for processing.
– A local request function Ri : V → 2{1,...,n} where the worker i remembers

who requested the value for a given vertex.
– A local input message set M i ⊆ {“value of v needed by worker j” | v ∈
V, 1 ≤ j ≤ n} ∪ {“v has value 1” | v ∈ V }. For syntactic convenience,
we assume that a worker i can add a message m to M j of another worker j
simply by executing the assignment M j ← M j ∪ {m}.

We moreover assume some standard function TerminationDetection, com-
puted distributively, that returns true if there are no messages in transit and all
waiting sets of all workers are empty, in other words if

⋃
1≤i≤nM

i ∪W i = ∅. Fi-
nally, we assume a global partitioning function δ : V → {1, . . . , n} that partitions
vertices to workers.

The distributed algorithm for computing the minimal fixed-point assignment
for a given vertex vs is presented in Algorithm 1. First, all n workers are ini-
tialized and the worker that owns the vertex vs updates its local assignment to
0 and adds the successor edges to its local waiting set. Then the workers start
processing the edges on the waiting sets and the messages in their input message
sets until they terminate either by one worker announcing that Amin(vs) = 1
at line 18 or all waiting edges and messages have been processed and then the
workers together claim that Amin(vs) = 0 at line 13.

Lemma 1 (Termination). Algorithm 1 terminates.

Proof. First observe that for each vertex v and each local assignment Ai the
value of Ai(v) is first undefined. Then when v is discovered either as a target
vertex of some hyperedge on the waiting set (line 23) or when the value of v
gets requested by another worker (line 37), the value Ai(v) changes to 0. Finally
the value of Ai(v) can be upgraded to the value 1 either by the presence of
a hyperedge where all target vertices already have the value 1 (line 17) or by
receiving a message from another worker (line 33). The point is that for every v,
each of the assignments Ai(v)← 0 and Ai(v)← 1 is executed at most once during
any execution of the algorithm. This can be easily noticed by the inspection of
the conditions on the if-commands guarding these assignments.

Next we notice that new hyperedges are added to the waiting set W i only
when an assignment of some vertex v gets upgraded from undefined to 0, or from
0 to 1. As argued above, this can happen only finitely many times, hence only
finitely many hyperedges can be added to each W i. Similarly, new messages to
the message sets can be added only at lines 19, 28 and 40. At line 19 a finite
number of messages of the form “v has value 1” is added only when a value of
Ai(v) was upgraded to 1. This can happen only finitely many times. At line 28 the
message “value of v′ needed by worker i” is added only when a value of a vertex
was upgraded from undefined to 0, hence this can happen only finitely many
times. Finally, at line 40 a message is added only when we received the message
“value of v needed by worker i” but this message was sent only finitely many
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Algorithm 1: Distributed Algorithm for Worker i, 1 ≤ i ≤ n
Input: A dependency graph G = (V,E) represented by the function

Successors, a vertex vs ∈ V and a vertex partitioning function
δ : V → {1, . . . , n} where n is the number of workers.

Output: The minimum fixed-point assignment Amin(vs) for the vertex vs.

1 Ai(v) ← undefined for all v ∈ V . implemented via hashing
2 W i ← ∅; Di ← ∅; M i ← ∅; Ri ← ∅
3 if δ(vs) = i then . initialize the computation
4 Ai(vs) ← 0; W i ← Successors(vs)
5 repeat
6 while W i 6= ∅ or M i 6= ∅ do
7 Let x ∈W i ∪M i . process message or hyperedge
8 if x ∈W i then
9 W i ← W i \ {x}; ProcessHyperedge(x)

10 else
11 M i ← M i \ {x}; ProcessMessage(x)
12 until TerminationDetection
13 output “Amin(vs) = 0”

14 Procedure ProcessHyperedge((v, T )) is
15 if Ai(v) 6= 1 then
16 if ∀v′ ∈ T : Ai(v′) = 1 then
17 Ai(v) ← 1
18 if v = vs then output “Amin(vs) = 1” ; terminate all workers
19 for all j ∈ Ri(v) do M j ← M j ∪ {“v has value 1”}
20 Ri(v) ← ∅
21 W i ← W i ∪Di(v)

22 else if ∃v′ ∈ T : Ai(v′) is undefined then
23 Ai(v′) ← 0

24 Di(v′) ← Di(v′) ∪ {(v, T )}
25 if δ(v′) = i then . is value of v′ my responsibility?
26 W i ← W i ∪ Successors(v′)
27 else . send request for value of v′

28 Mδ(v′) ← Mδ(v′) ∪ {“value of v′ needed by worker i”}
29 else if ∃v′ ∈ T : Ai(v′) = 0 then
30 Di(v′) ← Di(v′) ∪ {(v, T )}

31 Procedure ProcessMessage(m) is
32 if m = “v has value 1” and Ai(v) 6= 1 then
33 Ai(v) ← 1

34 W i ← W i ∪Di(v)

35 else if m = “value of v needed by worker j” then
36 if Ai(v) is undefined then
37 Ai(v) ← 0

38 W i ← W i ∪ Successors(v)
39 if Ai(v) = 1 then
40 M j ← M j ∪ {“v has value 1”} . we already know it is 1
41 else
42 Ri(v) ← Ri(v) ∪ {j} . remember that j needs value of v
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times. All together, only finitely many elements can be added to the waiting
and message sets and as the main while-loop repeatedly removes elements from
those sets, eventually they must become empty and the algorithm terminates at
line 13 (unless it terminated earlier at line 18). ut

We can now observe that if a vertex is assigned the value 1 for any worker,
then the value of the vertex in the minimal fixed-point assignment is also 1.

Lemma 2 (Soundness). At any moment of the execution of Algorithm 1 and
for all i, 1 ≤ i ≤ n, and all v ∈ V it holds that

a) if Ai(v) = 1 then Amin(v) = 1, and
b) if “v has value 1” ∈M i then Amin(v) = 1.

Proof. The invariant holds initially as Ai(v) is undefined for all i and all v and
all input message sets are empty.

Let us assume that both condition a) and b) hold and that we assign the
value 1 to Ai(v) for some worker i and a vertex v. This can only happen at
lines 17 and 33. In the first assignment at line 17 we know that there is a
hyperedge (v, T ) such that all vertices v′ ∈ T satisfy that Ai(v′) = 1. However,
this by our invariant part a) implies that Amin(v′) = 1 and then necessarily also
Amin(v) = 1 by the definition of fixed-point assignment. Hence the invariant for
the case a) is preserved. Similarly, if Ai(v) gets the value 1 at line 33, this can
only happen if “v has value 1” ∈ M i and by the invariant part b) this implies
that Amin(v) = 1 and hence the invariant for the condition a) is established .

Similarly, let us assume that conditions a) and b) hold and that a message
“v has value 1” gets inserted into M j by some worker i. This can only happen
at lines 19 and 40. In both situations it is guaranteed that Ai(v) = 1 and hence
by the invariant part a) we know that Amin(v) = 1, implying that adding these
messages to M j is safe. ut

The next lemma establishes an important invariant of the algorithm.

Lemma 3. For any vertex v ∈ V , whenever during the execution of Algorithm 1
the worker δ(v) is at line 6 then the following invariant holds: either

a) Aδ(v)(v) = 1, or
b) Aδ(v)(v) is undefined, or
c) Aδ(v)(v) = 0 and for all (v, T ) ∈ E either

i) (v, T ) ∈W δ(v), or
ii) there is v′ ∈ T such that Aδ(v)(v′) = 0, and (v, T ) ∈ Dδ(v)(v′).

Proof. Initially, the invariant is satisfied as Aδ(v)(v) is undefined and the invari-
ant, more specifically the subcase i), clearly holds also when v = vs and the
worker δ(vs) performed the assignments at line 4.

Assume now that the invariant holds. Clearly, if it is by case a) where
Aδ(v)(v) = 1 then the value of v will remain 1 until the end of the execution.

If the invariant holds by case b) then it is possible that the value of Aδ(v)(v)
changes from undefined to 0. This can happen either at lines 23 or 37. If the
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assignment took place at line 23 (note that here v = v′) then clearly line 26 will
be executed too and all successor edges of v will be inserted into the waiting set
and hence the invariant subcase i) will hold once the execution of the procedure
is finished. Similarly, if the assignment took place at line 37 then all successors
of v are at the next line 38 immediately added to the waiting set, hence again
satisfying the invariant subcase i).

Consider now the case c). The invariant can be challenged by either removing
the hyperedge (v, T ) from W δ(v) hence invalidating the subcase i) or by upgrad-
ing the value of the vertex v′ in case ii) such that Aδ(v)(v′) = 1. In the first case
where the subcase i) gets invalidated we can notice that this can happen only
at line 9 after which the removed hyperedge (v, T ) is processed. There are two
possible scenarios now. Either all vertices from T have the value 1 and then the
value of Aδ(v)(v) also gets upgraded to 1 at line 17 hence satisfying the invariant
a), or there is a vertex v′ ∈ T such that Aδ(v)(v′) = 0 and then the hyperedge
(v, T ) is added at line 30 to the dependency set Dδ(v)(v′) satisfying the subcase
(ii) of the invariant. In the second subcase, we assume that the vertex v′ satis-
fying the subcase ii) gets upgraded to the value 1. This can happen at line 17
or line 33. In both cases the dependency set Dδ(v)(v′) (that by our invariant
assumption contains the hyperedge (v, T )) is added to the waiting set (lines 21
and 34) implying that the invariant subpart i) holds. ut

The following lemmas shows that after the termination, the value 0 for a
vertex v in a local assignment of some worker implies the same value also in the
assignment of the worker that owns the vertex v. This is an important fact for
showing completeness of our algorithm.

Lemma 4. Once all workers in Algorithm 1 terminate at line 13 then for all
vertices v ∈ V and all workers i holds that if Ai(v) = 0 then Aδ(v)(v) = 0.

Proof. Observe that the assignment of 0 to Ai(v) where i 6= δ(v) can happen
only at line 23 (the assignment at line 37 is performed only if i = δ(v) as the
message “value of v is needed by worker i” is sent only to the owner of the vertex
v). After the assignment at line 23 done by worker i, the message requesting the
value of the vertex is sent to its owner at line 28. Clearly, before the workers
terminate, this message must be read by the owner and the value of the vertex is
either set to 0 at line 37, or if the value is already known to be 1 the worker i is
informed about this via the message “v has value 1” at line 40 and this message
will be necessarily read by the worker i before the termination and the value
Ai(v) will be updated to 1. Otherwise we remember the worker’s id requesting
the assignment value at line 42. Should the owner upgrade the value of v to 1 at
some moment, all workers that requested its value will be informed about this
by a message sent at line 19 and before the termination these workers must read
these messages and update the local values for v to 1. It is hence impossible for
the algorithm to terminate while the owner of v set its value to 1 and some other
worker still has only the value 0 for the vertex v. ut

Lemma 5 (Completeness). If all workers in Algorithm 1 terminate at line 13
then for all vertices v ∈ V the fact Aδ(v)(v) = 0 implies that Amin(v) = 0.
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Proof. Note that after the termination we have W i = M i = ∅ for all i. Assume
now that Aδ(v)(v) = 0. Then by Lemma 3 and the fact that W δ(v) = ∅ we can
conclude that for all (v, T ) ∈ E there exists v′ ∈ T such that Aδ(v)(v′) = 0. By
Lemma 4 this means that also Aδ(v

′)(v′) = 0. Let us now define an assignment
A such that A(v) = Aδ(v)(v). By the arguments above, A is a fixed-point assign-
ment. As Amin is the minimum fixed-point assignment, we have Amin v A and
because A(v) = 0 we can conclude that Amin(v) = 0. ut

Theorem 1 (Correctness). Algorithm 1 terminates and outputs either

– “Amin(vs) = 1” implying that Amin(vs) = 1, or
– “Amin(vs) = 0” implying that Amin(vs) = 0.

Proof. Termination is proved in Lemma 1. The algorithm can terminate either
at line 18 provided that Ai(vs) = 1 but then by Lemma 2 clearly Amin(vs) = 1.
Otherwise the algorithm terminates when all workers reach line 13. This can
only happen when Aδ(vs)(vs) = 0 and by Lemma 5 we get Amin(vs) = 0. ut

Note that the algorithm is proved correct without imposing any specific order
by which messages and hyperedges are selected from the setsW i andM i or what
target vertices are selected in the expressions like ∃v′ ∈ T . In the next section
we discuss some of the choices we have made in our implementation.

4 Implementation and Evaluation

The distributed algorithm described in the previous section is implemented as
an MPI-program in C++, enabling the workers to cooperate not only on a single
machine but also across multiple machines. The MPI-program requires a suc-
cessor generator to explore the dependency graph, a partitioning function and a
(de)serialisation function for the vertices (we use LZ4 compression on the gener-
ated hyperedges before they leave the successor generator). For our experiments,
these functions were implemented for the case of weak bisimulation/simulation
on CCS processes but they can be easily replaced with other custom implemen-
tations to support other equivalence and model checking problems, without the
need of modifying the distributed engine itself.

In our implementation we use hash tables to store the assignments (Ai) and
the dependent edges (Di). The algorithm does not constrain specific structures
on W i or M i. For the waiting list (W i) two deques are used, one for the forward
propagation (outgoing hyperedges of newly discovered vertexes) and one for the
backwards propagation (hyperedges that were inserted due to dependencies).
Then the graph can be explored depth-first, or breadth-first, or a probabilistic
combination of those, independently for both the forward and backwards prop-
agation. Our experiments showed that it is preferable to prioritize processing
of messages rather than hyperedges to free up buffers used by the senders. The
distributed termination detection is determined using [20].

The implementation is open-source and available at http://code.launchpad.
net/pardg/ in the branch dfpdg-paper that includes also all experimental data.
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The distributed engine is currently being integrated within the CAAL [13] user
interface.

4.1 Evaluation

We evaluate the performance of our implementation on the traditional leader
election protocol [21] where we scale the number of processes and on the alter-
nating bit protocol (ABP) [22] where we scale the size of communication buffers.
We ask the question whether the specification and implementation (both de-
scribed as CCS processes) are weakly bisimilar. For both cases we consider a
variant where the weak bisimulation holds and where it does not hold (by inject-
ing an error). Finally, we also ask about the schedulability of 180 different task
graphs from the well known benchmark database [23] on two processors within a
given deadline. Whenever applicable, the performance is compared with the tool
Concurrency WorkBench (CWB) [4] version 7.1 using 1 core (there is no paral-
lel/distributed version of CWB). CWB implements the best performing global
algorithms for bisimulation checking on CCS processes.

All experiments are performed on a Linux cluster, composed of compute
nodes with 1 TB of DDR3 1600mhz memory, four AMD Opteron 6376 pro-
cessors (in total 64 cores@2,3Ghz with speedstep disabled) and interconnected
using Intel True Scale InfiniBand (40 Gb/s) for low latency communication. All
nodes run an identical image of Ubuntu 14.04 and MPICH 3.2 was used for
MPI communication. We use the depth first search order for the forward search
strategy and the breadth first search order for the backwards search strategy.

The results for the leader election and ABP are presented in Tables 1 and 2,
respectively. For each entry in the tables, four runs were performed and the
mean run time and the relative sample standard deviation are reported. We also
report on how many microseconds were used (in parallel) per explored vertex
of the dependency graph. This measure gives an idea of the speedup achieved
when more cores are available. We note that for small instances this time can
be very high due to the initialization of the distributed algorithm and memory
allocations for dynamic data structures.

We observe that in the positive cases where the entire dependency graph
must be explored, we achieve (with 256 cores) speedups 32 and 52 for leader
election with 9 and 10 processes, respectively. For ABP with buffer sizes 3 and
4 the speedups are 102 and 98, respectively. However we do see a relative high
standard deviation for 8-32 cores if the run time is short. This is because the
scheduler is not configured to ensure locality among NUMA nodes. Compared
to the performance of CWB, we observe that on the smallest instances we need
up to 64 cores in leader election and 16 cores in ABP to match the run time of
CWB. However, on the next instance the run time of CWB is matched already
by 8 and 2 cores, respectively. This demonstrates that the performance of our
distributed algorithm considerably improves with the increasing problem size.

In the negative cases, it is often enough to explore only a smaller portion
of the dependency graph in order to provide a conclusive answer and here the
on-the-fly nature of our distributed algorithm shows a real advantage compared
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Leader election where implementation and specification are weakly bisimilar
9 processes 10 processes 11 processes 12 processes

cores time RSD µs/tv time RSD µs/tv time RSD µs/tv time RSD µs/tv
CWB 8.21 0.2 N/A 328 0.5 N/A - - N/A - - N/A

1 187 0.6 6399 1957 1.0 17921 - - - - - -
2 102 0.7 482 1020 0.6 9338 - - - - - -
4 55.7 1.0 907 553 1.1 5065 - - - - - -
8 38.6 31.0 322 304 6.3 2783 2885.7 1.1 7013 - - -

16 28.5 17.6 975 208 5.9 1903 2098.6 1.1 5100 - - -
32 16.8 14.3 574 120 6.9 1099 1172.6 0.5 2850 - - -
64 9.7 3.0 332 81 3.5 738 723.9 1.7 1759 - - -
128 7.0 1.7 241 53 6.3 489 407.4 2.9 990 3464 1.3 2221
256 5.8 1.9 200 38 2.8 345 276.8 1.4 673 2115 1.0 1356
Leader election where implementation and specification are not weakly bisimilar

8 processes 9 processes 10 processes 11 processes
CWB 4.1 0.4 N/A 33.7 1.3 N/A 3765.0 0.9 N/A - - N/A

1 1.5 5.5 349.8 13.1 7.9 521.6 122.3 7.0 736.0 1110 0.1 920
2 1.1 12.7 258.2 5.0 10.0 908.6 7.8 39.8 178011 236 58.8 959
4 2.1 79.1 157.1 8.5 24.8 74.5 303.4 47.7 97.4 2148 * 82
8 4.5 46.0 25.9 37.6 151.9 37.0 516.6 164.1 52.7 2764 8.2 104

16 3.6 97.1 21.1 31.8 103.2 55.1 83.3 31.7 69.7 1078 7.5 342
32 1.7 30.9 4.7 10.7 67.7 19.0 49.4 12.7 28.5 1072 15.4 107
64 0.9 2.2 3.6 5.2 5.8 7.9 75.0 5.0 9.9 1231 26.1 19
128 0.8 13.0 3.5 6.4 10.3 2.7 28.5 13.0 8.3 812 32.7 7
256 1.2 13.4 9.4 5.6 6.7 1.5 22.6 6.9 1.5 243 23.8 6

Table 1: Time is reported in seconds, RSD is the relative sample standard devia-
tion in percentage and µs/tv is the time spend per vertex in micro seconds. The
star in RSD column means that only one run finished within the given timeout.

to the global algorithms implemented in CWB. For on-the-fly exploration the
search order is very important and we can note that increasing the number of
cores does not necessarily imply that we can compute the fixed-point value for
the root faster. Even though the algorithm scales still very well and with more
cores explores a substantially larger part of the dependency graph, it may (by
the combined search strategy of the workers) explore large parts of the graph
that are not needed for finding the answer. For example in leader election for 10
processes, two cores produced a very successful search strategy that needed only
7.8 seconds to find the answer, however, increasing the number of cores led the
search in a wrong direction.

Finally, results for checking the simulation preorder on the task graph bench-
mark can be seen in Table 3. As this is a large number of experiments requiring
nontrivial time to run, we tested the scaling only up to 64 cores. We queried
whether all the tasks in the task graph (or rather their initial prefixes) can be
completed within 25 time units. Out of the 180 task graphs, 61 of them are solv-
able in one hour (and 34 of them are schedulable while 27 are not schedulable).
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ABP where implementation and specification are weakly bisimilar
buffer size 3 buffer size 4 buffer size 5

cores time RSD µs/tv time RSD µs/tv time RSD µs/tv
CWB 9.7 0.6 N/A 1610.3 1.3 N/A - - N/A

1 81.3 0.5 113.6 2409.5 0.3 161.4 - - -
2 42.0 0.7 58.7 1268.5 3.8 85.0 - - -
4 22.4 2.1 31.3 650.3 1.2 43.6 - - -
8 13.8 11.6 19.3 332.0 1.9 22.2 - - -
16 10.2 13.6 14.3 239.1 6.2 16.0 - - -
32 5.9 14.4 8.2 127.0 3.9 8.5 3314.7 1.0 10.8
64 3.4 1.2 4.7 78.8 2.5 5.3 1970.5 0.4 6.4

128 2.1 3.7 3.0 42.4 0.8 2.8 1020.3 1.2 3.3
256 1.8 23.1 2.5 24.7 2.7 1.7 551.2 0.6 1.8

ABP where implementation and specification are not weakly bisimilar
buffer size 4 buffer size 5 buffer size 6

CWB 8.3 0.9 N/A 170.2 0.5 N/A - - N/A
1 5.0 0.4 15365.9 3.4 0.3 109113 4.1 0.4 584643
2 15.0 1.2 56.9 1.3 14.8 179286 4.1 2.8 590714
4 7.8 4.4 37.8 168.3 0.5 95.9 3125.1 0.8 202.2
8 6.4 25.6 65.0 98.1 17.0 297.3 1602.2 1.0 669.4
16 4.4 20.0 45.5 66.1 13.2 108.7 1128.2 1.1 15391.5
32 2.2 3.5 694.9 35.8 1.6 1792.8 649.6 9.9 7481.1
64 1.3 7.3 367.4 21.8 1.5 1006.6 370.9 0.4 3869.9

128 0.8 3.7 289.2 14.4 1.4 755.7 197.5 1.2 2482.5
256 0.5 3.9 127.6 7.9 2.1 436.1 107.7 1.1 1305.1

Table 2: Time is reported in seconds, RSD is the relative sample standard devi-
ation in percentage and µs/tv is the time spend per vertex in micro seconds.

As CWB does not support simulation preorder, the weaker trace inclusion prop-
erty is used but CWB cannot solve any of the task graphs within one hour. We
achieve an average 25 times speedup using 64 cores, both for the positive and
negative cases, showing a very satisfactory performance on this large collection
of experiments.

5 Conclusion

We presented a distributed algorithm for computing fixed points on dependency
graphs and showed on weak bisimulation/simulation checking between CCS pro-
cesses that, even though the problem is in general P-hard, we can in many cases
obtain reasonable speed-ups as we increase the number of cores. Our algorithm
works on-the-fly and hence for the cases where only a small portion of the depen-
dency graphs needs to be explored to provide the answer, we perform significantly
better than the global algorithms implemented in the CWB tool. Compared to
CWB we also scale better with the increasing instance sizes, even for the cases

13



Weak Simulation Preorder on Task Graphs
Total Positive Negative

cores solved AAT solved AAT solved AAT
1 35 19660 16 7818 19 11841
2 39 10278 18 4085 21 6192
4 43 5301 21 2095 22 3205
8 49 2996 26 1201 23 1794
16 51 2240 28 858 23 1381
32 57 1271 33 493 24 777
64 61 798 34 310 27 487

Table 3: Number of solved task graphs within 1 hour for all, positive and negative
instances. The accumulated average time (AAT) is projected on 9 task graphs
that 1 core is able to solve between 20 minutes and 1 hour.

where the whole dependency graph must be explored. The advantage of our
approach based on dependency graphs is that we provide a general distributed
algorithm and its efficient implementation that can be directly applied also to
other problems like e.g. model checking—most importantly without the need
of designing and coding specific single-purpose distributed algorithms for the
different applications. In our future work we plan to look into finding better
parallel search strategies that will allow for early termination in the cases where
the fixed-point value of the root is 1 and also terminating the parallel search of
the graph once we know that the exploration is not needed any more.
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A Leader election (3 nodes)

Listing 1.1 shows the leader election with 3 nodes. As shown, Ring ≈ Spec, but
if P2_3 is replaced by P2_3_bad then Ring 6≈ Spec. When P2 knows that there
exists P3 with higher rank, the next time it receives a message with that rank,
it ‘steals’ the election.

**** Ring-based Leader Election Protocol

* This example has processes P1 to P3, each process have several states

* denoted by process name underscore largest rank received. * E.g. P1_2

* is P1 in a state where it has received a * message with rank 2.

* Messages are on the form ’mreceiver rrank’

P1 = ’m3r1.P1 + m1r1.leader.0 + m1r2.P1_2 + m1r3.P1_3;

P1_2 = ’m3r2.P1_2 + m1r1.leader.0 + m1r2.P1_2 + m1r3.P1_3;

P1_3 = ’m3r3.P1_3 + m1r1.leader.0 + m1r2.P1_3 + m1r3.P1_3;

P2 = ’m1r2.P2 + m2r1.P2 + m2r2.leader.0 + m2r3.P2_3;

P2_3 = ’m1r3.P2_3 + m2r2.leader.0 + m2r1.P2_3 + m2r3.P2_3;

P2_3_bad = ’m1r3.P2_3 + m2r2.leader.0 + m2r1.P2_3 + m2r3.leader.0;

P3 = ’m2r3.P3 + m3r1.P3 + m3r2.P3 + m3r3.leader.0;

Ring = (P1 | P2 | P3)

\ {m1r1, m1r2, m1r3, m2r1, m2r2, m2r3, m3r1, m3r2, m3r3};

Spec = leader.0;

Listing 1.1: Leader election with 3 nodes

B ABP (buffer size 3)

Listing 1.2 shows the alternating bit protocol with lossy medium. The medium
has a buffer with 3 cells, and the difference between Buffer3L and Buffer3LBad
is that one of the buffer cells in Buffer3LBad flips the bit.

*** Sender

agent Send_0 = accept.Send_out_0;

agent Send_1 = accept.Send_out_1;

agent Send_out_0 = ’send_0.Send_wait_0;

agent Send_out_1 = ’send_1.Send_wait_1;

agent Send_wait_0 = Send_out_0 + dack_0.Send_1 + dack_1.Send_wait_0;

agent Send_wait_1 = Send_out_1 + dack_1.Send_0 + dack_0.Send_wait_1;

*** Receiver

agent Receive_0 = dsend_0.Receive_ack_0 + dsend_1.’ack_1.Receive_0;

agent Receive_1 = dsend_1.Receive_ack_1 + dsend_0.’ack_0.Receive_1;

agent Receive_ack_0 = ’deliver.’ack_0.Receive_1;

agent Receive_ack_1 = ’deliver.’ack_1.Receive_0;
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*** Lossy channel

agent Buffer1L = in_0.(’out_0.Buffer1L + tau.Buffer1L) +

in_1.(’out_1.Buffer1L + tau.Buffer1L);

agent Buffer2L = ((Buffer1L [shift_0/out_0, shift_1/out_1]) |

(Buffer1L [shift_0/in_0, shift_1/in_1])) \ {shift_0, shift_1};

agent Buffer3L = ((Buffer1L [shift_0/out_0, shift_1/out_1]) |

(Buffer2L [shift_0/in_0, shift_1/in_1])) \ {shift_0, shift_1};

agent Buffer2LBad = ((Buffer1L [shift_1/out_0, shift_0/out_1]) |

(Buffer1L [shift_0/in_0, shift_1/in_1])) \ {shift_0, shift_1};

agent Buffer3LBad = ((Buffer1L [shift_0/out_0, shift_1/out_1]) |

(Buffer2LBad [shift_0/in_0, shift_1/in_1])) \ {shift_0, shift_1};

set Internals = { send_0, send_1, ack_0, ack_1,

dsend_0, dsend_1, dack_0, dack_1 };

agent ABPl_3_good = (Send_0 | Receive_0 |

(Buffer3L [send_0/in_0, dsend_0/out_0, send_1/in_1, dsend_1/out_1]) |

(Buffer3L [ack_0/in_0, dack_0/out_0, ack_1/in_1, dack_1/out_1]))

\ Internals;

agent ABPl_3_bad = (Send_0 | Receive_0 |

(Buffer3LBad [send_0/in_0, dsend_0/out_0, send_1/in_1, dsend_1/out_1]) |

(Buffer3L [ack_0/in_0, dack_0/out_0, ack_1/in_1, dack_1/out_1]))

\ Internals;

agent SPEC = accept.’deliver.SPEC;

Listing 1.2: Alternating bit protocol with buffer size 3

C Task graph (4 tasks, 12 ticks)

Listing 1.3 shows a task graph with 4 tasks. The specification asks, using weak
simulation, is it possible to complete all task in 12 ticks (t).

agent T0 = T0D;

agent T0D = done0.T0D + ’t0d.T0D;

agent T1 = t0d.(e1.e1.e1.e1.e1.e1.e1.T1D + e2.e2.e2.e2.e2.e2.e2.T1D);

agent T1D = done1.T1D + ’t1d.T1D;

agent T2 = t0d.(e1.e1.e1.e1.e1.T2D + e2.e2.e2.e2.e2.T2D);

agent T2D = done2.T2D + ’t2d.T2D;

agent T3 = t0d.(e1.e1.e1.e1.e1.e1.e1.T3D + e2.e2.e2.e2.e2.e2.e2.T3D);

agent T3D = done3.T3D + ’t3d.T3D;

agent T4 = t0d.(e1.e1.e1.e1.e1.e1.T4D + e2.e2.e2.e2.e2.e2.T4D);

agent T4D = done4.T4D + ’t4d.T4D;
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* Tasks

agent Tasks = (T0 | T1 | T2 | T3 | T4) \ {t0d, t1d, t2d, t3d, t4d};

* Processors

agent Processors = (P1 | P2) \ {tick};

agent P1 = tick.t.tick.(’e1.P1 + P1);

agent P2 = ’tick.’tick.(’e2.P2 + P2);

* System definitions

agent System = (Processors | Tasks) \ {e1, e2};

agent Spec = t.t.t.t.t.t.t.t.t.t.t.t.(done0.0 + done1.0 +

done2.0 + done3.0 + done4.0);

Listing 1.3: Task graph with 4 tasks

D CAAL Screenshot

Fig. 4: Screenshot of the CAAL user interface.
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