
Parametric Modal Transition Systems

Nikola Beneš2? Jan Křet́ınský2,3?? Kim G. Larsen1

Mikael H. Møller1 Jǐŕı Srba1? ? ?

1 Aalborg University, Denmark
2 Masaryk University, Czech Republic

3 Technische Universität München, Germany

Abstract. Modal transition systems (MTS) is a well-studied specifi-
cation formalism of reactive systems supporting a step-wise refinement
methodology. Despite its many advantages, the formalism as well as its
currently known extensions are incapable of expressing some practically
needed aspects in the refinement process like exclusive, conditional and
persistent choices. We introduce a new model called parametric modal
transition systems (PMTS) together with a general modal refinement
notion that overcome many of the limitations and we investigate the
computational complexity of modal refinement checking.

1 Introduction

The specification formalisms of Modal Transition Systems (MTS) [11, 1] grew
out of a series of attempts to achieve a flexible and easy-to-use compositional
development methodology for reactive systems. In fact the formalism of MTS
may be seen as a fragment of a temporal logic [5], while having a behavioural
semantics allowing for an easy composition with respect to process constructs.

In short, MTS are labelled transition systems equipped with two types of
transitions: must transitions which are mandatory for any implementation, and
may transitions which are optional for an implementation. Refinement of an
MTS now essentially consists of iteratively resolving the unsettled status of may
transitions: either by removing them or by turning them into must transitions.

It is well admitted (see e.g. [15]) that MTS and their extensions like dis-
junctive MTS (DMTS) [12], 1-selecting MTS (1MTS) [6] and transition systems
with obligations (OTS) [4] provide strong support for a specification formalism
allowing for step-wise refinement process. Moreover, the MTS formalisms have
applications in other contexts, which include verification of product lines [8, 10],
interface theories [17, 15] and modal abstractions in program analysis [7, 9, 13].

Unfortunately, all of these formalisms lack the capability to express some
intuitive specification requirements like exclusive, conditional and persistent
? The author is supported by Czech Grant Agency, grant no. GAP202/11/0312.
?? The author is a holder of Brno PhD Talent Financial Aid and is supported by the

Czech Science Foundation, grant No. P202/10/1469.
? ? ? The author is partially supported by Ministry of Education of The Czech Republic,

grant no. MSM 0021622419.

choices. In this paper we extend considerably the expressiveness of MTS and
its variants so that it can model arbitrary Boolean conditions on transitions and
also allows to instantiate persistent transitions. Our model, called parametric
modal transition systems (PMTS), is equipped with a finite set of parameters
that are fixed prior to the instantiation of the transitions in the specification.
The generalized notion of modal refinement is designed to handle the paramet-
ric extension and it specializes to the well-studied modal refinements on all the
subclasses of our model like MTS, disjunctive MTS and MTS with obligations.

To the best of our knowledge, this is the first sound attempt to introduce
persistence into a specification formalism based on modal transition systems. The
most related work is by Fecher and Schmidt on 1-selecting MTS [6] where the
authors allow to model exclusive-or and briefly mention the desire to extend the
formalism with persistence. However, as in detail explained in [3], their definition
does not capture the notion of persistence. Our formalism is in several aspects
semantically more general and handles persistence in a complete and uniform
manner.

The main technical contribution, apart from the formalism itself, is a compre-
hensive complexity characterization of modal refinement checking on all of the
practically relevant subclasses of PMTS. We show that the complexity ranges
from P-completeness to Πp

4-completeness, depending on the requested generality
of the PMTS specifications on the left-hand and right-hand sides.

2 Parametric Modal Transition Systems

In this section we present the formalism of parametric modal transition systems
(PMTS), starting with a motivating example and continuing with the formal
definitions, followed by the general notion of modal refinement.

2.1 Motivation

Modal transition systems and their extensions described in the literature are
lacking the capability to express several specification requirements like exclusive,
conditional and persistent choices. We shall now discuss these limitations on an
example as a motivation for the introduction of parametric MTS formalism with
general Boolean conditions in specification requirements.

Consider a simple specification of a traffic light controller that can be at any
moment in one of the four predefined states: red , green, yellow or yellowRed .
The requirements of the specification are: when green is on the traffic light may
either change to red or yellow and if it turned yellow it must go to red afterward;
when red is on it may either turn to green or yellowRed , and if it turns yellowRed
(as it is the case in some countries) it must go to green afterwords.

Figure 1a shows an obvious MTS specification (defined formally later on) of
the proposed specification. The transitions in the standard MTS formalism are
either of type may (optional transitions depicted as dashed lines) or must (re-
quired transitions depicted as solid lines). In Figure 1c, Figure 1d and Figure 1e

green

red

yellow

yellowRed

go

stop

readygo

ready sto
p

(a) MTS specification S1

go

stop

readygo

ready sto
p

(b) DMTS specification S2

(c) Implementation I1

go

stop

readygo

ready sto
p

(d) Implementation I2

sto
p go

re
ad

y

stop

go

(e) Implementation I3

go

stop

readygo

ready sto
p

Obligation function:
Φ(green) = (stop, red)⊕ (ready , yellow)
Φ(red) = (go, green)⊕ (ready , yellowRed)

(f) Specification S3

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}
Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))

∧(reqYfromG ⇔ (ready , yellow))
Φ(red) = ((go, green)⊕ (ready , yellowRed))

∧(reqYfromR ⇔ (ready , yellowRed))

(g) PMTS specification S4

Fig. 1: Specifications and implementations of a traffic light controller

we present three different implementations of the MTS specification where there
are no more optional transitions. The implementation I1 does not implement
any may transition as it is a valid possibility to satisfy the specification S1. Of
course, in our concrete example, this means that the light is constantly green and
it is clearly an undesirable behaviour that cannot be, however, easily avoided.
The second implementation I2 on the other hand implements all may transi-
tions, again a legal implementation in the MTS methodology but not a desirable
implementation of a traffic light as the next action is not always deterministi-
cally given. Finally, the implementation I3 of S1 illustrates the third problem
with the MTS specifications, namely that the choices made in each turn are not
persistent and the implementation alternates between entering yellow or not.
None of these problems can be avoided when using the MTS formalism.

A more expressive formalism of disjunctive modal transition systems (DMTS)
can overcome some of the above mentioned problems. A possible DMTS specifi-
cation S2 is depicted in Figure 1b. Here the ready and stop transitions, as well
as ready and go ones, are disjunctive, meaning that it is still optional which
one is implemented but at least one of them must be present. Now the system
I1 in Figure 1c is not a valid implementation of S2 any more. Nevertheless, the
undesirable implementations I2 and I3 are still possible and the modelling power
of DMTS is insufficient to eliminate them.

Inspired by the recent notion of transition systems with obligations [4], we
can model the traffic light using specification as a transition system with ar-
bitrary4 obligation formulae. These formulae are Boolean propositions over the
outgoing transitions from each state, whose satisfying assignments yield the al-
lowed combinations of outgoing transitions. A possible specification called S3

is given in Figure 1f and it uses the operation of exclusive-or. We will follow
an agreement that whenever the obligation function for some node is not listed
in the system description then it is implicitly understood as requiring all the
available outgoing transitions to be be present. Due to the use of exclusive-or
in the obligation function, the transition systems I1 and I2 are not valid imple-
mentation any more. Nevertheless, the implementation I3 in Figure 1e cannot
be avoided in this formalism either.

Finally, the problem with the alternating implementation I3 is that we can-
not enforce in any of the above mentioned formalisms a uniform (persistent)
implementation of the same transitions in all its states. In order to overcome
this problem, we propose the so-called parametric MTS where we can, more-
over, choose persistently whether the transition to yellow is present or not via
the use of parameters. The PMTS specification with two parameters reqYfromR
and reqYfromG is shown in Figure 1g. Fixing a priori the (Boolean) values of the
parameters makes the choices permanent in the whole implementation, hence we
eliminate also the last problematic implementation I3.

2.2 Definition of Parametric Modal Transition System

We shall now formally capture the intuition behind parametric MTS introduced
above. First, we recall the standard propositional logic.

A Boolean formula over a set X of atomic propositions is given by the fol-
lowing abstract syntax

ϕ ::= tt | x | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ

where x ranges over X. The set of all Boolean formulae over the set X is denoted
by B(X). Let ν ⊆ X be a truth assignment, i.e. a set of variables with value
true, then the satisfaction relation ν |= ϕ is given by ν |= tt, ν |= x iff x ∈ ν, and
the satisfaction of the remaining Boolean connectives is defined in the standard
way. We also use the standard derived operators like exclusive-or ϕ⊕ ψ = (ϕ ∧
4 In the transition systems with obligations only positive Boolean formulae are allowed.

¬ψ) ∨ (¬ϕ ∧ ψ), implication ϕ ⇒ ψ = ¬ϕ ∨ ψ and equivalence ϕ ⇔ ψ =
(¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ).

We can now proceed with the definition of parametric MTS.

Definition 1. A parametric MTS (PMTS) over an action alphabet Σ is a tuple
(S, T, P,Φ) where S is a set of states, T ⊆ S×Σ×S is a transition relation, P is
a finite set of parameters, and Φ : S → B((Σ×S)∪P) is an obligation function
over the atomic propositions containing outgoing transitions and parameters.
We implicitly assume that whenever (a, t) ∈ Φ(s) then (s, a, t) ∈ T . By T (s) =
{(a, t) | (s, a, t) ∈ T} we denote the set of all outgoing transitions of s.

We recall the agreement that whenever the obligation function for some node
is not listed in the system description then it is implicitly understood as Φ(s) =∧
T (s), with the empty conjunction being tt.
We call a PMTS positive if, for all s ∈ S, any negation occurring in Φ(s) is

applied only to a parameter. A PMTS is called parameter-free if P = ∅. We can
now instantiate the previously studied specification formalisms as subclasses of
PMTS.

Definition 2. A PMTS is called

– transition system with obligation (OTS) if it is parameter-free and positive,
– disjunctive modal transition system (DMTS) if it is an OTS and Φ(s) is in

the conjunctive normal form for all s ∈ S,
– modal transition system (MTS) if it is a DMTS and Φ(s) is a conjunction

of positive literals (transitions) for all s ∈ S, and
– implementation (or simply a labelled transition system) if it is an MTS and

Φ(s) =
∧
T (s) for all s ∈ S.

Note that positive PMTS, despite the absence of a general negation and the
impossibility to define for example exclusive-or, can still express useful require-
ments like Φ(s) = p ⇒ (a, t) ∧ ¬p ⇒ (b, u) requiring in a state s a conditional
presence of certain transitions. Even more interestingly, we can enforce binding
of actions in different states, thus ensuring certain functionality. Take a simple
two state-example: Φ(s) = p ⇒ (request , t) and Φ(t) = p ⇒ (response, s). We
shall further study OTS with formulae in the disjunctive normal form that are
dual to DMTS and whose complexity of parallel composition is lower [4] while
still being as expressive as DMTS.

2.3 Modal Refinement

A fundamental advantage of MTS-based formalisms is the presence of modal
refinement that allows for a step-wise system design (see e.g. [1]). We shall
now provide such a refinement notion for our general PMTS model so that
it will specialize to the well-studied refinement notions on its subclasses. In the
definition, the parameters are fixed first (persistence) followed by all valid choices
modulo the fixed parameters that now behave as constants.

go

stop

readygo

ready sto
p

Parameters: {reqYfromR, reqYfromG}

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqYfromG ⇔ (ready , yellow))

Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqYfromR ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

Parameters: {reqY }

Obligation function:
Φ(green) = ((stop, red)⊕ (ready , yellow))
∧(reqY ⇔ (ready , yellow))

Φ(red) = ((go, green)⊕ (ready , yellowRed))
∧(reqY ⇔ (ready , yellowRed))

go

stop

readygo

ready sto
p

≤m

≤
m

≤m

Fig. 2: Example of modal refinement

First we set the following notation. Let (S, T, P,Φ) be a PMTS and ν ⊆ P
be a truth assignment. For s ∈ S, we denote by Tranν(s) = {E ⊆ T (s) | E∪ν |=
Φ(s)} the set of all admissible sets of transitions from s under the fixed truth
values of the parameters.

We can now define the notion of modal refinement between PMTS.

Definition 3 (Modal Refinement). Let (S1, T1, P1,Φ1) and (S2, T2, P2,Φ2)
be two PMTSs. A binary relation R ⊆ S1×S2 is a modal refinement if for each
µ ⊆ P1 there exists ν ⊆ P2 such that for every (s, t) ∈ R holds

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R ∧
∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R .

We say that s modally refines t, denoted by s ≤m t, if there exists a modal
refinement R such that (s, t) ∈ R.

Example 4. Consider the rightmost PMTS in Figure 2. It has two parameters
reqYfromG and reqYfromR whose values can be set independently and it can
be refined by the system in the middle of the figure having only one parameter
reqY . This single parameter simply binds the two original parameters to the same
value. The PMTS in the middle can be further refined into the implementations
where either yellow is always used in both cases, or never at all. Notice that there
are in principle infinitely many implementations of the system in the middle,
however, they are all bisimilar to either of the two implementations depicted in
the left of Figure 2.

In the next section, we shall investigate the complexity of positive subclasses
of PMTS. For this reason we prove the following lemma showing how the defi-
nition of modal refinement can be simplified in this particular case.

We shall first realize that in positive PMTS and for any truth assignment ν,
Tranν(s) is upward closed, meaning that if M ∈ Tranν(s) and M ⊆ M ′ ⊆ T (s)
then M ′ ∈ Tranν(s).

Lemma 5. Consider Definition 3 where the right-hand side PMTS is positive.
Now the condition in Definition 3 can be equivalently rewritten as a conjunction
of conditions (1) and (2)

∀M ∈ Tranµ(s) : ∀(a, s′) ∈M : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R (1)
∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t) (2)

where matcht(M) denotes the set {(a, t′) ∈ T (t) | ∃(a, s′) ∈ M : (s′, t′) ∈ R}. If
the left-hand side PMTS is moreover positive too, Condition (1) is equivalent to

∀(a, s′) ∈ T (s) : ∃(a, t′) ∈ T (t) : (s′, t′) ∈ R . (3)

Proof. We shall first argue that the condition of modal refinement is equivalent
to the conjunction of Conditions (4) and (5).

∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, s′) ∈M : ∃(a, t′) ∈ N : (s′, t′) ∈ R (4)
∀M ∈ Tranµ(s) : ∃N ∈ Tranν(t) : ∀(a, t′) ∈ N : ∃(a, s′) ∈M : (s′, t′) ∈ R (5)

Let µ, ν, R, s and t be fixed. Definition 3 trivially implies both Conditions (4)
and (5). We now prove that (4) and (5) imply the condition in Definition 3.

Let M ∈ Tranµ(s) be arbitrary. There is some N1 ∈ Tranν(t) satisfying (4)
and some N2 ∈ Tranν(t) satisfying (5). Let now N ′1 = {(a, t′) ∈ N1 | ∃(a, s′) ∈
M : (s′, t′) ∈ R}. Consider N = N ′1 ∪N2. Clearly, as Tranν(t) is upward closed,
N ∈ Tranν(t). Moreover, due to Condition (4) we have some (a, t′) ∈ N1 such
that (s′, t′) ∈ R. Clearly, (a, t′) ∈ N ′1 and thus also in N .

Now let (a, t′) ∈ N be arbitrary. If (a, t′) ∈ N2, due to Condition (5) we
have some (a, s′) ∈ M such that (s′, t′) ∈ R. If (a, t′) 6∈ N2 then (a, t′) ∈ N ′1.
The existence of (a, s′) ∈ M such that (s′, t′) ∈ R is then guaranteed by the
definition of N ′1.

Let us now proceed with proving the claims of the lemma. Condition (4)
is trivially equivalent to (1) since Tranν(t) is upward closed. Condition (5) is
equivalent to (2). Indeed, (2) clearly implies (5) and we show that also (5) implies
(2). Let M be arbitrary. We then have some N satisfying (5). Clearly, N ⊆
matcht(M). Since Tranν(t) is upward closed, N ∈ Tranν(t) implies matcht(M) ∈
Tranν(t). Due to the upward closeness of both Tranµ(s) and Tranν(t) in the case
of a positive left-hand side, the equivalence of (1) and (3) follows. ut

Theorem 6. Modal refinement as defined on PMTS coincides with the standard
modal refinement notions on MTS, DMTS and OTS. On implementations it
coincides with bisimulation.

Proof. The fact that Definition 3 coincides with modal refinement on OTS as
defined in [4] is a straightforward corollary of Lemma 5 and its proof. Indeed, the
two conditions given in [4] are exactly conditions (3) and (5). As the definition of
modal refinement on OTS coincides with modal refinement on DMTS (as shown
in [4]) and thus also on MTS, the proof is done.

However, for the reader’s convenience, we present a direct proof that Defini-
tion 3 coincides with modal refinement on MTS. Assume a parameter-free PMTS

Table 1: Complexity of modal refinement checking of parameter-free systems
Boolean Positive pCNF pDNF MTS

Boolean Πp
2-complete coNP-complete

∈ coNP
coNP-complete

∈ coNP
P-hard P-hard

Positive Πp
2-complete coNP-complete P-complete coNP-complete P-complete

pCNF Πp
2-complete coNP-complete P-complete coNP-complete P-complete

pDNF Πp
2-complete P-complete P-complete P-complete P-complete

MTS Πp
2-complete P-complete P-complete P-complete P-complete

Impl NP-complete P-complete P-complete P-complete P-complete

(S, T, P,Φ) where Φ(s) is a conjunction of transitions for all s ∈ S, in other words
it is a standard MTS where the must transitions are listed in the conjunction
and the may transitions are simply present in the underlying transition system
but not a part of the conjunction. Observe that every transition (s, a, t) ∈ T
is contained in some M ∈ Tran∅(s). Further, each must transition (s, a, t) ∈ T
is contained in all M ∈ Tran∅(s). Therefore, the first conjunct in Definition 3
requires that for all may transition from s there be a corresponding one from
t with the successors in the refinement relation. Similarly, the second conjunct
now requires that for all must transitions from t there be a corresponding must
transition from s. This is exactly the standard notion of modal refinement as
introduced in [11]. ut

3 Complexity of Modal Refinement Checking

We shall now investigate the complexity of refinement checking on PMTS and its
relevant subclasses. Without explicitly mentioning it, we assume that all consid-
ered PMTS are now finite and the decision problems are hence well defined. The
complexity bounds include classes from the polynomial hierarchy (see e.g. [14])
where for example Σp

0 = Πp
0 = P, Πp

1 = coNP and Σp
1 = NP.

3.1 Parameter-Free Systems

Since even the parameter-free systems have interesting expressive power and the
complexity of refinement on OTS has not been studied before, we first focus on
parameter-free systems. Moreover, the results of this subsection are then applied
to parametric systems in the next subsection. The results are summarized in
Table 1. The rows in the table correspond to the restrictions on the left-hand
side PMTS while the columns correspond to the restrictions on the right-hand
side PMTS. Boolean denotes the general system with arbitrary negation. Positive
denotes the positive systems, in this case exactly OTS. We use pCNF and pDNF
to denote positive systems with formulae in conjunctive and disjunctive normal
forms, respectively. In this case, pCNF coincides with DMTS. The special case of
satisfaction relation, where the refining system is an implementation is denoted
by Impl. We do not include Impl to the columns as it makes sense that an
implementation is refined only to an implementation and here modal refinement

corresponds to bisimilarity that is P-complete [2] (see also [16]). The P-hardness
is hence the obvious lower bound for all the problems mentioned in the table.

We start with the simplest NP-completeness result.

Proposition 7. Modal refinement between an implementation and a parameter-
free PMTS is NP-complete.

Proof. The containment part is straightforward. First we guess the relation R.
As s is an implementation then the set Tran∅(s) is a singleton. We thus only
need to further guess N ∈ Tranν(t) and then in polynomial time verify the two
conjuncts in Definition 3.

The hardness part is by a simple reduction from SAT. Let ϕ(x1, . . . , xn) be an
given Boolean formula (instance of SAT). We construct two PMTSs (S, T, P,Φ)
and (S′, T ′, P ′,Φ′) such that (i) S = {s, s′}, T = (s, a, s′), P = ∅, Φ(s) = (a, s′)
and Φ(s′) = tt and (ii) S′ = {t, t1, . . . , tn}, T = {(t, a, ti) | 1 ≤ i ≤ n.}, P ′ = ∅,
Φ(t) = ϕ[(a, ti)/xi] and Φ(ti) = tt for all i, 1 ≤ i ≤ n. Clearly, ϕ is satisfiable if
and only if s ≤m t. ut

Next we show that modal refinement is Πp
2-complete. The following lemma

introduces a gadget used also later on in other hardness results. We will refer to
it as the ∗-construction.

Proposition 8. Modal refinement between two parameter-free PMTS is Πp
2-

hard even if the left-hand side is an MTS.

Proof. The proof is by polynomial time reduction from the validity of the quan-
tified Boolean formula ψ ≡ ∀x1 . . . ∀xn∃y1 . . . ∃ym : ϕ(x1, . . . , xn, y1, . . . , ym) to
the refinement checking problem s ≤m t where s and t are given as follows.

s

s′

· · ·x1 x2 xn ∗

Φ(s) = (∗, s′)

t

t′ t1 t2 tm

· · ·

· · ·

x1 x2 xn ∗ ∗ ∗ ∗

Φ(t) = ϕ[(xi, t
′)/xi, (∗, ti)/yi]

Assume that ψ is true. Let M ∈ Tran∅(s) (clearly (∗, s′) ∈M) and we want
to argue that there is N ∈ Tran∅(t) with (∗, t′) ∈ N such that for all (xi, s′) ∈M
there is (xi, t′) ∈ N (clearly the states s′, t′ and ti are in modal refinement) and
for all (xi, t′) ∈ N there is (xi, s′) ∈ M . Such an N can be found by simply
including (xi, t′) whenever (xi, s′) ∈ M and by adding also (∗, t′) into N . As ψ
is true, we include into N also all (∗, ti) whenever yi is set to true in ψ. Hence
we get s ≤m t.

On the other hand if ψ is false then we pick M ∈ Tran∅(s) such that M
corresponds to the values of xi’s such that there are no values of y1, . . . , ym that
make ψ true. This means that from t there will be no transitions as Tran∅(t) = ∅

assuming that (xi, t′) have to be set to true whenever (xi, s′) ∈ M , otherwise
the refinement between s and t will fail. However, now (∗, s′) ∈ M cannot be
matched from t and hence s 6≤m t. ut
Proposition 9. Modal refinement between two parameter-free PMTS is in Πp

2 .

Proof. The containment follows directly from Definition 3 (note that the pa-
rameters are empty) and the fact that the last conjunction in Definition 3 is
polynomially verifiable once the sets M and N were fixed. The relation R could
be in principle guessed before it is verified, however, this would increase the
complexity bound to Σp

3 . Instead, we will initially include all pairs (polynomi-
ally many) into R and for each pair ask whether for every M there is N such
that the two conjuncts are satisfied. If it fails, we remove the pair and continue
until we reach (after polynomially many steps) the greatest fixed point. The
complexity in this way remains in Πp

2 . We shall use this standard method also
in further proofs and refer to it as a co-inductive computation of R. ut

Positive Right-Hand Side. We have now solved all the cases where the right-
hand side is arbitrary. We now look at the cases where the right-hand side is
positive. In the proofs that follow we shall use the alternative characterization of
refinement from Lemma 5. The following proposition determines the subclasses
on which modal refinement can be decided in polynomial time.

Proposition 10. Modal refinement on parameter-free PMTS is in P, provided
that both sides are positive and either the left-hand side is in pDNF or the right-
hand side is in pCNF.

Proof. Due to Lemma 5, the refinement is equivalent to the conjunction of (3)
and (2). Clearly, (3) can be checked in P. We show that Condition (2) can be
verified in P too. Recall that (2) says that

∀M ∈ Tranµ(s) : matcht(M) ∈ Tranν(t)

where matcht(M) = {(a, t′) ∈ T (t) | ∃(a, s′) ∈M : (s′, t′) ∈ R}.
First assume that the left-hand side is in pDNF. If for some M the Condi-

tion (2) is satisfied then it is also satisfied for all M ′ ⊇M , as Tranµ(s) is upwards
closed. It it thus sufficient to verify the condition for all minimal elements (wrt.
inclusion) of Tranµ(s). In this case it correspond to the clauses of Φ(s). Thus we
get a polynomial time algorithm as shown in Algorithm 1.

Second, assume that the right-hand side is in pCNF. Note that Condition (2)
can be equivalently stated as

∀M : matcht(M) 6∈ Tranν(t)⇒M 6∈ Tranµ(s) (6)

As Φ(t) is in conjunctive normal form then N ∈ Tranν(t) is equivalent to say-
ing that N has nonempty intersection with each clause of Φ(t). We may thus
enumerate all maximal N 6∈ Tranν(t). Having a maximal N 6∈ Tranν(t), we can
easily construct M such that N = matcht(M). This leads to the polynomial
time Algorithm 2.

The statement of the proposition thus follows. ut

Algorithm 1: Test for Condition (2) of modal refinement (pDNF)
Input : states s and t such that Φ(s) is in positive DNF and Φ(t) is positive,

relation R
Output: true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, s1) ∧ · · · ∧ (ak, sk) in Φ(s) do

N ← {(a, t′) ∈ T (t) | ∃i : ai = a ∧ (si, t
′) ∈ R};

if N 6∈ Tranν(t) then return false;

return true;

Algorithm 2: Test for Condition (2) of modal refinement (pCNF)
Input : states s and t such that Φ(s) is positive and Φ(t) is in positive CNF,

relation R
Output: true if s, t satisfy the refinement condition, false otherwise
foreach clause (a1, t1) ∨ · · · ∨ (ak, tk) in Φ(t) do

M ← T (s) \ {(a, s′) ∈ T (s) | ∃i : ai = a ∧ (s′, ti) ∈ R};
if M ∈ Tranµ(s) then return false;

return true;

Proposition 11. Modal refinement on parameter-free PMTS is in coNP, if the
right-hand side is positive.

Proof. Due to Lemma 5 we can solve the two refinement conditions separately.
Furthermore, both Condition (1) an (2) of Lemma 5 can be checked in coNP. The
guessing of R is done co-inductively as described in the proof of Proposition 9.

ut

Proposition 12. Modal refinement on parameter-free systems is coNP-hard,
even if the left-hand side is in positive CNF and the right-hand side is in positive
DNF.

Proof. We reduce SAT into non-refinement. Let ϕ(x1, . . . , xn) be a formula in
CNF. We modify ϕ into an equivalent formula ϕ′ as follows: add new variables
x̃1, . . . , x̃n and for all i change all occurrences of ¬xi into x̃i and add new clauses
(xi ∨ x̃i) and (¬xi ∨ ¬x̃i).

Observe now that all clauses contain either all positive literals or all negative
literals. Let ψ+ denote a CNF formula that contains all positive clauses of ϕ′

and ψ− denote a CNF formula that contains all negative clauses of ϕ′. As ϕ′ =
ψ+ ∧ ψ− it is clear that ϕ′ is satisfiable if and only if (ψ+ ⇒ ¬ψ−) is not valid.

Now we construct two PMTSs (S, T, P,Φ) and (S′, T ′, P ′,Φ′) over Σ =
{x1, . . . , xn, x̃1, . . . , x̃n} as follows: (i) S = {s, s′}, T = {(s, xi, s′), (s, x̃i, s′) |
1 ≤ i ≤ n}, P = ∅, Φ(s) = ψ+[(xi, s′)/xi, (x̃i, s′)/x̃i] and Φ(s′) = tt, and
(ii) S′ = {t, t′}, T ′ = {(t, xi, t′), (t, x̃i, t) | 1 ≤ i ≤ n}, P ′ = ∅, Φ(t) =
¬ψ−[(xi, t′)/xi, (x̃i, t′)/x̃i] and Φ(t′) = tt. Note that by pushing the negation
of ψ− inside, this formula can be written as pDNF. It is easy to see that now
s ≤m t if and only if (ψ+ ⇒ ¬ψ−) is valid. Therefore, s 6≤m t if and only if ϕ is
satisfiable. ut

Table 2: Complexity of modal refinement checking with parameters
Boolean positive pCNF pDNF

Boolean Πp
4-complete Πp

3-complete
∈ Πp

3 Πp
3-complete

Πp
2-hard

positive Πp
4-complete Πp

3-complete Πp
2-complete Πp

3-complete

pCNF Πp
4-complete Πp

3-complete Πp
2-complete Πp

3-complete

pDNF Πp
4-complete Πp

2-complete Πp
2-complete Πp

2-complete

MTS Σp
3-complete NP-complete NP-complete NP-complete

Impl NP-complete NP-complete NP-complete NP-complete

Note that the exact complexity of modal refinement with the right-hand side
being in positive CNF or MTS and the left-hand side Boolean remains open.

3.2 Systems with Parameters

In the sequel we investigate the complexity of refinement checking in the general
case of PMTS with parameters. The complexities are summarized in Table 2.
We start with an observation of how the results on parameter-free systems can
be applied to the parametric case.

Proposition 13. The complexity upper bounds from Table 1 carry over to Ta-
ble 2, as follows. If the modal refinement in the parameter-free case is in NP,
coNP or Πp

2 , then the modal refinement with parameters is in Πp
2 , Πp

3 and Πp
4 ,

respectively. Moreover, if the left-hand side is an MTS, the complexity upper
bounds shift from NP and Πp

2 to NP and Σp
3 , respectively.

Proof. In the first case, we first universally choose µ, we then existentially choose
ν and modify the formulae Φ(s) and Φ(t) by evaluating the parameters. This
does not change the normal form/positiveness of the formulae. We then perform
the algorithm for the parameter-free refinement. For the second case note that
implementations and MTS have no parameters and we may simply choose (ex-
istentially) ν and run the algorithm for the parameter-free refinement. ut

We now focus on the respective lower bounds (proof of Proposition 15 can
be found in [3]).

Proposition 14. Modal refinement between an implementation and a right-
hand side in positive CNF or in DNF is NP-hard.

Proof. The proof is by reduction from SAT. Let ϕ(x1, . . . , xn) be a formula in
CNF and let ϕ1, ϕ2, . . . , ϕk be the clauses of ϕ. We construct two PMTSs
(S, T, P,Φ) and (S′, T ′, P ′,Φ′) over the action alphabet Σ = {a1, . . . , ak} as
follows: (i) S = {s, s′}, T = {(s, ai, s′) | 1 ≤ i ≤ k}, P = ∅, Φ(s) =

∧
1≤i≤k(ai, s′)

and Φ(s′) = tt and (ii) S′ = {t} ∪ {ti | 1 ≤ i ≤ k}, T ′ = {(t, ai, ti) | 1 ≤ i ≤ k},
P ′ = {x1, . . . , xn}, Φ′(t) =

∧
1≤i≤k(ai, ti) and Φ′(ti) = ϕi for all 1 ≤ i ≤ k.

Notice that each ϕi in Φ′(ti) is in positive form as we negate only the parameters
xi and every clause ϕi is trivially in DNF. Now we easily get that s ≤m t if and
only if ϕ is satisfiable. ut

Proposition 15. Modal refinement is Σp
3-hard even if the left-hand side is MTS.

The following proof introduces a gadget used also later on in other hardness
results. We refer to it as CNF-binding. Further, we use the ∗-construction here.

Proposition 16. Modal refinement is Πp
4-hard even if the left-hand side is in

positive CNF.

Proof (Sketch). Consider a Πp
4-hard QSAT instance, a formula ψ = ∀x∃y∀z∃w :

ϕ(x, y, z, w) with ϕ is in CNF and x, y, z, w vectors of length n. We construct
two system s and t and use the variables {x1, . . . , xn} as parameters for the
left-hand side system s, and {y1, . . . , yn} as parameters for the right-hand side
system t.

s

s′

ti fi zi ∗

Φ(s) = (∗, s′) ∧ CNF-binding

t

t′ ui

ti fi zi ∗ ∗

Φ(t) = (∗, s′) ∧ ϕ[(ti, t
′)/xi, (fi, t

′)/¬xi,

(zi, t
′)/zi, (∗, ui)/wi]

for all 1 ≤ i ≤ n

On the left we require Φ(s) = (∗, s′) ∧
∧

1≤i≤n

(
(xi ⇒ (ti, s′)) ∧ (¬xi ⇒

(fi, s′)
)

and call the latter conjunct CNF-binding. Thus the value of each pa-
rameter xi is “saved” into transitions of the system. Note that although both
ti and fi may be present, a “minimal” implementation contains exactly one
of them. On the right-hand side the transitions look similar but we require
Φ(t) = (∗, t) ∧ ϕ′ where ϕ′ is created from ϕ by changing every positive literal
xi into (ti, t′), every negative literal ¬xi into (fi, t′), every zi into (zi, t′), and
every wi into (∗, ui).

We show that ψ is true iff s ≤m t. Assume first that ψ is true. Therefore,
for every choice of parameters xi there is a choice of parameters yi so that
∀z∃w : ϕ(x, y, z, w) is true and, moreover, ti or fi is present on the left whenever
xi or ¬xi is true, respectively (and possibly even if it is false). We set exactly
all these transitions ti and fi on the right, too. Further, for every choice of
transitions zi on the left there are wi’s so that ϕ(x, y, z, w) holds. On the right,
we implement a transition (zi, t′) for each zi set to true and (∗, ui) for each wi set
to true. Now ϕ′ is satisfied as it has only positive occurrences of (ti, t′) and (fi, t′)
and hence the extra ti’s and fi’s do not matter. Now for every implementation
of s we obtained an implementation of t. Moreover, their transitions match.
Indeed, ti’s and fi’s were set the same as on the left, similarly for zi’s. As for the
∗-transition, we use the same argumentation as in the original ∗-construction.
On the left, there is always one. On the right, there can be more of them due to
wi’s but at least one is also guaranteed by Φ(t).

Let now s ≤m t. Then for every choice of xi’s—and thus also for every choice
of exactly one transition of ti, fi for each i—there are yi’s so that every choice of
transitions zi can be matched on the right so that ϕ′ is true with some transitions

(∗, ui). Since choices of ti/fi correspond exactly to choices of xi it only remains
to set wi true for each transition (∗, ui) on the right, thus making ϕ true. ut

Based on the idea of CNF-binding, the following propositions are proved in [3].

Proposition 17. Modal refinement is Πp
3-hard for the left-hand side in positive

CNF and the right-hand side in positive DNF.

Proposition 18. Modal refinement is Πp
2-hard even if both sides are in positive

CNF.

The last three propositions use a modification of the CNF-binding idea called
DNF-binding. Instead of (xi ⇒ (ti, s′)) ∧ (¬xi ⇒ (fi, s′)) we use (xi ∧ (ti, s′)) ∨
(¬xi ∧ (fi, s′)) to bind parameters of the left-hand side system with transitions
of the right-hand side system. Details are in [3].

Proposition 19. Modal refinement is Πp
2-hard even if left-hand side is in posi-

tive DNF and right-hand side is in positive CNF.

Proposition 20. Modal refinement is Πp
2-hard even if left-hand side is in posi-

tive DNF and right-hand side is in positive DNF.

Proposition 21. Modal refinement is Πp
4-hard even if the left-hand side is in

positive DNF.

Although the complexity may seem discouraging in many cases, there is an
important remark to make. The refinement checking may be exponential, but
only in the outdegree of each state and the number of parameters, while it is
polynomial in the number of states. As one may expect the outdegree and the
number of parameters to be much smaller than the number of states, this means
that the refinement checking may still be done in a rather efficient way. This
claim is furthermore supported by the existence of efficient SAT solvers that
may be employed to check the inner conditions in the modal refinement.

4 Conclusion and Future Work

We have introduced an extension of modal transition systems called PMTS for
parametric systems. The formalism is general enough to capture several features
missing in the other extensions, while at the same time it offers an easy to un-
derstand semantics and a natural notion of modal refinement that specializes to
the well-known refinements already studied on the subclasses of PMTS. Finally,
we provided a comprehensive overview of complexity of refinement checking on
PMTS and its subclasses.

We believe that our formalism is a step towards a more applicable notion
of specification theories based on MTS. In the future work we will study logical
characterizations of the refinement relation, investigate compositional properties
and focus on introducing quantitative aspects into the model in order to further
increase its applicability.

Acknowledgments. We would like to thank to Sebastian Bauer for suggesting the
traffic light example and for allowing us to use his figure environments.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wasowski, A.: 20 years of modal
and mixed specifications. Bulletin of the EATCS no. 95 pp. 94–129 (2008)

2. Balcazar, J.L., Gabarró, J., Santha, M.: Deciding bisimilarity is P-complete. Formal
aspects of computing 4(6 A), 638–648 (1992)

3. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal
transition systems. Technical report FIMU-RS-2011-03, Faculty of Informatics,
Masaryk University, Brno (2011)

4. Beneš, N., Křet́ınský, J.: Process algebra for modal transition systemses. In:
Matyska, L., Kozubek, M., Vojnar, T., Zemćık, P., Antos, D. (eds.) MEMICS.
OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2010)

5. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput.
Sci. 106(1), 3–20 (1992)

6. Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. of Logic and Alg. Program. 77(1-2), 20–39 (2008)

7. Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using
modal transition systems. In: Proc. CONCUR’01. LNCS, vol. 2154, pp. 426–440.
Springer (2001)

8. Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and model checking soft-
ware product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS. Lecture Notes
in Computer Science, vol. 5051, pp. 113–131. Springer (2008)

9. Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation
for three-valued program analysis. In: Proc. of ESOP’01. LNCS, vol. 2028, pp.
155–169. Springer (2001)

10. Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency.
In: Proc. of CONCUR’07. LNCS, vol. 4703, pp. 105–119. Springer (2007)

11. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS. pp. 203–210. IEEE
Computer Society (1988)

12. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
LICS. pp. 108–117. IEEE Computer Society (1990)

13. Nanz, S., Nielson, F., Nielson, H.R.: Modal abstractions of concurrent behaviour.
In: Proc. of SAS’08. LNCS, vol. 5079, pp. 159–173. Springer (2008)

14. Papadimitriou, C.H.: Computational complexity. Addison-Wesley Publishing Co.,
Inc., Reading, MA, USA (1994)

15. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are
modalities good for interface theories? In: ACSD. pp. 119–127. IEEE (2009)

16. Sawa, Z., Jančar, P.: Behavioural equivalences on finite-state systems are PTIME-
hard. Computing and informatics 24(5), 513–528 (2005)

17. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: Proc. of FSE’04.
pp. 43–52. ACM (2004)

