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Abstract. Equivalence and model checking problems can be encoded
into computing fixed points on dependency graphs. Dependency graphs
represent causal dependencies among the nodes of the graph by means
of hyper-edges. We suggest to extend the model of dependency graphs
with so-called negation edges in order to increase their applicability. The
graphs (as well as the verification problems) suffer from the state space
explosion problem. To combat this issue, we design an on-the-fly al-
gorithm for efficiently computing fixed points on extended dependency
graphs. Our algorithm supplements previous approaches with the pos-
sibility to back-propagate, in certain scenarios, the domain value 0, in
addition to the standard back-propagation of the value 1. Finally, we
design a distributed version of the algorithm, implement it in an open-
source tool, and demonstrate the efficiency of our general approach on
the benchmark of Petri net models and CTL queries from the Model
Checking Contest 2016.

1 Introduction

Model checking [9], a widely used verification technique for exhaustive state
space search, may be both time and memory consuming as a result of the state
space explosion problem. As a consequence, interesting real-life models can often
be too large to be verified. Numerous approaches have been proposed to address
this problem, including symbolic model checking and various abstraction tech-
niques [7]. An alternative approach is to distribute the computation across mul-
tiple cores/machines, thus expanding the amount of available resources. Tools
such as LTSmin [23] and DIVINE [1] have recently been exploring this possibility,
without the need of being committed to a fixed model description language.

It has also been observed that model checking is closely related to the prob-
lem of evaluating fixed points [30, 20, 26, 6], as these are suitable for expressing
system properties described in the logics like Computation Tree Logic (CTL) [8]
or the modal µ-calculus [29]. This has been formally captured by the notion
of dependency graphs of Liu and Smolka [30]. A dependency graph, consisting
of a finite set of nodes and hyper-edges with multiple target nodes, is an ab-
stract framework for efficient minimum fixed-point computation over the node



assignments that assign to each node the value 0 or 1. It has a variety of usages,
including model checking [20, 26, 6] and equivalence checking [10]. Apart from
formal verification, dependency graphs are also used to solve games based e.g.
on timed game automata [5] or to encode Boolean equation systems [25].

Liu and Smolka proved in [30] that dependency graphs can be used to com-
pute fixed points of Boolean graphs and to solve in linear time the P-complete
problem HORNSAT [15]. They offered both a global and local algorithm for
computing the minimum fixed-point value. The global algorithm computes the
minimum fixed-point value for all nodes in the graph, though, we are often only
interested in the values for some specific nodes. The advantage of the local al-
gorithm is that it needs to compute the values only for a subset of the nodes
in order to conclude about the assignment value for a given node of the graph.
In practise, the local algorithm is superior to the global one [20] and to further
boost its performance, we recently suggested a distributed implementation of the
local algorithm with preliminary experimental results [10] conducted for weak
bisimulation and simulation checking of CCS processes.

Our contributions. Neither the original paper by Liu and Smolka [30] nor the
recent distributed implementation [10] handle the problem of negation in depen-
dency graphs as this can break the monotonicity in the iterative evaluation of the
fixed points. In our work, we extend dependency graphs with so-called negation
edges, define a sufficient condition for the existence of unique fixed points and
design an efficient algorithm for their computation, hence allowing us to encode
richer properties rather than just plain equivalence checking or negation-free
model checking. As we aim for a competitive implementation and applicability
in various verification tools, it is necessary to offer the user the binary answer
(whether a property holds or not or whether two systems are equivalent or not)
together with the evidence why this is the case. This can be conveniently done by
the use of two-player games between Attacker and Defender. In our implemen-
tation, it is possible for the user to play the role of Defender while the Attacker
(played by the tool) can convince the user why a property does not hold. We
formally define games played on the extended dependency graphs and prove a
correspondence between the winner of the game and the fixed-point value of a
node in a dependency graph.

In order to maximize the computation performance, we introduce a novel
concept of certain zero value that can be back-propagated along hyper-edges
and negation edges in order to ensure early termination of the fixed-point al-
gorithm. This technique can often result in considerable improvements in the
verification time and has not been, to the best of our knowledge, exploited in
earlier work. To further enhance the performance, we present a distributed algo-
rithm for a fixed-point computation and prove its correctness. Last but not least,
we implement the distributed algorithm in an extensible open source framework
and we demonstrate the applicability of the framework on CTL model check-
ing of Petri nets. In order to do so, we integrate the framework into the tool
TAPAAL [11, 21] and run a series of experiments on the Petri net models and
queries from the Model Checking Contest (MCC) 2016 [27]. An early single-core
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prototype of the tool implementing the negation edges and certain zero back-
propagation also participated in the 2016 competition and was awarded a silver
medal in the category of CTL cardinality verification with 23010 points, while
the tool LoLa [32] (using a single core in the CTL category) took the gold medal
with 27617 points. As documented by the experiments in this paper, our 4-core
distributed algorithm now outperforms the optimized sequential algorithm and
hence it will challenge the first place in the next year competition (also given
that Lola employs stubborn set reduction techniques and query rewriting that
were not yet used in our current implementation).

Related Work. Related algorithms for explicit distributed CTL model checking
include the assumption based method [4] and a map-reduce based method [2].
Opposed to our algorithm, which computes a local result, these algorithms often
focus on computing the global result. The local and global algorithms by Liu
and Smolka [30] were also extended to weighted Kripke structures for weighted
CTL model checking via symbolic dependency graphs [20], however, without any
parallel or distributed implementation.

LTSmin [23] is a language independent model checker which provides a
large amount of parallel and symbolic algorithms. To the best of our knowl-
edge, LTSmin uses a symbolic algorithm based on binary decision diagrams for
CTL model checking and even our sequential algorithm outperformed LTSmin
at MCC’16 [27] (in e.g. CTL cardinality category LTSmin scored 12452 points
compared to 23010 points achieved by our tool). Marcie [18] is another Petri net
model checking tool that performs symbolic analysis using interval decision dia-
grams whereas our approach is based on explicit analysis using extended depen-
dency graphs. Marcie was a previous winner of the CTL category at MCC’15 [28],
however, in 2016 it finished on a third place with 18358 points after our tool and
LoLa, the winner of the competition that we discussed earlier.

Other related work includes [3, 17, 22] designing parallel and/or distributed
algorithms for model-checking of the alternation-free modal µ-calculus. As in our
approach, they often employ the on-the-fly technique but our framework is more
general as it relies on dependency graphs to which the various verification prob-
lems can be reduced. The notion of support sets as an evidence for the validity of
CTL formulae has been introduced in [31] and it is close to a (relevant part of)
assignment on a dependency graph, however, the game characterization of sup-
port sets was not further developed, as stated in [31]. In our work, we provide a
natural game-theoretic characterization of an assignment on general dependency
graphs and such a characterization can be used to provide an evidence about
the fixed-point value of a node in a dependency graph.

Finally, there are several mature tools like FDR3 [14], CADP [13], SPIN [19]
and mCRL2 [16], some of them implementing distributed and on-the-fly algo-
rithms. The specification language of these is however often fixed and extensions
of such a language requires nontrivial implementation effort. Our approach relies
on reducing a variety of verification problems into extended dependency graphs
and then on employing our optimized and efficient distributed implementation,
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(a) An EDG with dist(G) = 2 and V0 = {b, c, f}, V1 = {d, e} ∪ V0, V2 = {a} ∪ V1

b c f

A0 0 0 0
F0(A0) 0 0 1
F0(F0(A0)) 0 0 1
(b) AC0

min Computation

b c d e f

A0 0 0 0 0 0
F1(A0) 0 0 1 0 1
F1(F1(A0)) 0 0 1 1 1
F1(F1(F1(A0))) 0 0 1 1 1
(c) AC1

min Computation

a b c d e f

A0 0 0 0 0 0 0
F2(A0) 0 0 0 1 1 1
F2(F2(A0)) 0 0 0 1 1 1
(d) AC2

min Computation

Fig. 1: An EDG and iterative calculation of its minimum fixed-point assignment

as e.g. demonstrated on CTL model checking of Petri nets presented in this
paper or on bisimulation checking of CCS processes [10].

2 Extended Dependency Graphs and Games

We shall now define the notion of extended dependency graphs, adding a new
feature of negation edges to the original definition by Liu and Smolka [30].

Definition 1. An Extended Dependency Graph (EDG) is a tuple G = (V,E,N)
where V is a finite set of configurations, E ⊆ V ×P(V ) is a finite set of hyper-
edges, and N ⊆ V × V is a finite set of negation edges.

For a hyper-edge e = (v, T ) ∈ E we call v the source configuration and T ⊆ V
is the set of target configurations. We write v → u if there is a (v, T ) ∈ E such
that u ∈ T and v 99K u if (v, u) ∈ N . Furthermore, we write v  u if v → u or
v 99K u. The successor function succ : V → (E ∪N) returns the set of outgoing
edges from v, i.e. succ(v) = {(v, T ) ∈ E} ∪ {(v, u) ∈ N}. An example of an
EDG is given in Figure 1(a) with the configurations named a to f , hyper-edges
denoted by solid arrows with multiple targets, and dashed negation edges.

In what follows, we consider only EDGs without cycles containing negation
edges.

Definition 2. An EDG G = (V,E,N) is negation safe if there are no v, v′ ∈ V
s.t. v 99K v′ and v′  ∗ v.
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After the restriction to negation safe EDG, we can now define the negation
distance function dist : V → N0 that returns the maximum number of negation
edges throughout all paths starting in a configuration v and is inductively defined
as dist(v) = max({dist(v′′) + 1 | v′, v′′ ∈ V and v →∗ v′ 99K v′′}) where by
convention max(∅) = 0. Note that dist(v) is always finite because every path
can visit each negation edge at most once. We then define dist(G) of an EDG G
as dist(G) = maxv∈V (dist(v)) and for an edge e ∈ E ∪N where v is its source
configuration, we write dist(e) = dist(v).

A component Ci of G, where i ∈ N0, is a subgraph induced on G by the
set of configurations Vi = {v ∈ V | dist(v) ≤ i}. We write Vi, Ei and Ni to
denote the set of configurations, hyperedges and negation edges of each respective
component. Note that by definition, C0 does not contain any negation edges.
Also observe that G = Cdist(G) and that for all k, ` ∈ N0, if k < ` then Ck is
a subgraph of C`. The EDG G in our example from Figure 1(a) contains three
nonempty components and has dist(G) = 2.

An assignment A of an EDG G = (V,E,N) is a function A : V → {0, 1}
that assigns the value 0 (interpreted as false) or the value 1 (interpreted as true)
to each configuration of G. A zero assignment A0 is such that A0(v) = 0 for all
v ∈ V . We also assume a component wise ordering v of assignments such that
A1 v A2 whenever A1(v) ≤ A2(v) for all v ∈ V . The set of all assignments of G
is denoted by AG and clearly (AG,v) is a complete lattice.

We are now ready to define the minimum fixed-points assignment of an EDG
G (assuming that a conjunction over the empty set is true, while a disjunction
over the empty set is false).

Definition 3. The minimum fixed-point assignment of an EDG G, denoted by
AGmin = A

Cdist(G)

min is defined inductively on the components C0, C1, . . . , Cdist(G)

of G. For all i, 0 ≤ i ≤ dist(G), we define ACi
min to be the minimum fixed-point

assignment of the function Fi : ACi → ACi where

Fi(A)(v) = A(v) ∨
[ ∨
(v,T )∈Ei

∧
u∈T

A(u)

]
∨
[ ∨
(v,u)∈Ni

¬ACi−1

min (u)

]
. (1)

Note that when computing the minimum fixed-point assignment AC0
min for the

base component C0, we know that N0 = ∅ and hence the third disjunct in
the function F0 always evaluates to false. In the inductive steps, the assignment
A
Ci−1

min is then well defined for the use in the function Fi. It is also easy to observe
that each function Fi is monotonic (by a simple induction on i) and hence by
Knaster-Tarski, the unique minimum fixed-point always exists for each i.

In Figure 1 we show the iterative computation of AC0
min, A

C1
min and AC2

min,
starting from the zero assignment A0. We iteratively upgrade the assignment of
a configuration v from the value 0 to 1 whenever there is a hyper-edge (v, T )
such that all target configurations u ∈ T already have the value 1 or whenever
there is a negation edge v 99K u such that the minimum fixed-point assignment
of u (computed earlier) is 0. Once the application of the function Fi stabilizes,
we have reached the minimum fixed-point assignment for the component Ci.
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Remark 1. The algorithm for computing ACi
min described above, also called the

global algorithm, relies on the fact that the complete minimum fixed-point as-
signment of smaller components Cj where j < i must be available before we can
proceed with the computation on the component Ci. As we show later on, it is
not always necessary to know the whole ACi−1

min in order to compute ACi
min(v) for

a specific configuration v and such a computation can be done in an on-the-fly
manner, using the so-called local algorithm.

2.1 Game Characterization

In order to offer a more intuitive understanding of the minimum fixed-point
computation on an extended dependency graph G, and to provide a convincing
argumentation why the minimum fixed-point value in a given configuration v is
0 or 1 (for the use in our tool), we define a two player game between the players
Defender and Attacker. The positions of the game are of the form (v, r) where
v ∈ V is a configuration and r ∈ {0, 1} is a claim about the minimum fixed-
point value in v, postulating that AGmin(v) = r. The game is played in rounds
and Defender defends the current claim while Attacker does the opposite.

Rules of the Game: In each round starting from the current position (v, r), the
players determine the new position for the next round as follows:
– If r = 1 then Defender chooses an edge e ∈ succ(v). If no such edge exists

then Defender loses, otherwise
• if e = (v, u) ∈ N then (u, 0) becomes the new current position, and
• if e = (v, T ) ∈ E then Attacker chooses the next position (u, 1) where
u ∈ T , unless T = ∅ which means that Attacker loses.

– If r = 0 then Attacker chooses an edge e ∈ succ(v). If no such edge exists
then Attacker loses, otherwise
• if e = (v, u) ∈ N then (u, 1) becomes the new current position, and
• if e = (v, T ) ∈ E then Defender chooses the next position (u, 0) where
u ∈ T , unless T = ∅ which means that Defender loses.

A play is a sequence of positions formed according the rules of the game. Any
finite play is lost either by Defender or Attacker as defined above. If a play is
infinite, we observe that the claim r can be switched only finitely many times
(since the graph is negation safe). Therefore there is only one claim r that is
repeated infinitely often in such a play. If r = 1 is the infinitely repeated claim
then Defender loses, otherwise (r = 0) Attacker loses.

The game starting from the position (v, r) is winning for Defender if she has
a universal winning strategy from (v, r). Similarly, the position is winning for
Attacker if he has a universal winning strategy from (v, r). Clearly, the game is
determined such that only one of the players has a universal winning strategy
and from the symmetry of the game rules, we can also notice that Defender is
the winner from (v, r) if and only if Attacker is the winner from (v, 1− r).

Theorem 1. Let G be a negation safe EDG, v ∈ V be a configuration and
r ∈ {0, 1} be a claim. Then AGmin(v) = r if and only if Defender is the winner
of the game starting from the position (v, r).
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Proof. By induction on the level of the node v (a node is of level i if it belongs
to the component Ci but not to any component Cj where j < i), followed by a
case analysis. ut

Let us now argue that Defender wins from the position (a, 0) in the EDG
G from Figure 1(a). First, Attacker picks either (i) the hyper-edge (a, {b, d})
or (ii) the negation edge (a, e). In case (i), Defender answers by selecting the
configuration b and the game continues from (b, 0). Now Attacker can only pick
the hyper-edge (b, {c}) and Defender is forced to select the configuration c, ending
in the position (c, 0) and from here the only continuation of the game brings us
again to the position (b, 0). As the play now repeats forever with the claim 0
appearing infinitely often, Defender wins this play. In case (ii) where Attacker
selects the negation edge, we continue from the position (e, 1). Defender is forced
to select the only available hyper-edge (e, {d, f}), on which Attacker can answer
by selecting the new position (d, 1) or (f, 1). The first choice is not good for
Attacker, as Defender will answer by taking the negation edge (d, c) and ending in
the position (c, 0) from which we already know that Defender wins. The position
(f, 1) is not good for Attacker either as Defender can now select the hyper-edge
(f, ∅) and Attacker loses as he gets stuck. Hence Defender has a universal winning
strategy from (a, 0) and by Theorem 1 we get that AGmin(a) = 0.

2.2 Encoding of CTL Model Checking of Petri Nets into EDG

We shall now give an example of how CTL model checking of Petri nets can be
encoded into computing fixed-points on EDGs. Let us first recall the Petri net
model. Let N0 denote the set of natural numbers including zero and N∞ the set
of natural numbers including infinity.

A Petri net is a 4-tuple N = (P, T, F, I) where P is a finite set of places, T is
a finite set of transitions such that P∩T = ∅ and P∪T 6= ∅, F : (P×T∪T×P )→
N0 is the flow function and I : P ×T → N∞ is the inhibitor function. A marking
on N is a function M : P → N0 assigning a number of tokens to each place.
The set of all markings on N is denoted M(N). A transition t is enabled in
a marking M if M(p) ≥ F ((p, t)) and M(p) < I(p, t) for all p ∈ P . If t is
enabled in M , it can fire and produce a marking M ′, written M

t−→ M ′, such
that M ′(p) = M(p) − F ((p, t)) + F ((t, p)) for all p ∈ P . We write M → M ′ if
there is t ∈ T such that M t−→M ′.

In CTL, properties are expressed using a combination of logical and temporal
operators over a set of basic propositions. In our case the propositions express
properties of a concrete markingM and include the proposition is_fireable(Y )
for a set of transitions Y that is true iff at least one of the transitions from Y
is enabled in the marking M , and arithmetical expressions and predicates over
the basic construct token_count(X) where X is a subset of places such that
token_count(X) returns the total number of tokens in the places from the set
X in the marking M . The CTL logic is motivated by the requirements of the
MCC’16 competition [27] and the syntax of CTL formula ϕ is
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〈M,ϕ1 ∧ ϕ2〉

〈M,ϕ1〉 〈M,ϕ2〉

〈M,¬ϕ〉

〈M,ϕ〉

〈M,EXϕ〉

〈M1, ϕ〉 〈Mn, ϕ〉. . .

〈M,Eϕ1Uϕ2〉

〈M,ϕ1〉 〈M1, Eϕ1Uϕ2〉〈M,ϕ2〉 〈Mn, Eϕ1Uϕ2〉
. . .

〈M,Aϕ1Uϕ2〉

〈M1, Aϕ1Uϕ2〉〈M,ϕ1〉〈M,ϕ2〉 〈Mn, Aϕ1Uϕ2〉
. . .

Fig. 2: Construction of EDG where we let {M1, ...,Mn} = {M ′ |M →M ′}

ϕ ::= true | false | is_fireable(Y ) | ψ1 ./ ψ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
EG ϕ | AG ϕ | EF ϕ | AF ϕ | EX ϕ | AX ϕ | Eϕ1Uϕ2 | Aϕ1Uϕ2

ψ ::= ψ1 ⊕ ψ2 | c | token_count(X)

where ./ ∈ {<,≤,=,≥, >}, X ⊆ P , Y ⊆ T , c ∈ N0 and ⊕ ∈ {+,−, ·}. We
assume the standard semantics of satisfability of a CTL formula ϕ in a marking
M , written M |= ϕ.

For a given marking M and a CTL formula ϕ, we now construct an EDG
with the configurations of the form 〈M,ϕ〉. If ϕ is a basic proposition then there
is a hyper-edge from 〈M,ϕ〉 with the empty target set iff M |= ϕ. The rules
for building EDG for a subset of the temporal operators (the other temporal
operators are the derived ones) is given in Figure 2. Observe that this reduc-
tion produces a negation safe EDG. We can then conclude with the following
correctness result.

Theorem 2 (Encoding Correctness). Let N be a Petri net, M a marking
on N and let ϕ be a CTL formula. Let G be the EDG with the root 〈M,ϕ〉
constructed as described above. Then M |= ϕ iff AGmin(〈M,ϕ〉) = 1.

Remark 2. The reader probably noticed that if the Petri net is unbounded (has
infinitely many reachable markings), we are actually producing an infinite EDG.
Indeed, CTL model checking for unbounded Petri nets is undecidable [12], so we
cannot hope for a general algorithmic solution. However, due to the employment
of our local algorithm with certain zero propagation, we are sometimes able to
obtain a conclusive answer by exploring only a finite part of the (on-the-fly)
constructed dependency graph.
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Fig. 3: Comparison of Different Algorithms for Fixed-Point Computation

3 Algorithms for Fixed-Point Computation on EDG

We shall now discuss the differences of our new distributed algorithm for fixed-
point computation of EDG compared to the previous approaches, followed by
the description of our algorithm.

Figure 3 shows the partial ordering of the assignment values used by the
algorithms. The orderings in the figure show how the configuration values are
upgraded during the execution of the algorithms. The global algorithm, described
in Section 2, only uses the assignment values 0 and 1 as shown in Figure 3(a).
Initially, the whole graph is constructed and all configurations are assigned the
value 0. Then it iterates, starting from the component C0, over all hyper-edges
and upgrades the source configuration values to 1 whenever all target configura-
tions are already assigned the value 1. This repeats until no further upgrades are
possible and then it uses the negation edges to propagate the values to the higher
components until the minimum fixed-point assignment of a given configuration
is set to 1 (in which case an early termination is possible) or until the whole
process terminates and we can claim that the minimum fixed-point assignment
of the given configuration is 0.

The key insight for the local algorithm, as suggested by Liu and Smolka [30]
for dependency graphs without negation edges, is that if we are only interested
in AGmin(v) for a given configuration v, we do not have to necessarily enumer-
ate the whole graph and compute the value for all configurations in G in order
establish that AGmin(v) = 1. The local algorithm introduces the value ⊥ for
not yet explored configurations as shown in Figure 3(b) and performs a for-
ward search in the dependency graph with backward propagation of the value
1. This significantly improves the performance of the global algorithm in case
the configuration v gets the value 1. In the case where AGmin(v) = 0, the local
algorithm must search the whole graph before terminating and announcing the
final answer.

Our improvement to the local algorithm is twofold: the handling of negation
edges in an on-the-fly manner and the introduction of a new value ?, taking over
the previous role of 0, as shown in Figure 3(c). Here ⊥means that a configuration
has not been discovered yet, ? that the final minimum fixed-point assignment has
not been determined yet, and 0 and 1mean the final values in the minimum fixed-
point assignment. Hence as soon as the given configuration gets the value 0 or 1,
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we can early terminate and announce the answer. The previous approaches did
not allow early termination for the value 0, but as Figure 3(d) shows, it can save
lots of work. Since d has no outgoing hyper-edges, it can get assigned the value
0 (called certain zero) and because the single target configuration of the hyper-
edge (b, {d}) is 0, the value 0 can back-propagate to b (we do this by removing
hyper-edges that contain at least one target configuration with the value 0 and
once a configuration has no outgoing hyper-edges, it will get assigned the certain
zero value 0). Now the hyper-edge (a, {b, c}) can also be removed and as a no
longer has any hyper-edges, we can conclude that AGmin(a) = 0 without having
to explore the potentially large subgraph rooted at c as it would be necessary in
the previous algorithms. We moreover have to deal with negation edges where
we allow early back-propagation of the certain 0 and certain 1 values, essentially
performing an on-the-fly search for the existence of Defender’s winning strategy.
In what follows, we shall present the formal details of our algorithm, including
its distributed implementation.

3.1 Distributed Algorithm for Minimum Fixed-Point Computation

We assume n workers running Algorithm 1 in parallel. Each worker has a unique
identifier i ∈ {1, ..., n} and can communicate with any other worker using order
preserving, reliable channels. If not stated otherwise, i refers to the identifier of
the local worker and j refers to an identifier of some remote worker.

Global Data Structures. Initially, each worker has access to the means of gener-
ating a given EDG G = (V,E,N) via the function succ, an initial configuration
v0 ∈ V , and a partition function δ : V → {1, . . . , n} that splits the configurations
among the workers. We say that worker i owns a configuration v if δ(v) = i.

Local Data Structures. Each worker has the following local data structures:
– W i

E ⊆ E is the waiting list of hyper-edges,
– W i

N ⊆ N is the waiting list of negation edges,
– Di : V → P(E ∪N) is the dependency set for each configuration,
– succi : V → P(E ∪ N) is the local successor relation such that initially
succi(v) = succ(v) if δ(v) = i and otherwise succi(v) = ∅,

– Ai : V → {⊥, ?, 0, 1} is the assignment function (implemented via hashing),
initially returning ⊥ for all configurations,

– Ci : V → P({1, . . . , n}) is the set of interested workers who requested the
value of a given configuration,

– M i
R ⊆ V × {1, . . . , n} is the (unordered) message queue for requests (v, j),

where j is the identifier of the worker requesting the assigned value (i.e. 0
or 1) of a configuration v belonging to the partition of worker i, and

– M i
A ⊆ V ×{0, 1} is the (unordered) message queue for answers (v, a), where a

is the assigned value of configuration v which has been previously requested
by worker i.

For syntactical convenience, we assume that we can add messages to M i
R and

M i
A directly from other workers.
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Algorithm 1 Distributed Certain Zero Algorithm for a Worker i
Require: Worker id i, an EDG G = (V,E,N) and an initial configuration v0 ∈ V .
Ensure: The minimum fixed-point assignment AGmin(v0)
1: function DistributedCertainZero(G, v0)
2: if δ(v0) = i then Explore(v0) . Algorithm 2
3: repeat
4: if W i

E ∪W i
N ∪M i

R ∪M i
A 6= ∅ then

5: task ← PickTask(W i
E ,W

i
N ,M

i
R,M

i
A)

6: if task ∈W i
E then ProcessHyperEdge(task) . Algorithm 2

7: else if task ∈W i
N then ProcessNegationEdge(task) . Algorithm 2

8: else if task ∈M i
R then ProcessRequest(task) . Algorithm 2

9: else if task ∈M i
A then ProcessAnswer(task) . Algorithm 2

10: until TerminationDetection
11: if Ai(v0) = ? ∨Ai(v0) = 0 then return 0
12: else return 1

Global waiting lists. When we need to reference the global state in the compu-
tation of the parallel algorithm, we can use the following abbreviations.
– The global waiting list of hyper-edges WE =

⋃n
i=1W

i
E .

– The global waiting list of negation edges WN =
⋃n
i=1W

i
N .

– The global request message queue MR =
⋃n
i=1M

i
R.

– The global answer message queue MA =
⋃n
i=1M

i
A.

Idle Worker. We say that a worker i is idle if it is executing the loop at line 3
through 10 in Algorithm 1, but is not currently executing any of the processing
functions on lines 6, 7, 8 or 9.

Pick Task. Algorithm 1 uses at line 5 the function PickTask(W i
E ,W

i
N ,M

i
R,M

i
A)

that nondeterministically returns:
– a hyper-edge from W i

E , or
– a message from M i

R or M i
A, or

– a negation edge (v, u) from W i
N provided that Ai(u) ∈ {0, 1,⊥}, or

– a negation edge (v, u) from W i
N if all other workers are idle and v has a

minimal distance in all waiting lists and message queues (i.e. for all (v′, x) ∈
(WE ∪WN ∪MA ∪MR) it holds that dist(v) ≤ dist(v′)).

– If none of the above is satisfied, the worker waits until either a message is
received or a negation edge becomes safe to pick. Notice that in this case,
W i
E will remain empty until a message or negation edge is processed.

Even though PickTask depends on the global state of the computation to decide
whether a negation edge is safe to pick, the rest of the conditions can be decided
based on the data that is available locally to each worker. Therefore it is not
necessary to synchronise across all workers every time a task should be picked, it
is only required if the worker wants to pick a negation edge (v, u) where Ai(u) =?.

Termination of the Algorithm. We utilize a standard TerminationDetection
function computed distributively that returns true if and only if all message
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Algorithm 2 Functions for Worker i Called from Algorithm 1
1: function ProcessHyperEdge(e = (v, T )) . e ∈ E
2: W i

E ←W i
E \ {e}

3: if ∀u ∈ T : Ai(u) = 1 then FinalAssign(v, 1) . Edge propagates 1
4: else if ∃u ∈ T where Ai(u) = 0 then DeleteEdge(e)
5: else if X ⊆ T s.t. X 6= ∅ and ∀u ∈ X : Ai(u) = ? ∨Ai(u) = ⊥ then
6: for u ∈ X do
7: Di(u)← Di(u) ∪ {e}
8: if Ai(u) = ⊥ then Explore(u)

1: function ProcessNegationEdge(e = (v, u)) . e ∈ N
2: W i

N ←W i
N \ {e}

3: if Ai(u) = ? ∨Ai(u) = 0 then FinalAssign(v, 1) . Assign negated value
4: else if Ai(u) = 1 then DeleteEdge(e)
5: else if Ai(u) =⊥ then
6: Di(u)← Di(u) ∪ {e}; W i

N ←W i
N ∪ {e}; Explore(u)

1: function ProcessRequest(m = (v, j)) . request from worker j
2: if Ai(v) = 1 ∨Ai(v) = 0 then . Value of v is already known
3: M j

A ←M j
A ∪ {(v,A

i(v))} ; M i
R ←M i

R \ {m}
4: else . Value of v is not computed yet
5: Ci(v)← Ci(v) ∪ {j} . Remember that worker j is interested in v
6: M i

R ←M i
R \ {m}

7: if Ai(v) = ⊥ then Explore(v)

1: function ProcessAnswer(m = (v, a)) . a ∈ {0, 1} and m ∈M i
A

2: M i
A ←M i

A \ {m}
3: FinalAssign(v, a) . Assign the received answer to v

1: function Explore(v) . v ∈ V
2: Ai(v)← ?
3: if δ(v) = i then . Does worker i own v?
4: if succi(v) = ∅ then FinalAssign(v, 0) . It is safe to propagate 0
5: W i

E ←W i
E ∪ (succi(v) ∩ E); W i

N ←W i
N ∪ (succi(v) ∩N)

6: else
7: M

δ(v)
R ←M

δ(v)
R ∪ {(v, i)} . If not, request the value from the owner of v

1: function DeleteEdge(e = (v, T ) or e = (v, u)) . e ∈ (E ∪N)
2: succi(v)← succi(v) \ {e}
3: if succi(v) = ∅ then FinalAssign(v, 0) . It is safe to propagate 0
4: if e ∈ E then
5: W i

E ←W i
E \ {e}

6: for all u ∈ T do Di(u)← Di(u) \ {e}
7: if e ∈ N then
8: W i

N ←W i
N \ {e}; Di(u)← Di(u) \ {e}

1: function FinalAssign(v, a) . a ∈ {0, 1} and v ∈ V
2: if v = v0 then return a and terminate all workers; . Early termination
3: Ai(v)← a
4: for all j ∈ Ci(v) do M j

A ←M j
A ∪ {(v, a)} . Notify all interested workers

5: W i
E ←W i

E ∪ {Di(v) ∩ E}; W i
N ←W i

N ∪ {Di(v) ∩N}
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queues are empty, all waiting lists are empty (i.e. WE ∪WN ∪MR ∪MA = ∅)
and all workers are idle. Notice that once the initial configuration v0 is assigned
the final value 0 or 1, the algorithm can terminate early.

We shall now focus on the correctness of the algorithm. By a simple code
analysis, we can observe the following lemma.

Lemma 1. During the execution of Algorithm 1, the value of Ai(v) for any
worker i and any configuration v will never decrease (with respect to the ordering
from Figure 3(c)).

Based on this lemma we can now argue about the termination of the algo-
rithm.

Lemma 2. Algorithm 1 terminates.

Proof. To show that the algorithm terminates, we have to argue that eventually
all waiting lists become empty and all workers go to idle (unless early termina-
tion kicks in before this). By guaranteeing this, the TerminationDetection
condition will be satisfied and the algorithm terminates.

First, let us observe that if the waiting lists of a worker are empty, the worker
will eventually become idle. That is because none of the functions called from the
repeat-until loop contain any loops or recursive calls. Also note that in such case,
the worker will stay idle until a message is received. In each iteration, an edge
is inserted into a waiting list only if the assignment value of some configuration
increases. By Lemma 1, the assignment value can never decrease, and since the
assignment value can only increase finitely many times, eventually no edges will
be inserted into the waiting lists. The same argument applies to request messages
as a request can only be sent if an assignment value of a configuration increases
from ⊥ to ?. The only exception to the considerations above are the answer
messages. An answer message can be sent either as a result of an assignment
value increase (line 4 of the FinalAssign), which only happens finitely many
times. However, it can be also sent as a direct response to a request message
(line 3 of the ProcessRequest). As we have already shown, each computation
can produce only finitely many requests and since each such request can produce
at most one answer, the number of answer messages will also be finite.

Finally, we note that as soon as all the messages and hyper-edges are pro-
cessed by all workers, at least one negation edge becomes safe to pick. Hence if
no new messages are sent or edges being inserted into the waiting lists, eventu-
ally a negation edge is picked (at most once). Therefore all waiting lists become
eventually empty and as a result all workers go idle, satisfying the Termina-
tionDetection condition. ut

The main correctness argument is contained in the following loop invariants.

Lemma 3 (Loop Invariants). For any worker i, the repeat-until loop in Al-
gorithm 1 satisfies the following invariants.

1. For all v ∈ V , if Ai(v) = 1 then AGmin(v) = 1.
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2. For all v ∈ V , if Ai(v) = 0 then AGmin(v) = 0.
3. For all v ∈ V , if Ai(v) = ? and i = δ(v) then for all e ∈ succi(v) it holds

that e ∈W i
E ∪W i

N or e ∈ Di(u) for some u ∈ V where Ai(u) = ?.
4. For all v ∈ V , if Ai(v) = ? and i 6= δ(v) then one of the following must hold:

– (v, i) ∈M δ(v)
R ,

– i ∈ Cδ(v)(v) and Aδ(v)(v) = ?, or
– (v, a) ∈M i

A and Aδ(v)(v) = a for some a ∈ {0, 1}.
5. If there is a negation edge e = (v, u) ∈ W i

N s.t. Ai(u) = ? and all workers
are idle and v is minimal in all waiting lists and message queues (i.e. for
all (v′, x) ∈ (WE ∪WN ∪MA ∪MR) it holds that dist(v) ≤ dist(v′)), then
AGmin(u) = 0.

Now we can state two technical lemmas.

Lemma 4. Upon termination of Algorithm 1 at line 11 or line 12, for every
negation edge e = (v, u) ∈ N it holds that either Aδ(v)(v) ∈ {1,⊥} or the
negation edge is deleted from succδ(v).

Lemma 5. Upon termination of Algorithm 1 at line 11 or line 12, for every
i ∈ {1, ..., n} and for every v ∈ V it holds that either Ai(v) = ⊥ or Ai(v) =
Aδ(v)(v).

We finish this section with the correctness theorem.

Theorem 3. Algorithm 1 terminates and upon termination it holds, for all i,
1 ≤ i ≤ n, that
– if Ai(v0) = 1 then AGmin(v0) = 1 and
– if Ai(v0) ∈ {?, 0} then AGmin(v0) = 0.

Proof. By Lemma 2 we know that Algorithm 1 terminates. For a fixed worker i,
by Lemma 3, it certainly holds that if Ai(v) = 1 or Ai(v) = 0 then AGmin(v) =
Ai(v). To show that if Ai(v) = ? then AGmin(v) = 0, we first construct a global
assignment B such that

B(v) =

{
0 if there is i ∈ {1, . . . , n} such that Ai(v) = ? or Ai(v) = 0

1 otherwise.
(2)

Next we show that B is a fixed-point assignment of G. For a contradiction, let
us assume B is not a fixed-point assignment. This can happen in two cases:
– There is a hyper-edge e = (v, T ) such that B(v) = 0 and B(u) = 1 for all
u ∈ T . If Ai(v) = 0 for some i, it is a direct contradiction with Lemma 3
Condition 2. Otherwise for some i it must hold that Ai(v) = ?. By Lemma 5,
we get that Ai(v) = Aδ(v)(v) = ?. Therefore according to Lemma 3 Condition
3, there exists a configuration u such that Aδ(v)(u) = ? and e is in the
dependency set of u. However, Aδ(v)(u) = ? implies that there exists u ∈ T
such that B(u) = 0.
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– There is a negation edge e = (v, u) such that B(v) = 0, and AGmin(u) = 0
and e is not deleted. If Ai(v) = 0 for some i, it is again a contradiction with
Lemma 3 Condition 2. Otherwise for some i it must hold that Ai(v) = ?.
Then by Lemma 5 we get that Ai(v) = Aδ(v)(v) = ?, which is a contradiction
with Lemma 4.

Because B is a fixed-point assignment and AGmin is the minimum fixed-point
assignment, we get AGmin v B. Therefore if Ai(v) = ? then by the definition of
B we have that B(v) = 0 and by AGmin(v) ≤ B(v) this implies that AGmin(v) = 0.

ut

As a direct consequence of Theorem 3 we get the following corollary.

Corollary 1. Algorithm 1 terminates and returns AGmin(v0).

4 Implementation and Experiments

The single-core local algorithm (local) and its extension with certain zero prop-
agation (czero), together with the distributed versions of czero with non-shared
memory and using MPI running on 4 cores (dist-4) and 32 cores (dist-32)
have been implemented in an open-source framework written in C++. The im-
plementation is available at http://code.launchpad.net/~tapaal-dist-ctl/
verifypn/paper-dist and contains also all experimental data. The general tool
architecture was instantiated to CTL model checking of Petri nets by providing
C++ code for the initial configuration of the EDG and the successor generator
(that for a given configuration outputs all outgoing hyper-edges and negation
edges). Optionally, one can also implement a custom-made search strategy or
choose it from the predefined ones. In our experiments, we use DFS strategy for
both the forward and backward propagation (note that even if each worker in
the distributed version runs DFS strategy, depending on the actual order of the
request arrivals, this may result in pseudo DFS strategies). The framework also
includes a console implementation of the game—the integration into the GUI of
the tool TAPAAL is currently under development.

To compare the algorithms, we ran experiments on CTL queries for the Petri
nets from MCC’16 [27] on machines with four AMD Opteron 6376 processors,
each processor having 16 cores. A 15 GB memory limit per core was enforced
for all verification runs. We considered all 322 known Petri net models from the
competition, each of them coming with 16 different CTL cardinality queries. As
many of these models are either trivial to solve or none of the algorithms are
able to provide any answer, we first selected an interesting subset of the models
where the slowest algorithm used at least 30 seconds on one of the first three
queries and at the same time the fastest algorithm solved all three queries within
30 minutes. This left us with 49 models on which we run all 16 CTL queries (in
total 784 executions) with the time limit of 1 hour.

Table 1 shows how many queries were answered by the algorithms and doc-
uments that our certain zero algorithm solved 90 more queries than the one by
Liu and Smolka. Running the distributed algorithm on 4 cores further solved
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Algorithm Answered Queries Unique Answers
Liu and Smolka Local, 1 core (local) 475 0
Certain Zero Local, 1 core (czero) 565 3

Distributed Certain Zero Local, 4 cores (dist-4) 619 4
Distributed Certain Zero Local, 32 cores (dist-32) 670 52

Table 1: Answered queries within 1 hour (out of 784 executions)

Query Number
Alg. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

local 160 447 – 158 234 250 199 1 228 343 229 241 233 1 223 1
czero 157 453 226 154 229 1 1 1 221 100 227 238 232 1 226 1
dist-4 82 224 129 86 158 1 1 1 85 1 116 154 133 1 137 1
dist-32 21 67 1 20 45 1 1 1 11 1 33 36 46 1 33 1

B

local 465 444 453 16 1 1 401 1 1030 1 877 490 3 458 459 1
czero 452 468 464 16 1 1 1 1 522 1 1 477 3 1 2 1
dist-4 119 118 125 6 1 1 1 1 180 1 1 144 3 1 1 1
dist-32 23 22 23 1 1 1 1 1 1270 1 1 28 1 1 1 1

C

local 343 1 183 85 1 1 4 180 – 1 25 1 165 1 173 172
czero 175 1 172 70 1 1 3 1 333 1 23 1 178 1 1 1
dist-4 60 1 63 42 3 1 2 1 87 1 12 1 58 1 1 1
dist-32 20 2 15 18 2 3 1 1 21 1 11 1 13 1 1 1

D

local 263 446 243 236 219 23 204 356 235 164 1 231 279 1 1 13
czero 1 187 6 228 215 21 188 1 220 1 1 229 257 1 1 11
dist-4 1 130 6 130 1 12 103 1 122 1 1 124 189 1 1 7
dist-32 1 45 2 35 1 3 27 1 38 1 1 41 61 1 1 2

E

local 95 137 140 136 139 135 130 139 139 144 148 1 1 138 132 134
czero 96 143 134 134 137 143 129 134 139 146 141 1 1 137 138 1
dist-4 33 53 58 53 147 52 50 57 59 65 79 – 1 52 61 1
dist-32 30 14 15 14 1225 15 20 16 17 18 19 – 1 16 16 9

Table 2: Verification time in seconds for selected models A: BridgeAndVehicles-
PT-V20P20N10, B: Peterson-PT-3, C: ParamProductionCell-PT-4, D:
BridgeAndVehicles-PT-V20P10N10, and E: SharedMemory-PT-000010.

54 more queries and the utilisation of 32 cores allowed us to solve additional
51 queries. The number of unique answers—queries that were solved by a given
algorithm but not by any of the remaining three algorithms—clearly shows that
adding more workers considerably improves the performance of the distributed
algorithm. This is despite the fact that we are solving a P-hard problem [15] and
such problems are in general believed not to have efficient parallel algorithms.

In Table 2 we zoom in on a few selected models and show the running time
(rounded up to the nearest higher second) for all 16 queries of each model. A dash
means running out of resources (time or memory). We can observe a significant
positive effect of the certain zero propagation on several queries like A.6, B.7,
C.8, D.8 and E.16 and in general a satisfactory performance of this technique.
The clear trend with multi-core algorithms is that there is usually a considerable
speedup when moving from 1 to 4 cores and a generally nice scaling when we
employ 32 cores. Here we can often notice reasonable speedups compared to 1
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core certain zero algorithm (A.9, B.1, B.2, B.3, B.12, C.9), sometimes even su-
perlinear speedups like in D.5. On the other hand, occasionally using more cores
can actually slowdown the computation like in B.9, E.5 or even E.12 where the
distributed algorithms did not find the answer at all. These sporadic anomalies
can be explained by the pseudo DFS strategy of the distributed algorithm which
means that the answer is either discovered immediately like in D.5 or the workers
explore significantly more configurations in a portion of the dependency graph
where the answer cannot be concluded from. Nevertheless, these unexpected re-
sults are rather rare and the general performance of the distributed algorithms,
summarized in Table 1, is compelling.

Finally, we also compare the performance of our verification engine with
LoLa, the winner in the CTL category at MCC’16 [27]. We run LoLa on all
784 executions (as summarized for our engines in Table 1) with the same 1
hour timeout and 15 GB memory limit. LoLa provided a conclusive answer in
673 cases and given that it is a sequential tool, it won in the comparison with
our sequential czero implementation that solved 565 queries. The reason is that
about one third of all the 784 queries are actually equivalent to either true or
false and hence they can be answered without any state-space exploration by a
simple query rewriting technique implemented in LoLa [32]. The problem is that
this query simplification implemented in LoLa cannot be turned off for a fair
comparison. A detailed analysis revealed that LoLa had 172 exclusive answers
compared to 64 exclusive answers of our sequential czero algorithm, however, 58
(34%) of the 172 queries answered exclusively by LoLa were equivalent to either
true or false and did not require any state space exploration and further 55
queries (32%) were simplified into a trivial form where LoLa needed to explore
less than 1000 markings. After removing these 113 trivial queries, LoLa provided
59 exclusive answers compared to 64 exclusive answers of our sequential czero
algorithm. Hence the performance of LoLa is essentially comparable with our
sequential algorithm. The main advantage of our approach is that we also provide
a distributed implementation that already with 4 cores3 outperforms the single-
core implementation.

5 Conclusion

We extended the formalism of dependency graphs by Liu and Smolka [30] with
the notion of negation edges in order to capture nested minimum fixed-point
assignments within the same graph. On the extended dependency graphs, we
designed an efficient local algorithm that allows us to back-propagate also cer-
tain zero values—both along the normal hyper-edges as well as the negation
edges and hence considerably speed up the computation. To further increase
the performance and applicability of our approach, we suggested to distribute
the local algorithm, proved the correctness of the pseudo-code and provided an
efficient, open-source implementation. Now the user can take a verification prob-
lem, reduce it to an extended dependency graph and get an efficient distributed
3 The organizers of MCC’17 allow the tools to utilize 4 cores in the competition.
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verification engine for free. This is a significant advantage compared to a number
of other tools that design a specific distributed algorithm for a fixed modeling
language and a fixed property language.

We demonstrated the general applicability of our tool on an example of CTL
model checking of Petri nets and evaluated the performance on the benchmark
of models from the Model Checking Contest 2016. The results confirm signifi-
cant improvements over the local algorithm by Liu and Smolka achieved by the
certain zero propagation and the distribution of the work among several workers.
Already the performance of our sequential algorithm with certain zero propaga-
tion is comparable with the world leading tool LoLa for CTL model checking of
Petri nets (modulo the query transformation rules implemented additionally in
LoLa and not related to the actual state-space search). While LoLa implements
only a sequential algorithm, we also provide a generic and efficient distribution
of the work among a scalable number of workers.

It was observed that for certain models, the search with a large number
of workers can be occasionally directed into a portion of the graph where no
conclusive answer can be drawn, implying that sometimes just a few workers
find the answer faster. In the future work, we shall look into how to better
exploit different search strategies when scaling the number of workers.
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Appendix

Game Characterizaton

Theorem 1. Let G be a negation safe EDG, v ∈ V be a configuration and
r ∈ {0, 1} be a claim. Then AGmin(v) = r if and only if Defender is the winner
of the game starting from the position (v, r).

Proof. (⇒) Let us first define that a configuration v is of level i if v belongs to
the component Ci but not to any component Cj where 0 ≤ j < i. By induction
on the level of a configuration v, we show that (i) if AGmin(v) = 0 then Defender
has a winning strategy from (v, 0), and (ii) if AGmin(v) = 1 then Defender has a
winning strategy from (v, 1).

Let us consider the base case where v is of level 0.
– For the case (i), let us assume that AGmin(v) = 0 and consider any play start-

ing from (v, 0). Either Attacker has no outgoing edge v and Defender wins,
or for every outgoing hyper-edge (v, T ) (notice that there are no negation
edges for configurations at level 0) there must be at least one u ∈ T such
that AGmin(u) = 0, otherwise AGmin would not be a fixed-point assignment.
Defender will choose such u and the play continues from (u, 0). Eventually,
either a loop is formed, and the infinite game is winning for Defender as the
claim 0 appears infinitely often, or there is no outgoing edge for the attacker
to choose, in which case Defender also wins.

– For the case (ii), let us assume that AGmin(v) = 1. There must have been a
reason why the value of v has been raised from 0 to 1 and the reason is that
either v has an outgoing hyper-edge with the empty target set, or there is an
outgoing hyper-edge from v such that every node from the target set has the
value 1 in the minimum fixed-point assignment. As before, no negation edges
can be reached from the component C0. This means that for the distance
function d inductively defined as
• d(v) = 0 if there is a hyper-edge (v, ∅) ∈ E, otherwise
• d(v) = 1 +min(v,T )∈E maxu∈T d(u),

we have that d(v) is finite for every v where AGmin(v) = 1. Defender’s strategy
from the position (v, 1) is then to pick from the outgoing hyper-edges (at
least one must exist) one that reduces the distance. The distance to the
configuration that has a hyper-edge with the empty target set then decreases
by at least one (irrelevant of Attacker’s choice) and eventually Defender picks
such a hyper-edge and Attacker loses the play. Hence Defender has a winning
strategy in this case as well.

Let us now consider the inductive case where we have a configuration v of level
i > 0. Both in the case (i) and (ii) we can now also encounter negation edges.
– For the case (i), Defender still selects configurations from the target set

that have the minimum fixed-point value 0, identically with the base case.
The only change can be that Attacker can from a configuration v such that
Amin(v) = 0 select also a negation edge (v, u) ∈ N where Amin(u) = 1. As
the level of u is lower than the level of v, we can use the induction hypothesis
to conclude that Defender has a winning strategy from (u, 1).
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– For the case (ii), we change the definition of the distance function d such
that in the base case d(v) is zero also if there is a negation-edge (v, u) ∈ N
such that Amin(u) = 0. If the game position becomes such a configuration v,
with a negation edge (v, u), then Defender will select that edge and the play
continues from (u, 0) that is by induction hypothesis winning for Defender.
Hence the direction from left to right is established.

(⇐) We prove the other direction by contraposition. Assume that AGmin(v) 6= r
and we want to argue that Defender does not have a universal winning strategy
from (v, r) (which by determinacy of the game means that Attacker has a uni-
versal winning strategy from (v, r)). However, the fact that AGmin(v) 6= r implies
that AGmin(v) = 1 − r and Defender has a winning strategy from (v, 1 − r) as
proved above. By the symmetry of the game, this means that Attacker has a
winning strategy from (v, r). ut

CTL Model Checking of Petri Nets

A path in N , starting in a markingM , is a finite or infinite sequence of markings
and transition firings, written as

M ≡M0 →M1 →M2 → . . .

A path is maximal if it is either infinite or ends in a marking Mi such that
Mi 6→; also called a deadlock. The set of all maximal paths for a Petri net N
from the marking M is denoted by Πmax(M).

p0

p1
t0

t1

Fig. 4: A Petri net illustrating tokens, places and transitions.

An example of a Petri net is illustrated in Fig. 4. The circles represent places,
the rectangles are transitions and arcs that have weight at least one are repre-
sented by arrows (in our example all arcs have weight one that we omit this
annotation on the arrows). A marking can then be represented as a vector
(n0, n0) where n0 denotes the number of tokens in p0 and n1 the number of
tokens in p1, respectively. A possible path from the initial marking is (1, 0) is
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e.g. (1, 0) → (1, 0) → (1, 0) → . . . . This repeated sequence of markings and fir-
ings of the transition t0 forms an infinite maximal path. Another (finite) maximal
path is e.g. (1, 0)→ (1, 0)→ (1, 0)→ (0, 1).

Computation Tree Logic

In Computation Tree Logic (CTL), properties are expressed using a combination
of logical and temporal operators over a set of basic propositions. In our case
the basic propositions express properties of a concrete marking (such as if a
certain transition is enabled or the marking contains a certain number of tokens
in certain places).

Let N = (P, T,W, I) be a Petri net. To comply with the syntax for the CTL
category in MCC’16 [27], we use the following abstract syntax

ϕ ::= true | false | is_fireable(Y ) | ψ1 ./ ψ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
EG ϕ | AG ϕ | EF ϕ | AF ϕ | EX ϕ | AX ϕ | Eϕ1Uϕ2 | Aϕ1Uϕ2

ψ ::= ψ1 ⊕ ψ2 | c | token_count(X)

where ./ ∈ {<,≤,=,≥, >}, X ⊆ P , Y ⊆ T , c ∈ N0 and ⊕ ∈ {+,−, ·}.
The semantics of a CTL formula ϕ over a given marking M of the Petri net N
is defined in Table 3, using the function evalM that is given in Table 4. The
remaining operators are defined as abbreviations in Table 5.

M |= true
M |= ¬ϕ iff M 6|= ϕ
M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2

M |= EX ϕ iff there exists M ′ ∈M(N) where M →M ′ and M ′ |= ϕ
M |= Eϕ1Uϕ2 iff there exists (M ≡M0 →M1 →M2 → . . .) ∈ Πmax(M) s.t.

there is i ∈ N0 where Mi |= ϕ2 and
for all j ∈ N0 s.t. 0 ≤ j < i and Mj |= ϕ1

M |= Aϕ1Uϕ2 iff for all (M ≡M0 →M1 →M2 → . . .) ∈ Πmax(M) s.t.
there is i ∈ N0 where Mi |= ϕ2 and
for all j ∈ N0 s.t. 0 ≤ j < i and Mj |= ϕ1

M |= is_fireable(Y ) iff there exists t ∈ Y and M ′ s.t. M t−→M ′

M |= ψ1 ./ ψ2 iff evalM (ψ1) ./ evalM (ψ2)

Table 3: CTL Semantics
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〈M, true〉

∅
(a) True

iff evalM (ψ1) ./ evalM (ψ2)〈M,ψ1 ./ ψ2〉

∅
(b) Token count

iff M t−→M ′ for some M ′ and some t ∈ Y〈M, is_fireable(Y)〉

∅
(c) Is fireable

Fig. 5: Atomic rules

evalM (c) = c
evalM (token_count(X)) =

∑
p∈XM(p)

evalM (e1 ⊕ e2) = evalM (e1)⊕ evalM (e2)

Table 4: evalM semantics

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2)
AX ϕ ≡ ¬EX ¬ϕ
EF ϕ ≡ E true Uϕ
AF ϕ ≡ A true Uϕ
EG ϕ ≡ ¬AF ¬ϕ
AG ϕ ≡ ¬EF ¬ϕ
false ≡ ¬true

Table 5: Standard abbreviations

Model checking Petri nets using Extended Dependency Graphs

We now reduce the CTL model checking over a Petri net to calculate the mini-
mum fixed point assignment of an EDG. We show how the atomic operators are
constructed in Fig. 5. Fig 6 presents the rules for the minimal set of operators
required to support the basic formulae from Table 3. Finally in Fig. 7 we also
present direct encoding for some of the additional CTL operators. These are
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〈M,ϕ1 ∧ ϕ2〉

〈M,ϕ1〉 〈M,ϕ2〉

(a)

〈M,¬ϕ〉

〈M,ϕ〉

(b)

let {M1, ...,Mn} = {M ′ |M →M ′}〈M,EXϕ〉

〈M1, ϕ〉 〈Mn, ϕ〉. . .

(c)

let {M1, ...,Mn} = {M ′ |M →M ′}〈M,Eϕ1Uϕ2〉

〈M,ϕ1〉 〈M1, Eϕ1Uϕ2〉〈M,ϕ2〉 〈Mn, Eϕ1Uϕ2〉
. . .

(d)

let {M1, ...,Mn} = {M ′ |M →M ′}〈M,Aϕ1Uϕ2〉

〈M1, Aϕ1Uϕ2〉〈M,ϕ1〉〈M,ϕ2〉 〈Mn, Aϕ1Uϕ2〉
. . .

(e)

Fig. 6: Minimum set of operators

included in order to limit the amount of configurations required to calculate the
minimum fixed point assignment of the extended dependency graph.

In our reduction, each configuration in the extended dependency graph is a
pair consisting of a marking M and a CTL formula ϕ, denoted 〈M,ϕ〉. Observe
that this reduction produces a negation safe EDG.

Theorem 4 (Encoding Correctness). Let N be a Petri net, M a marking
on N and let ϕ be a CTL formula. Let G be the EDG with the root 〈M,ϕ〉
constructed as described above. Then M |= ϕ iff AGmin(〈M,ϕ〉) = 1.

The correctness proof of this encoding is available in the report [24].
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〈M,ϕ1 ∨ ϕ2〉

〈M,ϕ1〉 〈M,ϕ2〉

(a)

let {M1, ...,Mn} = {M ′ |M →M ′}

〈M,AXϕ〉

〈M1, ϕ〉 〈Mn, ϕ〉. . .

(b)

let {M1, ...,Mn} = {M ′ |M →M ′}〈M,EFϕ〉

〈M1,EFϕ〉〈M,ϕ〉 〈Mn,EFϕ〉
. . .

(c)

let {M1, ...,Mn} = {M ′ |M →M ′}〈M,AFϕ〉

〈M1,AFϕ〉〈M,ϕ〉 〈Mn,AFϕ〉
. . .

(d)

Fig. 7: Extension of operator set
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Distributed Algorithm for Fixed-Point Computation

Lemma 1. During the execution of Algorithm 1, the value of Ai(v) for any
worker i and any configuration v will never decrease (with respect to the ordering
from Figure 3(c)).

Proof. First let us observe that the algorithm never assigns ⊥ to any configura-
tion, hence the only possible way to decrease the assignment value is to assign ?
to a configuration which is already assigned 1 or 0. The only place where this can
happen is line 2 of the Explore function as the function FinalAssign is always
called with only 1 or 0 as an input parameter. However, thanks to the condi-
tions on line 8 of ProcessHyperEdge, line 5 of ProcessNegationEdge and
line 7 of ProcessRequest, the Explore function is only called if the previous
assignment value is ⊥. Hence we can never decrease the assignment value of a
configuration in any of the local assignments. ut
Lemma 3. For any worker i, the repeat-until loop in Algorithm 1 satisfies the
following invariants.

1. For all v ∈ V , if Ai(v) = 1 then AGmin(v) = 1.
2. For all v ∈ V , if Ai(v) = 0 then AGmin(v) = 0.
3. For all v ∈ V , if Ai(v) = ? and i = δ(v) then for all e ∈ succi(v) holds that

e ∈W i
E ∪W i

N or e ∈ Di(u) for some u ∈ V where Ai(u) = ?.
4. For all v ∈ V , if Ai(v) = ? and i 6= δ(v) then one of the following must hold:

– (v, i) ∈Mδ(v)
R ,

– i ∈ Cδ(v)(v) and Aδ(v)(v) = ?, or
– (v, a) ∈M i

A and Aδ(v)(v) = a for some a ∈ {0, 1}.
5. If there is a negation edge e = (v, u) ∈ W i

N s.t. Ai(u) = ? and all workers
are idle and v is minimal in all waiting lists and message queues (i.e. for
all (v′, x) ∈ (WE ∪ WN ∪ MA ∪ MR) holds that dist(v) ≤ dist(v′)), then
AGmin(u) = 0.

Proof. First we prove Invariants 1 and 2. The only place where the algorithm
assigns value 1 or 0 to a configuration is in FinalAssign. Therefore we need to
analyse the conditions under which FinalAssign is called. FinalAssign with
value 1 or 0 can be called under these circumstances:
– Line 3 of ProcessHyperEdge or line 3 of ProcessNegationEdge where

the target is assigned 0. If all targets of a hyper-edge are assigned 1 or the
target of a negation edge is assigned 0, it is by the invariant assumption safe
to assign 1 also to the source configuration.

– Line 3 of ProcessNegationEdge where the target is assigned ? or 0. The
case where the target is 0 is clear thanks to Invariant 2. If the target is
assigned ?, this can only happen if the edge was picked based on the fourth
condition of PickTask. Therefore the conditions of Invariant 5 apply and
it is safe to assign 1 to the source configuration.

– Line 3 of ProcessAnswer. An answer message (a, i) is only sent if
Aδ(v)(v) = a and this value is the minimum fixed-point value by Invari-
ants 1 and 2. Therefore it is also safe to assign the same value to Ai(v) in
worker i.
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– Line 4 of Explore or line 3 of DeleteEdge. If a configuration has no
remaining successors that can propagate one, then it is safe to assign 0 to it.

Hence we proved the validity of Invariants 1 and 2.
We shall now focus on Invariant 3. When the value of the assignment is

increased from ⊥ to ? (line 2 of Explore) for a configuration v owned by
worker i, all successor edges are pushed into the waiting lists, thus preserving
the invariant. By exploring the functions ProcessHyperEdge and Process-
NegationEdge, we observe the following fact. When an edge is picked from the
waiting list, one of the following occurs: the source v is assigned a final value, the
edge is deleted, or the edge is inserted into the dependency set of some target
configuration that is assigned ?. If the target is assigned ⊥, we call the Explore
function that is going to increase it to ?. Finally, when a configuration is assigned
0 or 1, the dependency set is pushed into the waiting lists, therefore the invariant
is still preserved.

Let us now discuss Invariant 4. When the value of the assignment is increased
from ⊥ to ? for a configuration v not owned by worker i, the worker sends a re-
quest message to the owner (line 7 of Explore), thus the invariant is preserved.
As soon as the owner of the configuration receives a request, one of two things
happen. If the value of the configuration is already 0 or 1 then the owner sends
an answer message to worker i (line 3 of ProcessRequest). Alternatively, if
the value of the configuration is ⊥ or ? then i is inserted into the interested
set (line 5 of ProcessRequest) and the value of the configuration is increased
from ⊥ to ? if necessary. Afterwards, when a configuration is assigned 0 or 1,
all workers in the interested set are notified via an answer message (line 4 of
FinalAssign). Finally, when the answer message is processed by worker i, the
configuration is assigned 0 or 1, and the invariant trivially holds too.

We finish by proving Invariant 5. When the conditions of the invariant are
satisfied, there are no tasks in any of the waiting and message lists (on any of
the workers) that concern the component where the target of the negation edge
is located. Since all workers are currently idle, it is also guaranteed that no such
task is currently being processed (the opposite would mean that the assignment
values in the component can still change as a result of the processing). Therefore
it is safe to assume that AGmin(u) = 0 as the value of u can never increase to 1,
and the invariant holds. ut

Lemma 4. Upon termination of Algorithm 1 at line 11 or line 12, for every
negation edge e = (v, u) ∈ N it holds that either Aδ(v)(v) ∈ {1,⊥} or the
negation edge is deleted from succδ(v).

Proof. First, observe that if a negation edge is processed more than once for
worker δ(v), it is either deleted or the source configuration is assigned 1. Hence
the target configuration is guaranteed not to be ⊥. When a negation edge is
processed, one of the following will happen:
– the edge is deleted,
– the source configuration is assigned 1, or
– the value of the target configuration is ⊥. In this case, the edge is re-inserted

into the waiting list and will be processed at least twice.
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If a negation edge is processed at least once, the condition is satisfied. Observe
that if the edge is picked for the first time, and the value of the target configu-
ration is ?, then by Invariant 5, the source configuration can be assigned 1. ut

Lemma 5. Upon termination of Algorithm 1 at line 11 or line 12, for every i ∈
{1, ..., n} and for every v ∈ V it holds that either Ai(v) = ⊥ or Ai(v) = Aδ(v)(v).

Proof. Consider a worker i and a configuration v. If δ(v) = i, the condition holds
trivially. If δ(v) 6= i and Ai(v) = ?, then by Lemma 3 Condition 4 also Aδ(v)(v) =
? (since no messages are in transit, because the algorithm has terminated).

If δ(v) 6= i and Ai(v) = a ∈ {0, 1}, it means that worker i at some point
received an answer message (v, a). That is because the only place where Fi-
nalAssign is called with a configuration that the worker does not own is in
ProcessAnswer (and a worker never sends messages to itself). Also, an an-
swer message (v, a) is only sent if the worker who owns v has already assigned
it a final value a. Therefore if a worker receives an answer message (v, a) then it
is guaranteed that Aδ(v)(v) = a. ut
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