
Stubborn Set Reduction for Timed
Reachability and Safety Games

Frederik M. Bønneland, Peter G. Jensen, Kim G. Larsen,
Marco Muñiz, and Jiří Srba

Department of Computer Science, Aalborg University, Denmark
{frederikb,pgj,kgl,muniz,srba}@cs.aau.dk

Abstract. Timed games are an essential formalism for modeling time-
sensitive reactive systems that must respond to uncontrollable events
triggered by the (hostile) environment. However, the control synthesis
problem for these systems is often resource-demanding due to the state
space explosion problem. To counter this problem, we present an ex-
tension of partial order reduction, based on stubborn sets, into timed
games. We introduce the theoretical foundations on the general formal-
ism of timed game labeled transition systems and then instantiate it to
the model of timed-arc Petri net games. We provide an efficient imple-
mentation of our method as part of the model checker TAPAAL and
discuss an experimental evaluation on several case studies that show in-
creasing (sometimes even exponential) savings in time and memory as
the case studies scale to larger instances. To the best of our knowledge,
this is the first application of partial order reductions to a game formal-
ism that includes time.

1 Introduction

Even for simple concurrent systems, the reachable state space can become too
large and render formal methods such as model checking intractable. This so-
called state space explosion problem can be induced by exponentially many,
and often redundant (for the validity of the verified property), interleavings of
concurrent and independent system actions. Many methods exist for alleviat-
ing this problem, such as symmetry reductions [12,14] or parametric verification
[2,1,17]. We focus on a family of methods called (static) partial order reductions
[19,31,34], which exploit the commutativity of independent system actions to
prune redundant interleavings. The most prevalent variants of partial order re-
ductions are persistent sets [19,20], ample sets [31,32], and stubborn sets [34,35].

We combine the approaches of stubborn sets for timed systems and reachabil-
ity games, initially presented respectively in [8] and [10], into a unified method
for general timed games represented as a timed game labelled transition sys-
tem (TGLTS). As main contributions, we present a new correctness proof of the
method for preserving the existence of winning reachability strategies to accomo-
date for the timed setting. In addition, we show that our method also preserves
winning safety strategies with minimal changes to the game-theoretic framework.

0p1

t1

t2

p2

inv:≤0

p8

t7 p6

p7

t8

t4

t5

t6

p4

inv:≤1

p5

inv:≤1

t3

0

p3

[1, 1]

(a) Timed-arc Petri net game

p1:0+p3:0

p2:0+p3:0

t1

p3:0

t2

p2:0+p4:0+p5:0

t3

p4:0+p5:0

t3

p2:0+p4:0+p7:0

t6

p2:0+p5:0+p6:0

t4

p2:0+p6:0+p7:0

t4

t6

p4:0+p7:0

t8

p6:0+p7:0

t8

t4

p4:1+p5:1

1

∅

t5

p5:0+p6:0 p5:1+p6:1

t4

1

p4:1+p7:1
1

p4:1+p7:0

p5:1+p6:0

t6

t4

p6:0+p7:1

p6:1+p7:0

t4

t6

p8:0

t7

t7

t6

t6

t4

t6

t7

(b) State space generated by the net in Figure 1a

Fig. 1: Example of timed-arc Petri net game and its reachable state space

This provides, to the best of our knowledge, the first partial order reduction ap-
proach for general timed games. We instantiate our framework to Timed-Arc
Petri net Games (TAPG) [25] with inhibitor arcs, and propose syntax-driven,
overapproximation algorithms for generating stable stubborn sets. While these
algorithms are similar to the algorithms presented for timed systems and games,
we leverage further improvements by a detailed analysis of the guard and in-
varaint We implement our method in the model checker TAPAAL [13,23] and
provide an experimental evaluation to showcase the potential of our method.

Let us first intuitively introduce the model of timed-arc Petri net games [25]
that extends timed-arc Petri nets [4,21] into a game setting by splitting transi-
tions into the controllable and uncontrollable ones. In our example in Figure 1a

2

we consider the discrete time semantics (integer time delays) as in [25,26]. The
controllable (player 1) transitions are denoted as filled rectangles and the un-
controllable (player 2) transitions are shown as transparent rectangles. Places in
the net (denoted by circles) can contain tokens which are associated with non-
negative integers representing their age. For example, the places p1 and p3 each
contain a token of age 0 in the initial marking of the net. Delay actions uniformly
increase the age of tokens, but delays may be prevented in markings that are
urgent. A marking is urgent if an urgent transition (denoted with a circle inside
the rectangle) is enabled; in our example all controllable transitions are urgent.
Furthermore, a marking can be urgent due to place invariants which constrain
the allowed age of tokens in a given place, e.g. place p2 can only contain tokens
of age 0 due to the invariant inv: ≤ 0. If a marking is not urgent then a delay
action may occur which progresses the age of all tokens in the marking evenly by
some numerical value, as long as all place invarints are satisfied. Firing a transi-
tion consumes tokens from its input places, assuming that their ages fit into the
intervals on the input arcs to the transition; a missing interval stands for [0,∞).
Transition firing then produces fresh 0-age tokens to all output places. The net
also contains inhibitor arcs with circle-pointed arrow heads. For example the
place p1 is connected by an inhibitor arc to the transition t3 and the presence of
a token in p1 in the initial marking inhibits the possibility to fire t3.

In Figure 1b we can see the reachable state space of the game net. Each
state (marking) is annotated with the tokens and their ages, e.g. p4 : 1 + p7 : 0
is a marking where p4 contains a token of age 1 and p7 contains a token of 0.
Solid arrows represent player 1 and delay actions, and dashed arrows represent
player 2 actions. The objective of the controller (player 1) is to place a token to
the place p8. Indeed, the controller has a winning strategy to reach this goal by
initially playing the transition t1 after which, irrespective of the behaviour of the
environment (player 2), the target marking is reached. If instead the controller
plays from the initial marking the transition t2, the environment can enforce
to reach the empty marking ∅ with no tokens, which is clearly not a winning
strategy for the controller.

The grayed out arrows and markings can be pruned during the state space
exploration as they do not influence the existence of a winning stratety for the
controller. For example, in the marking p2:0 + p4:0 + p5:0, we can observe that
only player 2 transitions are enabled and time cannot progress either, hence
we can apply the classical stubborn set reduction and consider only one of the
possible interleavings of the transitions t4, t6 and t8.

Related work. The literature for partial order reductions for both timed sys-
tems and games is scarce and generally does not report favourable experimental
evaluation, if any at all. For timed systems, early work by Bengtsson et al. [3]
and Minea [29] provides partial order reduction methods but no experimental
evaluation to show a practical benefit. For Petri nets, various efforts have been
made. Examples include one-safe time Petri nets by Yoneda et al. [38]; however,
the method is not suitable for larger models [33]. Boucheneb et al. [5,6,7] present
a partial order reduction method for timed Petri nets but only report on exper-

3

imental results for a small amount of examples on a prototype implementation.
Lilius [28] suggests a method that allows for applying partial order reductions for
untimed systems; however, no experiments are reported. As an exception, par-
tial order reductions have been used successfully for timed systems that exhibit
urgent behaviour [8]. Furthermore, we differentiate from other approaches by
preserving both winning reachability and safety strategies as well as extending
the approach to games.

Similarly, the extent of applying partial order reductions to games has been
limited until recent notable developments. Partial order reductions for bisimu-
lation equivalence were presented in [36,22,18]; however, our approach is more
general as we allow for reduction in both controllable and uncontrollable states,
and we provide an experimental evaluation. Recently, Neele et al. [30] presented
partial order reductions for untimed parity games. This method can model check
the full modal µ-calculus, where game semantics are encoded as µ-calculus for-
mulae. This, however, includes conditions that may be redundant and weaken
the reduction potential in our less general setting where we preserve the exis-
tence of winning two-player reachability and safety strategies [9,10]. Lastly, we
preserve winning reachability and safety strategies in the presence of time, which
is not yet achieved by other approaches.

2 Preliminaries

Definition 1 (Timed Game Labelled Transition System). A Timed
Game Labelled Transition System (TGLTS) is a tuple G = (S, A1, A2,→,Goal)
where S is a set of states, A = A1∪A2 is a set of actions divided into a finite set
of player 1 actions A1 and a finite set of player 2 actions A2 where A1∩A2 = ∅,
→ ⊆ S×(A∪R≥0)×S is a determinisitic transition relation s.t. if (s, α, s′) ∈ →
and (s, α, s′′) ∈ → then s′ = s′′, and Goal ⊆ S is a set of goal states where for
all s, s′ ∈ S if (s, d, s′) ∈ → and d ∈ R≥0 then s ∈ Goal iff s′ ∈ Goal .

Let G = (S, A1, A2,→,Goal) be a fixed TGLTS for the remainder of the
section. Whenever (s, α, s′) ∈ → we write s α−→ s′. The set of enabled player
actions at a state s ∈ S is defined as en(s) = {a ∈ A | ∃s′ ∈ S. s a−→ s′}. The
set of enabled player 1 actions in a state s ∈ S is given by en1(s) = en(s) \ A2,
and similarly for player 2. Alternatively, we also refer to player 1 and 2 as the
controller and the environment, respectively. For a state s ∈ S where en(s) 6= ∅
if en2(s) = ∅ then we call s a player 1 state, if en1(s) = ∅ then we call s a
player 2 state, and otherwise we call it a mixed state. A state s is a deadlock
state if for all delays d ∈ R≥0 s.t. s d−→ s′ we have en(s′) = ∅. The TGLTS G is
called non-mixed if all states are either player 1, player 2, or deadlock states.

A state s ∈ S is zero time if time can not elapse at s. We denote the zero
time property of a state s by the predicate zt(s) and define it as zt(s) iff for all
s′ ∈ S and all d ∈ R≥0 if s d−→ s′ then d = 0. We only consider TGLTS that
satisfy the following time related axioms for all s, s′, s′′ ∈ S and all d, d′ ∈ R≥0:

4

– If s d−→ s′ and 0 ≤ d′ ≤ d then there exists sd′ ∈ S s.t. s d′−→ sd′
d−d′−−−→ s′.

– If s d−→ s′ and d = 0 then s = s′.

For a sequence of actions w = α1α2 · · ·αn ∈ (A ∪ R≥0)∗ we write s w−→ s′

if s α1−→ s1
α2−→ · · · αn−−→ s′ for some s1, . . . , sn−1 ∈ S. For an infinite sequence

w ∈ (A ∪ R≥0)ω if for every prefix w′ of w there exists s′ ∈ S s.t. s w′−→ s′ then
we write s w−→. Actions that are a part of w are said to occur in w.

A (memoryless) strategy is a function which proposes the next move either
player 1 or player 2 wants to make, where λ represents the delay action.

Definition 2 (Strategy). Let G = (S, A,→,Goal) be a TGLTS. A strategy
for a player i where i ∈ {1, 2} is a function σi : S → (R≥0×Ai)∪ {λ} where for
all s ∈ S we have:

– If σi(s) = λ then for all d ∈ R≥0 where s d−→ s′ we have σi(s′) = λ, and
• either for all d ∈ R≥0 there exists s′′ ∈ S s.t. s d−→ s′′, or
• there exists d ∈ R≥0 s.t. s d−→ s′ and for all d′ ∈ R≥0 where s′ d

′

−→ s′′ we
have eni(s′′) = ∅.

– If σi(s) = (d, a) then there exists s′ ∈ S s.t. s da−→ s′.

Let Σ1
G (ranged over by σ1) and Σ2

G (ranged over by σ2) be the set of all
possible strategies for player 1 and player 2 for a TGLTS G, respectively.

A run π = s0s1 · · · ∈ S∗ ∪Sω is a (possibly infinite) sequence of states where
for all i ≥ 0 there exists d ∈ R≥0 and a ∈ A s.t. si

da−→ si+1. The length of a
run π (number of actions in the run) is given by `(π) where `(π) =∞ if π ∈ Sω
and otherwise `(π) = n where π = s0 · · · sn. Let N0 = N ∪ {0}. A position in a
run π = s0s1 . . . ∈ S∗ ∪ Sω is a natural number i ∈ N0 that refers to the state
si and is written as πi. A position i can range from 0 to `(π) s.t. if π is infinite
then i ∈ N0 and otherwise 0 ≤ i ≤ `(π).

Let Πmax
G,σ1,σ2

(s) be the set of maximal runs subject to σ1 and σ2 starting at
s ∈ S defined as follows: π ∈ Πmax

σ1,σ2
(s) iff π0 = s and for all 0 ≤ i ≤ `(π) (or

0 ≤ i if π is infinite) we either have:

– σ1(πi) = (d1, a1) and (σ2(πi) = λ or σ2(πi) = (d2, a2) and d1 ≤ d2) and
πi

d1a1−−−→ πi+1.
– σ2(πi) = (d2, a2) and (σ1(πi) = λ or σ1(πi) = (d1, a1) and d2 ≤ d1) and
πi

d2a2−−−→ πi+1.
– σ1(πi) = σ2(πi) = λ and πi = π`(π).

Let Πmax
G,σ1

(s) =
⋃
σ2∈Σ2

G
Πmax
G,σ1,σ2

(s) be the set of all maximal runs subject to
σ1 and any possible player 2 strategy, and similarly for player 2. We omit the
TGLTS G when possible from the subscript of Πmax

G,σ1,σ2
(s) for simplicity.

Definition 3 (Winning Strategy). Let G = (S, A1, A2,→,Goal) be a TGLTS
and s ∈ S be a state. A strategy σ1 ∈ Σ1

G is a winning (reachability) strategy
for player 1 at s in G iff for all σ2 ∈ Σ2

G and for all π ∈ Πmax
σ1,σ2

(s) there exists
a position i s.t. πi ∈ Goal . A state s is winning (for player 1) if there exists a
winning strategy for player 1 at s in G.

5

Remark : We say that a state s is winning for player 2 iff s is not winning for
player 1. Similarly, a strategy for player 2 is a winning strategy at s iff there
does not exist a winning strategy for player 1 at s.

3 Stable Stubborn Reduction

We now introduce the central concept of stable reductions [10] extended to handle
timed games. First, we introduce interesting sets and safe actions.

Definition 4 (Interesting Set of Actions). Let G = (S, A,→,Goal) be a
TGLTS, s ∈ S a state, and X ⊆ S a set of target states. A set of actions
As(X) ⊆ A is called an interesting set of actions for s /∈ X if whenever w =

a1 · · · an ∈ A∗, s
w−→ s′, and s′ ∈ X then there exists 1 ≤ i ≤ n s.t. ai ∈ As(X).

If s ∈ X then As(X) = ∅.

Informally, for any run from s to a target state s′ ∈ X (with s /∈ X) there must
be at least one interesting action. For a given set of target states there may be
several possible interesting sets of actions and in the rest of this paper we assume
that one such set of interesting actions is fixed.

Let us also restate the notion of player 1 safe actions from [9,10]. Intuitively,
we require for a safe player 1 action a in a state s that the addition of a to the
beginning of an execution sequence does not hand over control to player 2 earlier
than otherwise.

Definition 5 (Safe Action). Let G = (S, A1, A2,→,Goal) be a TGLTS and
s ∈ S a player 1 state such that en2(s) = ∅. An action a ∈ A1 ∩ en1(s) is safe
in s if whenever w ∈ (A1 \ {a})∗ with s

w−→ s′ s.t. en2(s′) = ∅ and s
aw−−→ s′′ then

en2(s
′′) = ∅. The set of all safe actions for s is written as safe(s).

A reduced game is defined by a function called a reduction that for each state
proposes the set of actions to consider at that state.

Definition 6 (Reduction). Let G = (S, A,→,Goal) be a TGLTS. A reduction
is a function St : S → 2A.

Definition 7 (Reduced Game). Let G = (S, A,→,Goal) be a TGLTS and
St be a reduction. The reduced game of G by the reduction St is given by GSt =
(S, A,−→

St
,Goal) where s α−→

St
s′ iff s

α−→ s′ and α ∈ St(s) ∪ R≥0.

The set of states St(s) is the stubborn set of s with the reduction St. The set of
non-stubborn actions for s is defined as St(s) = A \St(s). We shall now present
the key definition of a stable reduction.

Definition 8 (Stable Reduction Conditions). A reduction St is called
stable if St satisfies for every s ∈ S Conditions I, Z, W, R, T, G1, G2,
S, V, and D. For a stable reduction St we call St(s) a stable stubborn set (of s).

6

I If en1(s) 6= ∅ and en2(s) 6= ∅ then en(s) ⊆ St(s).
Z If ¬zt(s) then en(s) ⊆ St(s).
W For all w ∈ St(s)

∗
and all a ∈ St(s) if s wa−−→ s′ then s aw−−→ s′.

R As(Goal) ⊆ St(s).
T As({s ∈ S | ¬zt(s)}) ⊆ St(s).
G1 If en2(s) = ∅ then As({s ∈ S | en2(s) 6= ∅}) ⊆ St(s).
G2 If en1(s) = ∅ then As({s ∈ S | en1(s) 6= ∅}) ⊆ St(s).
S en1(s) ∩ St(s) ⊆ safe(s) or en1(s) ⊆ St(s)
V If there exists w ∈ A∗2 s.t. s w−→ s′ and s′ ∈ Goal then en2(s) ⊆ St(s).
D If en2(s) 6= ∅ then there exists a ∈ en2(s) ∩ St(s) s.t. for all

w ∈ St(s)
∗
where s w−→ s′ we have a ∈ en2(s′).

Conditions I and Z ensures that all enabled actions are included in the re-
duction if a state is either non-urgent or mixed. Condition W ensures that a
stubborn action can commute with any sequence of nonstubborn actions. Condi-
tion R prevents goal states from being reachable by exploring only nonstubborn
actions. In other words, any sequence of actions leading to a goal state must
include at least one stubborn action. Conditions T, G1, and G2 are similar to
Condition R. They ensure that reachability of certain states where either time
can elapse (T, or the opposing player is allowed to make a move (G1 andG2) are
preserved. Condition S states that either all enabled stubborn player 1 actions
are safe, and otherwise all enabled player 1 actions are included in the stubborn
set. Condition V checks if it is possible to reach a goal state by firing exclusively
player 2 actions. If this is possible, then all enabled player 2 actions are included
in the stubborn set. Condition D ensures at least one player 2 action cannot be
disabled by exploring only nonstubborn actions. This condition preserves cycles
and runs of exclusively player 2 actions to deadlocks.

We can now present the first of two main theorems showing that stable
reductions preserve the winning strategies of both players in the game.

Theorem 1 (Reachability Strategy Preservation for TGLTS). Let G =
(S, A1, A2,→) be a TGLTS and St a stable reduction. A state s ∈ S is winning
for player 1 in G iff s is winning for player 1 in GSt.

Furthermore, we can show that slightly modified stable reductions also pre-
serve winning safety strategies for both players, which we define as follows.

Definition 9 (Winning Safety Strategy). Let G = (S, A1, A2,→,Goal) be
a TGLTS and s ∈ S be a state. A strategy σ1 ∈ Σ1

G is a winning safety strategy
for player 1 at s in G iff for all σ2 ∈ Σ2

G, for all π ∈ Πmax
σ1,σ2

(s), and for all
positions i we have πi /∈ Goal . A state s is a winning state (for player 1 and a
safety objective) if there exists a winning safety strategy for player 1 at s in G.

To accommodate safety, we introduce the following set of modified stable
reduction conditions.

V′ If there exists w ∈ A∗1 s.t. s w−→ s′ and s′ ∈ Goal then en1(s) ⊆ St(s).
D′ If en1(s) 6= ∅ then there exists a ∈ en1(s) ∩ St(s) s.t. for all

w ∈ St(s)
∗
where s w−→ s′ we have a ∈ en1(s′).

7

We can then state the second main theorem showing that our modified stable
reduction preserves the winning safety strategies of both players.

Theorem 2 (Safety Strategy Preservation for TGLTS). Let G = (S, A1,
A2,→) be a TGLTS and St a stable reduction with Conditions V and D replaced
by V′ and D′. A state s ∈ S is a winning state with a safety objective in G for
player 1 iff s is a winning state with a safety objective in GSt for player 1.

4 Stable Reductions on Timed-Arc Petri Net Games

We now introduce the formalism of Timed-Arc Petri net Games (TAPG) [25].
Let N∞ = N ∪ {∞}. We define the set of well-formed closed time intervals as∫ def

= {[a, b] | a ∈ N0 ∧ b ∈ N∞ ∧ a ≤ b} and its subset
∫ inv def

= {[0, b] | b ∈ N∞}
used in age invariants.

Definition 10 (Timed-Arc Petri Net Game [25]). A timed-arc Petri net
game (TAPG) is a 9-tuple N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) where

– P is a finite set of places,
– T1 and T2 are finite sets of controller and environment transitions, respec-

tively, such that T1 ∩ T2 = ∅, T = T1 ∪ T2 and P ∩ T = ∅,
– Turg ⊆ T is the set of urgent transitions,
– IA ⊆ P × T is a finite set of input arcs,
– OA ⊆ T × P is a finite set of output arcs,
– g : IA →

∫
is a time constraint function assigning guards (time intervals)

to input arcs s.t.
• if (p, t) ∈ IA and t ∈ Turg then g((p, t)) = [0,∞],

– w : IA ∪OA→ N is a function assigning weights to input and output arcs,
– Type : IA ∪ OA → Types is a type function assigning a type to all arcs

where Types = {Normal , Inhib} ∪ {Transportj | j ∈ N} such that
• if Type(z) = Inhib then z ∈ IA and g(z) = [0,∞],
• if Type((p, t)) = Transportj for some (p, t) ∈ IA then there is exactly
one (t, p′) ∈ OA such that Type((t, p′)) = Transportj,

• if Type((t, p′)) = Transportj for some (t, p′) ∈ OA then there is exactly
one (p, t) ∈ IA such that Type((p, t)) = Transportj,

• if Type((p, t)) = Transportj = Type((t, p′)) then w((p, t)) = w((t, p′)),
– I : P →

∫ inv is a function assigning age invariants to places.

Note that for transport arcs we assume that they come in pairs (for each
type Transportj) and that their weights match. Also for inhibitor arcs and for
input arcs to urgent transitions, we require that the guards are [0,∞].

Before we give the formal semantics of the model, let us fix some notation.
Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPG for the rest of the
section. We denote by •x def

= {y ∈ P ∪ T | (y, x) ∈ IA ∪ OA ∧ Type((y, x)) 6=
Inhib} the preset of a transition or a place x. Similarly, the postset is defined

8

as x• def
= {y ∈ P ∪ T | (x, y) ∈ IA ∪ OA ∧ Type((x, y)) 6= I}. We denote by

◦t
def
= {p ∈ P | (p, t) ∈ IA ∧ Type((p, t)) = Inhib} the inhibitor preset of a

transition t. The inhibitor postset of a place p is defined as p◦ def
= {t ∈ T | (p, t) ∈

IA ∧ Type((p, t)) = Inhib}. For a place p ∈ P we define the increasing preset of
p as +p

def
= {t ∈ •p | w((t, p)) > w((p, t))}, and similarly the decreasing postset

of p as p− def
= {t ∈ p• | w((t, p)) < w((p, t))}. For a transition t ∈ T we define

the decreasing preset of t as −t def
= {p ∈ •t | w((t, p)) < w((p, t))}, and similarly

the increasing postset of t as t+ def
= {p ∈ t• | w((t, p)) > w((p, t))}. For a set

X ⊆ P ∩T we extend the notation as •X =
⋃
x∈X

•x, and similarly for the other
operators. Let B(R≥0) be the set of all finite multisets over R≥0. A marking M
on N is a function M : P −→ B(R≥0) where for every place p ∈ P and every
token x ∈ M(p) we have x ∈ I (p), in other words all tokens have to satisfy the
age invariants. The set of all markings in a net N is denoted byM(N).

We write (p, x) to denote a token at a place p with the age x ∈ R≥0. Then
M = {(p1, x1), (p2, x2), . . . , (pn, xn)} is a multiset representing a marking M
with n tokens of ages xi in places pi. We define the size of a marking as |M | =∑
p∈P |M(p)| where |M(p)| is the number of tokens located in the place p. A

marked TAPG (N,M0) is a TAPG N together with an initial marking M0 with
all tokens of age 0.

Definition 11 (Enabledness). Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I)
be a TAPG. We say that a transition t ∈ T is enabled in a marking M by the
multisets of tokens In = {(p, x1p), (p, x2p), . . . , (p, x

w((p,t))
p) | p ∈ •t} ⊆ M and

Out = {(p′, x1p′), (p′, x2p′), . . . , (p′, x
w((t,p′))
p′) | p′ ∈ t•} if

– for all input arcs except the inhibitor arcs, the tokens from In satisfy the age
guards of the arcs, i.e.

∀p ∈ •t. xip ∈ g((p, t)) for 1 ≤ i ≤ w((p, t))

– for any inhibitor arc pointing from a place p to the transition t, the number
of tokens in p is smaller than the weight of the arc, i.e.

∀(p, t) ∈ IA.Type((p, t)) = I ⇒ |M(p)| < w((p, t))

– for all input arcs and output arcs which constitute a transport arc, the age
of the input token must be equal to the age of the output token and satisfy
the invariant of the output place, i.e.

∀(p, t) ∈ IA.∀(t, p′) ∈ OA.Type((p, t)) = Type((t, p′)) = Transportj

⇒
(
xip = xip′ ∧ xip′ ∈ I (p′)

)
for 1 ≤ i ≤ w((p, t))

– for all normal output arcs, the age of the output token is 0, i.e.

∀(t, p′) ∈ OA.Type((t, p′)) = Normal ⇒ xip′ = 0 for 1 ≤ i ≤ w((t, p′)).

9

A TAPG N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) defines a GLTS G(N) =
(S, A1, A2,→,Goal) where S =M(N) is the set of all markings, A1 = T1 is the
set of player 1 actions, A2 = T2 is the set of player 2 actions, Goal ⊆ M(N) is
a subset of markings, and the transition relation is defined as follows:

– If t ∈ T is enabled in a marking M by the multisets of tokens In and Out
then t can fire and produce the marking M ′ = (M r In)] Out where]
is the multiset sum operator and r is the multiset difference operator; we
write M t−→M ′ for this action transition.

– A time delay d ∈ N0 is allowed in M if
• (x + d) ∈ I(p) for all p ∈ P and all x ∈ M(p), i.e. by delaying d time

units no token violates any of the age invariants, and
• if M t−→M ′ for some t ∈ Turg then d = 0, i.e. enabled urgent transitions

disallow time passing.
By delaying d time units in M we reach the marking M ′ defined as M ′(p) =
{x+d | x ∈M(p)} for all p ∈ P ; we writeM d−→M ′ for this delay transition.

For defining the set of goal markings Goal we present a Boolean logic over
marking expressions. Let e1 and e2 be two marking expressions of N and let ϕ
be a formulae with the following syntax:

ϕ ::= true | false | t | e1 ./ e2 |deadlock | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ

where t ∈ T and ./ ∈ {<,≤,=, 6=, >,≥}. Let EN be defined by the following
syntax: e ::= c | p | e1 ⊕ e2, where c ∈ N0, p ∈ P , and ⊕ ∈ {+,−, ∗}.
We evaluate a marking expression e relative to a marking M ∈ M(N) by the
function evalM (e) where evalM (c) = c, evalM (p) = |M(p)| and evalM (e1⊕e2) =
evalM (e1)⊕ evalM (e2).

The semantics for the satisfability relationM |= ϕ for a markingM ∈M(N)
and a formula ϕ is given in the standard way for the Boolean connectives and in
particular M |= t iff t ∈ en(M), M |= deadlock iff en(M) = ∅, and M |= e1 ./ e2
iff evalM (e1) ./ evalM (e2).

Given a formula ϕ, we aim to preserve at least one run to the set of goal
markings Goal = {M ∈M(N) |M |= ϕ}. To achieve this, we use the definition
of interesting transitions AM (ϕ) relative to a formula ϕ defined in [10]. Lemma 1
shows that AM (ϕ) is indeed an interesting set of transitions, and is sufficient to
preserve Condition R.

Lemma 1 ([10]). Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPG,
M ∈ M(N) a marking, and ϕ a formula. If M 6|= ϕ and M

w−→ M ′ where
w ∈ AM (ϕ)

∗
then M ′ 6|= ϕ.

We use the overapproximation algorithm reach(N,M,ϕ) presented in [10] to
overapproximate Condition V. The algorithm returns true whenever there is a
sequence of player 2 transtions that leads us from a marking M ∈ M(N) to
a goal marking M ′ where M ′ |= ϕ in the TAPG N , and otherwise it returns
false. The desired property is stated in Lemma 2. For handling Condition V′
we simply switch all instances of environment transitions T2 with the controller
transitions T1 in reach(N,M,ϕ) and Lemma 2.

10

Lemma 2 ([10]). Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a Petri net
game, M ∈ M(N) a marking on N and ϕ a formula. If there is w ∈ T ∗2 s.t.
M

w−→M ′ and M ′ |= ϕ then reach(N,M,ϕ) = true.

Before we can state our main theorem, we need a method for determining safe
transitions. This can be done by analysing the increasing presets and postsets
of transitions as demonstrated in the following Lemma 3 from [10] that requires
a small adaptation to our setting.

Lemma 3 ([10]). Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPG
and t ∈ T a transition. If t+ ∩ •T2 = ∅ and −t ∩ ◦T2 = ∅ then t is safe in any
marking of N .

We can now state our main contribution in Theorem 3. The theorem provides
a list of syntactic conditions on TAPG that for a given marking generates a stable
stubborn set.

Theorem 3 (Stable Reduction Preserving Closure). Let N = (P, T1, T2,
Turg , IA,OA, g ,w ,Type, I) be a TAPG, ϕ a formula, and St a reduction of G(N)
such that for all M ∈M(N) the following conditions hold.

1. If en1(M) 6= ∅ and en2(M) 6= ∅ then T ⊆ St(M).
2. If ¬zt(M) then T ⊆ St(M).
3. If zt(M) then either

(a) there is t ∈ Turg ∩ en(M) ∩ St(M) where •(◦t) ⊆ St(M), or
(b) there is p ∈ P where I (p) = [a, b] and b ∈M(p) such that t ∈ St(M) for

every t ∈ p•where b ∈ g((p, t)).
4. If en1(M) ∩ St(M) * safe(M) then T ⊆ St(M).
5. AM (ϕ) ⊆ St(M)
6. If en1(M) = ∅ then T1 ⊆ St(M).
7. If en2(M) = ∅ then T2 ⊆ St(M).
8. For all t ∈ St(M) \ en(M) either

(a) there is p ∈ •t such that |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t)) and
– t′ ∈ St(M) for all t′ ∈ +p where there is p′ ∈ −t′ with Type((t′, p)) =

Type((p′, t′)) = Transportj and where g((p′, t′)) ∩ g((p, t)) 6= ∅, and
– if 0 ∈ g((p, t)) then also •p ⊆ St(M), or

(b) there is p ∈ ◦t where |M(p)| ≥ w((p, t)) such that
– t′ ∈ St(M) for all t′ ∈ p− where M(p) ∩ g((p, t′)) 6= ∅.

9. For all t ∈ St(M) ∩ en(M) we have
(a) t′ ∈ St(M) for every t′ ∈ p• where p ∈ •t and g((p, t)) ∩ g((p, t′)) 6= ∅,

and
(b) (t•)◦ ⊆ St(M).

10. If en2(M) 6= ∅ then there exists t ∈ en2(M) ∩ St(M) s.t. {t′ ∈ (•t)• | ∃p ∈
•t ∪ •t′ ∧ g((p, t′)) ∩ g((p, t)) ∩M(p) 6= ∅} ∪ +(◦t) ⊆ St(M).

11. If en1(M) = ∅ and reach(N,M,ϕ) = true then en(M) ⊆ St(M).

Then St satisfies I, Z, W, R, T, G1, G2, S, V, and D.

11

Algorithm 1: Computation of St(M) for some stable reduction St.
input : A TAPG N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) and

M ∈M(N) and formula ϕ
output : X ⊆ T where X is a stable stubborn set for M

1 if en(M) = ∅ then return T ;
2 if ¬zt(M) then return T ;
3 if en1(M) 6= ∅ ∧ en2(M) 6= ∅ then return T ;
4 Y := ∅;
5 if en1(M) = ∅ then
6 if reach(N,M,ϕ) then return T ;
7 Pick any t ∈ en2(M); Y := T1 ∪ t ∪ +(◦t) ∪

{t′ ∈ (•t)• | ∃p ∈ •t ∪ •t′ ∧ g((p, t′)) ∩ g((p, t)) ∩M(p) 6= ∅};
8 else
9 Y := T2;

10 if Turg ∩ en(M) 6= ∅ then
11 pick any t ∈ Turg ∩ en(M);
12 Y := Y ∪ {t} ∪ •(◦t);
13 else
14 pick any p ∈ P where I (p) = [a, b] and b ∈M(p)
15 forall t ∈ p• do
16 if b ∈ g((p, t)) then Y := Y ∪ {t};

17 Y := Y ∪AM (ϕ); X := Saturate(Y);
18 if X ∩ en1(M) * safe(M) then return T ;
19 return X;

In Algorithm 1 we now provide a pseudocode for calculating stable stubborn
sets for a given marking. The algorithm calls Algorithm 2 that saturates a given
set to satisfy Conditions 8 and 9.

Theorem 4. Algorithm 1 terminates and returns St(M) for some stable reduc-
tion St.

To preserve safety strategies, we can modify Algorithm 1 slightly as well as
reach(N,M,ϕ) presented in [10]. The modified algorithm returns true whenever
there is a sequence of player 1 transtions (instead of player 2 transitions) that
leads us from a marking M ∈ M(N) to a goal marking M ′ where M ′ |= ϕ in
the TAPG N . To satisfy Condition V′ we move the check at Line 6 into the else
block at Line 9. For Condition D′, we move the assignment at Line 7 also into
the else block at Line 9.

5 Implementation and Experiments

We extend the timed-arc Petri net game synthesis engine verifydtapn of
TAPAAL [26,25] with the implementation of our stubborn set reduction for
timed games and evaluate it on the following case studies.

12

Algorithm 2: Saturate(Y)

1 X := ∅;
2 while Y 6= ∅ do
3 pick any t ∈ Y ;
4 if t /∈ en(M) then
5 if ∃p ∈ •t. |{x ∈M(p) | x ∈ g((p, t))}| < w((p, t)) then
6 pick any such p;
7 if 0 ∈ g((p, t)) then
8 Y := Y ∪ (•p \X);
9 else

10 forall t′ ∈ {t′′ ∈ +p \X | Type((t′′, p)) = Transportj} do
11 forall p′ ∈ {p′′ ∈ −t′ | Type((p′′, t′)) = Type((t′, p))} do
12 if g((p′, t′)) ∩ g((p, t)) 6= ∅ then Y := Y ∪ {t′};

13 else
14 pick any p ∈ ◦t s.t. |M(p)| ≥ w((p, t));
15 forall t′ ∈ p− \X do
16 if M(p) ∩ g((p, t′)) 6= ∅ then Y := Y ∪ {t′};

17 else
18 forall p ∈ •t do Y := Y ∪ ({t′ ∈ p•|g((p, t)) ∩ g((p, t′)) 6= ∅} \X);
19 Y := Y ∪ ((t•)◦ \X);

20 Y := Y \ {t}; X := X ∪ {t};
21 return X ∩ en(M);

– The Fire Alarm (FireAlarm-N -game) models a fire alarm system developed
by a German company [15,16]. We scale the model by the number of wireless
sensors N which report to a central unit. The objective of the game is to
ensure the central unit acknowledges the messages of the sensors in the
presence of a jammer which can cause message loss.

– The Blood Transfusion (BloodTransfusion-N -game) case study models a
larger blood transfusion workflow [11], adapted to a timed game. We scale
the model by the number of patients N receiving blood transfusions. The
goal of the controller is to make sure all patients successfully finish the blood
transfusion process on schedule.

– The Limfjord (Limfjord-N -K-S) models one direction of the Limfjord lifting
bridge that connects the cities of Aalborg and Nørresundby in Northern
Jutland, Denmark. We scale the model by the number of lanes N available,
the number of cars K crossing the bridge, and the allowed interval of time S
for all the cars to cross the bridge. The environment may temporarily either
close a lane or raise the bridge to allow for boat traffic. The objective of the
controller is to ensure all cars cross the bridge within the time limit.

– The Railway Scheduling Problem (LyngbySmall-N) is a model of a smaller
variant of the Danish train station Lyngby. The problem and the station
layout was initially described in [27]. We scale the model by the number of

13

Time (seconds) Markings ×1000 Improvement
Model NORMAL POR NORMAL POR Time Markings
FireAlarm-10-game 11.24 3.75 796 498 3.00 1.60
FireAlarm-12-game 52.86 4.55 1727 526 11.62 3.28
FireAlarm-14-game 376.26 7.58 5367 554 49.64 9.69
FireAlarm-16-game 3868.19 8.75 19845 582 442.08 34.10
FireAlarm-100-game >3 hours 255.80 to 1844 - -
BloodTransfusion-3-game 3.91 3.45 612 504 1.13 1.21
BloodTransfusion-4-game 96.05 72.70 11864 8118 1.32 1.46
BloodTransfusion-5-game 2323.58 1329.11 196534 111089 1.75 1.77
Limfjord-1-6-12-game 2.48 1.11 212 75 2.23 2.83
Limfjord-1-6-20-game 4.10 1.74 423 156 2.36 2.71
Limfjord-1-10-15-game 5.82 2.16 896 336 2.69 2.67
Limfjord-1-10-20-game 9.18 2.79 1380 468 3.29 2.95
Limfjord-1-14-20-game 18.23 5.51 2550 864 3.31 2.95
Limfjord-1-14-25-game 27.98 8.10 3799 1230 3.45 3.09
Limfjord-2-6-12-game 1119.47 280.71 87718 24099 3.99 3.64
LyngbySmall-2-game 0.49 0.21 41 20 2.33 2.05
LyngbySmall-3-game 2.55 2.38 198 177 1.07 1.12
LyngbySmall-4-game 23.90 85.67 1524 4211 -3.58 -2.76
Covid-9-3-3-900-game 0.42 0.38 112 103 1.11 1.09
Covid-9-4-3-900-game 3.43 3.25 823 697 1.06 1.18
Covid-9-6-3-900-game 164.99 145.46 23609 19296 1.13 1.22

Table 1: Experiments with (POR) and without (NORMAL) partial order reduction

trains (N) entering the station. The controller’s goal is to ensure that the
trains reach their designated destinations without colliding.

– The Covid-19 Spreading (Covid-N -C-I-T -game) models activities of N per-
sons in an indoor area. The goal of the controller is to commute C persons
from one room to another via two lobbies and a corridor within T time units
while keeping person infections below I. It is not possible to maintain social
distancing at the corridor where Covid-19 exposures can occur.

All experiments are run on AMD EPYC 7642 processors with hyper-
threading disabled, limited to 30 GB of memory, and a time out of 3 hours.
The source code of our implementation is available at [24]. For all the experi-
ments, we use a depth-first search order.

Table 1 shows the experimental evaluation both without (NORMAL) and
with (POR) partial order reduction. We report the time in seconds and the
number of unique explored markings (in thousands). We also show the relative
gain and loss of using partial order reduction for both time and unique markings.
The results show a significant potential of our approach. In the FireAlarm-N -
game models, there is an exponential speed-up with partial order reductions. We
can handle up to 16 sensors without partial order reduction before the 3 hour
time out is reached. With partial order reduction, we can verify all our instances
of the model up to 100 sensors, and we observe an increasing reduction grow-

14

ing from being 3 times faster in the 10-sensor instance to more than 422 faster
in the 16-sensors instance. In the BloodTransfusion-N -game case study, we see
that as the number of patients increases, partial order reduction begins to show
increasing savings in both time and number of unique markings explored. We
observe that both the number of markings explored and the time used for explo-
ration almost halves in the largest instance. A similar tendency can be observed
in the Limfjord-K-N models where the benefit of using POR increases with the
problem-size. For the LyngbySmall-N models, while we initially see a speed-up
with 2 and 3 trains, partial order reduction with 4 trains becomes, as the only
case in our experiments, disadvantageous. Notably, in contrast to the untimed
version of the model seen in [10] where a reduction was achieved, virtually no
reduction is possible in the timed game variants, leaving only the overhead of
calculating stubborn sets. Furthermore, partial order reduction explored more
unique markings, which indicates that the reduction changed the search order
causing us to explore a larger portion of the state-space. The variants with 2
and 3 trains is the opposite where the search order causes us to explore less
of the state-space. We note here that winning strategies exist for the 2 and 3
trains models and not for the 4 trains model. Finally, in the Covid models only
moderate reduction in the state-space can be achieved (though improving with
the scaling of the model) and the synthesis time improves accordingly, showing
that our stubborn set implementation has only a small overhead.

The experiments show that of our approach is generally beneficial and has the
potential to achieve exponential speed-up, while having only moderate overhead.
The changes in search order may cause large increases in the number of markings
explored, as this is usual for on-the-fly verification algorithms.

6 Conclusion

We combined partial order reductions for timed systems and reachability games
into a unified framework for timed games on the general formalism timed game
labelled transitions systems. This required a new proof of the central theorems
to accommodate for the timed setting. Furthermore, we showed that our par-
tial order reduction approach for timed games also preserves winning safety
strategies in addition to winning reachability strategies. We instantiated our ap-
proach to the formalism of timed-arc Petri net games and suggested specialized
overapproximation algorithms. We implemented our approach in the timed-arc
Petri net game engine of the TAPAAL model checker suite and evaluated this
implementation on a set of scalable case studies. Several of the case studies
demonstrate a significant reduction (e.g. the fire alarm case study up to several
orders of magnitude in terms of time); the relative time and space reduction is
often improving with the increasing scaling of the problems. In the future work,
we consider to relax the Conditions I and Z in order to allow for reductions in
mixed and non-urgent states.

15

References

1. P.A. Abdulla, K. Cerans, B. Jonsson, and Y.K. Tsay. General Decidability The-
orems for Infinite-State Systems. In Symposium on Logic in Computer Science,
LICS’96, page 313–321. IEEE, 1996. doi:10.1109/LICS.1996.561359.

2. R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric Real-Time Reasoning. In
Symposium on Theory of Computing, STOC ’93, page 592–601. ACM, 1993. doi:
10.1145/167088.167242.

3. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions for Timed
Systems. In CONCUR, pages 485–500. Springer Berlin Heidelberg, 1998.

4. T. Bolognesi, F. Lucidi, and S. Trigila. From Timed Petri Nets to Timed LOTOS.
In Proceedings of the IFIP WG 6.1 Tenth International Symposium on Protocol
Specification, Testing and Verification X, page 395–408. North-Holland Publishing
Co., 1990. doi:10.5555/645833.670383.

5. H. Boucheneb and K. Barkaoui. Reducing Interleaving Semantics Redundancy in
Reachability Analysis of Time Petri Nets. ACM Trans. Embed. Comput. Syst.,
12(1):1–24, 2013. ACM. doi:10.1145/2406336.2406343.

6. H. Boucheneb and K. Barkaoui. Stubborn Sets for Time Petri Nets. ACM Trans.
Embed. Comput. Syst., 14(1):1–25, 2015. ACM. doi:10.1145/2680541.

7. H. Boucheneb and K. Barkaoui. Delay-Dependent Partial Order Reduction Tech-
nique for Real Time Systems. Real-Time Systems, 54(2):278–306, 2017. Springer.
doi:10.1007/s11241-017-9297-0.

8. F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba. Start Pruning
When Time Gets Urgent: Partial Order Reduction for Timed Systems. In Com-
puter Aided Verification, volume 10981 of LNCS, pages 527–546. Springer Berlin
Heidelberg, 2018. doi:10.1007/978-3-319-96145-3_28.

9. F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba. Partial Order
Reduction for Reachability Games. In CONCUR, volume 140 of Leibniz Inter-
national Proceedings in Informatics, pages 23:1–23:15. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.23.

10. F.M. Bønneland, P.G. Jensen, K.G. Larsen, M. Muñiz, and J. Srba. Stubborn Set
Reduction for Two-Player Reachability Games. arXiv preprint arXiv:1912.09875,
2019.

11. S.C. Christov, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, and E.A. Henneman. A
Benchmark for Evaluating Software Engineering Techniques for Improving Medical
Processes. In ICSE Workshop on Software Engineering in Health Care, SEHC ’10,
page 50–56. ACM, 2010. doi:10.1145/1809085.1809092.

12. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal
Logic Model Checking. Formal Methods in System Design, 9(1):77–104, 1996.
Springer Berlin Heidelberg. doi:10.1007/BF00625969.

13. A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and J. Srba.
TAPAAL 2.0: Integrated Development Environment for Timed-Arc Petri Nets. In
TACAS, volume 7214 of LNCS, pages 492–497. Springer Berlin Heidelberg, 2012.
doi:10.1007/978-3-642-28756-5_36.

14. E.A. Emerson, S. Jha, and D. Peled. Combining Partial Order and Symmetry
Reductions. In Transactions on Petri Nets and Other Models of Concurrency
XI, volume 1217 of LNCS, pages 19–34. Springer Berlin Heidelberg, 1997. doi:
10.1007/BFb0035378.

15. S. Feo-Arenis, B. Westphal, D. Dietsch, M. Muñiz, and A.S. Andisha. The Wireless
Fire Alarm System: Ensuring Conformance to Industrial Standards through Formal

16

http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.1145/167088.167242
http://dx.doi.org/10.1145/167088.167242
http://dx.doi.org/10.5555/645833.670383
http://dx.doi.org/10.1145/2406336.2406343
http://dx.doi.org/10.1145/2680541
http://dx.doi.org/10.1007/s11241-017-9297-0
http://dx.doi.org/10.1007/978-3-319-96145-3_28
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2019.23
http://dx.doi.org/10.1145/1809085.1809092
http://dx.doi.org/10.1007/BF00625969
http://dx.doi.org/10.1007/978-3-642-28756-5_36
http://dx.doi.org/10.1007/BFb0035378
http://dx.doi.org/10.1007/BFb0035378

Verification. In FM 2014: Formal Methods, volume 8442 of LNCS, pages 658–672.
Springer International Publishing", 2014. doi:10.1007/978-3-319-06410-9_44.

16. S. Feo-Arenis, B. Westphal, D. Dietsch, M. Muñiz, and A.S. Andisha P. Andreas.
The Humble Programmer. Ready for testing: ensuring conformance to industrial
standards through formal verification, 28(3):499–527, 2016. ACM. doi:10.1007/
s00165-016-0365-3.

17. S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes.
Journal of the ACM, 39(3):675–735, 1992. ACM. doi:10.1145/146637.146681.

18. R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A Partial Order Approach
to Branching Time Logic Model Checking. Information and Computation,
150(2):132–152, 1999. Elsevier. doi:10.1006/inco.1998.2778.

19. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem, volume 1032 of LNCS. Springer
Berlin Heidelberg, 1996.

20. P. Godefroid and P. Wolper. Using Partial Orders for the Efficient Verification
of Deadlock Freedom and Safety Properties. Formal Methods in System Design,
2(2):149–164, 1993. Springer Berlin Heidelberg. doi:10.1007/BF01383879.

21. H.M. Hanisch. Analysis of Place/Transition Nets With Timed Arcs and Its Ap-
plication to Batch Process Control. In Application and Theory of Petri Nets,
volume 691 of LNCS, pages 282–299. Springer Berlin Heidelberg, 1993. doi:
10.1007/3-540-56863-8_52.

22. M. Huhn, P. Niebert, and H. Wehrheim. Partial Order Reductions for Bisimula-
tion Checking. In Foundations of Software Technology and Theoretical Computer
Science, volume 1530 of LNCS, pages 271–282. Springer Berlin Heidelberg, 1998.
doi:10.1007/978-3-540-49382-2_26.

23. J.F. Jensen, T. Nielsen, L.K. Østergaard, and J. Srba. TAPAAL and Reachability
Analysis of P/T Nets. In Transactions on Petri Nets and Other Models of Concur-
rency XI, volume 9930 of LNCS, pages 307–318. Springer Berlin Heidelberg, 2016.
doi:10.1007/978-3-662-53401-4_16.

24. Peter G. Jensen. verifydtapn source code.
https://github.com/TAPAAL/verifydtapn/tree/dual_game_pw, 2021.

25. P.G. Jensen, K.G. Larsen, and J. Srba. Real-Time Strategy Synthesis for Timed-
Arc Petri Net Games via Discretization. In Model Checking Software, volume 9641
of 10580, pages 129–146. Springer International Publishing, 2016. doi:10.1007/
978-3-319-32582-8_9.

26. P.G. Jensen, K.G. Larsen, and J. Srba. Discrete and Continuous Strategies for
Timed-Arc Petri Net Games. International Journal on Software Tools for Technol-
ogy Transfer, 20(5):529–546, 2018. Springer. doi:10.1007/s10009-017-0473-2.

27. P. Kasting, M.R. Hansen, and S. Vester. Synthesis of Railway-Signaling Plans
Using Reachability Games. In Symposium on Theory of Computing, IFL’ 2016,
pages 1–13. ACM, 2016. doi:10.1145/3064899.3064908.

28. J. Lilius. Efficient State Space Search for Time Petri Nets. Electronic Notes
in Theoretical Computer Science, 18(1):113–133, 1998. Elsevier. doi:10.1016/
S1571-0661(05)80254-3.

29. M. Minea. Partial Order Reduction for Model Checking of Timed Automata. In
International Conference on Concurrency Theory, volume 1664 of LNCS, pages
431–446. Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-48320-9_30.

30. T. Neele, T.A.C. Willemse, and W. Wesselink. Partial-Order Reduction for Par-
ity Games with an Application on Parameterised Boolean Equation Systems. In
TACAS, volume 12079 of LNCS, pages 307–324. Springer International Publishing,
2020. doi:10.1007/978-3-030-45237-7_19.

17

http://dx.doi.org/10.1007/978-3-319-06410-9_44
http://dx.doi.org/10.1007/s00165-016-0365-3
http://dx.doi.org/10.1007/s00165-016-0365-3
http://dx.doi.org/10.1145/146637.146681
http://dx.doi.org/10.1006/inco.1998.2778
http://dx.doi.org/10.1007/BF01383879
http://dx.doi.org/10.1007/3-540-56863-8_52
http://dx.doi.org/10.1007/3-540-56863-8_52
http://dx.doi.org/10.1007/978-3-540-49382-2_26
http://dx.doi.org/10.1007/978-3-662-53401-4_16
http://dx.doi.org/10.1007/978-3-319-32582-8_9
http://dx.doi.org/10.1007/978-3-319-32582-8_9
http://dx.doi.org/10.1007/s10009-017-0473-2
http://dx.doi.org/10.1145/3064899.3064908
http://dx.doi.org/10.1016/S1571-0661(05)80254-3
http://dx.doi.org/10.1016/S1571-0661(05)80254-3
http://dx.doi.org/10.1007/3-540-48320-9_30
http://dx.doi.org/10.1007/978-3-030-45237-7_19

31. D. Peled. All From One, One for All: On Model Checking Using Representatives.
In Computer Aided Verification, volume 697 of LNCS, pages 409–423. Springer
Berlin Heidelberg, 1993. doi:10.1007/3-540-56922-7_34.

32. D. Peled. Combining Partial Order Reductions With On-The-Fly Model-Checking.
Formal Methods in System Design, 8(1):39–64, 1996. Springer Berlin Heidelberg.
doi:10.1007/BF00121262.

33. R.H. Sloan and U. Buy. Stubborn Sets for Real-Time Petri Nets. Formal Methods
in System Design, 11(1):23–40, 1997. Springer. doi:10.1023/A:1008629725384.

34. A. Valmari. Stubborn Sets for Reduced State Space Generation. In Advances in
Petri Nets 1990, volume 483 of LNCS, pages 491–515. Springer Berlin Heidelberg,
1991. doi:10.1007/3-540-53863-1_36.

35. A. Valmari. A Stubborn Attack on State Explosion. Formal Methods in System
Design, 1(4):297–322, 1992. Springer Berlin Heidelberg. doi:10.1007/BF00709154.

36. A. Valmari. Stubborn Set Methods for Process Algebras. In Proceedings of the
DIMACS Workshop on Partial Order Methods in Verification, POMIV ’96, page
213–231. ACM, 1997. doi:10.5555/266557.266608.

37. A. Valmari. Stubborn Set Intuition Explained, volume 10470 of LNCS, pages 140–
165. Springer Berlin Heidelberg, 2017. doi:10.1007/978-3-662-55862-1_7.

38. T. Yoneda and B.-H. Schlingloff. Efficient Verification of Parallel Real–Time
Systems. Formal Methods in System Design, 11(2):187–215, 1997. Springer.
doi:10.1023/A:1008682131325.

18

http://dx.doi.org/10.1007/3-540-56922-7_34
http://dx.doi.org/10.1007/BF00121262
http://dx.doi.org/10.1023/A:1008629725384
http://dx.doi.org/10.1007/3-540-53863-1_36
http://dx.doi.org/10.1007/BF00709154
http://dx.doi.org/10.5555/266557.266608
http://dx.doi.org/10.1007/978-3-662-55862-1_7
http://dx.doi.org/10.1023/A:1008682131325

A Proof of Theorem 1

With Lemma 4 and 5 we prove that stable reductions preserve the existence of
winning reachability strategies and hence prove Theorem 1.

Lemma 4. Let G = (S, A1, A2,→,Goal) be TGLTS and St a stable reduction.
For all s ∈ S if state s is a winning state for player 1 in G then the state s is a
winning state for player 1 in GSt.

Proof. Assume that s ∈ S is a winning state for player 1 in G. By definition we
have that there exists a player 1 strategy σ1 ∈ Σ1

G such that for all σ2 ∈ Σ2
G

and for all π ∈ Πmax
G,σ1,σ2

(s) there exists a position i s.t. πi ∈ Goal . The goal
is to construct a strategy σ′1 ∈ Σ1

GSt
based on σ1 s.t. s is a winning state for

player 1 in GSt with σ′1. We start by first constructing σ′1 and then proving it is
a winning strategy for player 1 at s in GSt.

Constructing σ′1. Assume that s is not a deadlock. There are three cases:
(1) (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s), (2) en2(s) = ∅ and zt(s), and (3)
en1(s) = ∅ and zt(s).

Case (1): (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s). Let σ1(s) = (d, a) s.t.
s

d−→ s′
a−→ s′′. If a ∈ St(s′) then σ′1(s) = σ1(s). Otherwise, a was pruned at s′

and a /∈ St(s′). This implies that the state s′ is zero-time zt(s′) since otherwise
by Condition Z we would have en(s′) ⊆ St(s′) and a ∈ St(s′). Furthermore, due
to Condition I, s′ is a player 1 state since if en2(s′) 6= ∅ then we would again
have en(s′) ⊆ St(s′) and a ∈ St(s′). Therefore Case (2) applies at s′ where some
a′ ∈ en1(s′) is proposed s.t. σ′1(s′) = (0, a′) and we let σ′1(s) = (d, a′).

Case (2): en2(s) = ∅ and zt(s). Let π ∈ Πmax
G,σ1

(s) be an arbitrary run. There
exists a minimal position i s.t. for all 0 ≤ j < i we have zt(πj), πj is a player 1
state, πj /∈ Goal , and either:

– πi is not a player 1 state,
– ¬zt(πi), or
– πi ∈ Goal .

Let w = a1a2 · · · ai ∈ A∗1 be an action sequence of player 1 actions s.t.

s
a1−→ π1

a2−→ · · · ai−→ πi

which is possible because all the states are zero-time and 0 delays do not change
the state.

We want to show that a run to πi is preserved in the reduced game and that
σ′1 brings us to that state. We proceed by induction on i with the induction
hypothesis IH (i): “If s is a player 1 and zero-time state, s w−→ πi, all intermediate

states are player 1 states, and |w| = i then there exists w′ ∈ A∗1 s.t. s w′−→
St

πi, all

intermediate states are player 1 states, and |w′| = i”. The base case where i = 0

is trivial. Let i > 0. Assume for the sake of contradiction that w ∈ St(s)
∗
. Then

by the Conditions G1, T, or R we have that en2(πi) = ∅, zt(πi), or πi /∈ Goal ,

19

respectively. In all cases we have a contradiction. Therefore, there must exist
a minimal position 0 ≤ j ≤ i s.t. aj ∈ St(s) and for all 0 ≤ k < j we have
ak /∈ St(s). We can then divide w s.t. w = vaju and we have s

aj−→ s0
v−→ πj

u−→ πi
due to Condition W. Then there are two subcases: (2.1) aj ∈ safe(s) and (2.2)
aj /∈ safe(s).

– Case (2.1): aj ∈ safe(s). For all 1 ≤ k < j we have en2(πk) = ∅ due to
j being minimal and Condition G1. From that, if aj ∈ safe(s) then for
all intermediate states in s

ajv−−→ πj we only have player 1 states otherwise
aj is not a safe action due to the definition of safe actions. We have that
s0 is a player 1 state and there exists the sequence v = a1a2 · · · aj−1 s.t.
s0

a1−→ s1
a2−→ · · · aj−1−−−→ πj and for all 1 ≤ k < j − 1 we have en2(sk) = ∅.

Clearly, we have |vu| = i−1 and all intermediate states are player 1 states. By
the induction hypothesis we have that there exists w′ = a′1a

′
2 · · · a′i−1 ∈ A∗1

s.t. s0
w′−→
St

πi, |w′| = |vu| = i − 1, and all intermediate states are player 1

states. Let s0
a′1−→
St

s′1
a′2−→
St
· · ·

a′i−1−−−→
St

πi. Since aj ∈ St(s) we have s
ajw

′

−−−→
St

πi. Let

σ′1 be defined s.t. σ′1(s) = (0, aj), σ′1(s0) = (0, a′1), and for all 1 < k < i− 1
we have σ′1(s′k) = (0, a′k+1).

– Case (2.2): aj /∈ safe(s). In this case we have en(s) ⊆ St(s) due to Con-
dition S. Therefore, for σ1(s) = (0, a1), we also have a1 ∈ en(s) ∩ St(s)
and s a1−→ π1. Clearly, we have |a2 · · · ai| = i− 1 and all intermediate states
are player 1 states. By the induction hypothesis we have that there exists
w′ = a′1a

′
2 · · · a′i−1 ∈ A∗1 s.t. π1

w′−→
St

πi, |w′| = |a2 · · · ai| = i − 1, and all

intermediate states are player 1 states. Let π1
a′1−→
St

s′1
a′2−→
St
· · ·

a′i−1−−−→
St

πi.

Since a1 ∈ St(s) we have s a1w
′

−−−→
St

πi. Let σ′1 be defined s.t. σ′1(s) = (0, a1),

σ′1(π1) = (0, a′1), and for all 1 < k < i− 1 we have σ′1(s′k) = (0, a′k+1).

Note that any run from s using σ′1 or σ1 will end up in the state πi irrelevant of
the opponents strategy as player 2 never has actions enabled before then.

Case (3): en1(s) = ∅ and zt(s). We have σ′1(s) = σ1(s) = λ due to the
definition of strategies.

From πi and onwards the constructions continues as described above.
Showing σ′1 is a winning strategy . Next we show that σ′1 is a winning

strategy at s in GSt. In the case that s is a deadlock or s ∈ Goal then σ′1 is
trivially a winning strategy. Assume for the sake of contradiction that σ′2 ∈ Σ2

GSt

is a winning player 2 strategy where there exists π ∈ Πmax
GSt,σ′1,σ

′
2
(s) s.t.

s = π0
d1a1−−−→
St

π1
d2a2−−−→
St

π2
d3a3−−−→
St
· · ·

and for all positions i we have πi /∈ Goal .

20

We want to find a strategy σ2 ∈ Σ2
G s.t. s is a winning state for player 2 at s

in G. Let σ2 be defined identically to σ′2, i.e let σ2(s) = σ′2(s) for all s ∈ S. This
is a well defined strategy since −→

St
⊆−→ due to the definition of a reduced game.

We show that it is possible to construct a run π′ ∈ Πmax
G,σ1,σ2

(s) in the original
game subject to σ1 and σ2 s.t. π′ does not visit any goal states. Assume that
it is possible to construct π′ up to the state π′i for a position i where π′i = πi.
Next, we show that we can extend π′ from π′i s.t. there exists a position j > i
s.t. π′j = πj where for all i < k ≤ j we have π′k /∈ Goal . We have the same cases
used in the construction of σ′1.

Case (1): If ai+1 ∈ A2 then we have σ2(π′i) = σ′2(π
′
i) = (di+1, ai+1) and

π′i
di+1ai+1−−−−−−→ πi+1. If ai+1 ∈ A1 then let π′i

di+1−−−→ s′. In the case that s′ is mixed or

not zero-time then we have σ1(π′i) = σ′1(π
′
i) = (di+1, ai+1) and π′i

di+1ai+1−−−−−−→ πi+1.
Clearly, in either of these two cases we have πi+1 /∈ Goal and i+1 > i. Otherwise,
s′ is a zero-time and player 1 state and σ1 and σ′1 may not propose the same
action at s′. If this is the case then Case (2) applies at s′ where we by the
construction of σ′1 have shown that both σ1 and σ′1 end up in a state πj for a
minimal position j > i. For all i < k ≤ j we have en2(π′k) = ∅ so πj is reached
unobstructed by player 2. Furthermore, we have π′k /∈ Goal and πj /∈ Goal .

Case (2): By the construction of σ′1 we have shown that both σ1 and σ′1
end up in a state πj for a minimal position j > i. For all i ≤ k < j we have
en2(π

′
k) = ∅ so πj is reached unobstructed by player 2. Furthermore, we have

π′k /∈ Goal and πj /∈ Goal .

Case (3): In this case we have σ2(π′i) = σ′2(π
′
i) = (di+1, ai+1) and π′i

di+1ai+1−−−−−−→
πi+1. Clearly, we have πi+1 /∈ Goal and i+ 1 > i.

In every case we have shown it is possible to extend the run π′ from π′i to π′j
s.t. j > i and without visiting a goal state. Inductively, we have that π′ exists.
We can therefore conclude that σ1 is not a winning strategy for player 1 at s in
G. However, this contradicts that s is a winning state for player 1 in G. Hence
π does not exist and σ′1 must be a winning strategy for player 1 at s in GSt. ut

Lemma 5. Let G = (S, A1, A2,→,Goal) be TGLTS and St a stable reduction.
For all s ∈ S if state s is a winning state for player 1 in GSt then state s is a
winning state for player 1 in G.

Proof. We prove this by contraposition.
Assume that s ∈ S is a winning state for player 2 in G. By definition we

have that there exists a player 2 strategy σ2 ∈ Σ2
G such that for all σ1 ∈ Σ1

G,
there exists π ∈ Πmax

G,σ1,σ2
(s) s.t. for all positions i we have πi /∈ Goal . The goal

is to construct a strategy σ′2 ∈ Σ2
GSt

based on σ2 s.t. s is a winning state for
player 2 in GSt with σ′2. We start by first constructing σ′2 and then proving it is
a winning strategy for player 2 at s in GSt.

Constructing σ′2. Assume that s is not a deadlock. There are three cases:
(1) (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s), (2) en2(s) = ∅ and zt(s), and (3)
en1(s) = ∅ and zt(s).

21

Case (1): (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s). Let σ2(s) = (d, a) s.t.
s

d−→ s′
a−→ s′′. If a ∈ St(s′) then σ′2(s) = σ2(s). Otherwise, a was pruned at s′

and a /∈ St(s′). This implies that the state s′ is zero-time zt(s′) since otherwise
by Condition Z we would have en(s′) ⊆ St(s′) and a ∈ St(s′). Furthermore, due
to Condition I, s′ is a player 2 state since if en1(s′) 6= ∅ then we would again
have en(s′) ⊆ St(s′) and a ∈ St(s′). Therefore Case (3) applies where some
a′ ∈ en2(s′) is proposed s.t. σ′2(s′) = (0, a′) and we let σ′2(s) = (d, a′).

Case (2): en2(s) = ∅ and zt(s). We have σ′2(s) = σ2(s) = λ due to the
definition of strategies.

Case (3): en1(s) = ∅ and zt(s). If there exists w ∈ A∗2 s.t. s w−→ s′ and
s′ ∈ Goal then due to Condition V we have en2(s) ⊆ St(s) and σ′2(s) = σ2(s).
Otherwise, let π ∈ Πmax

G,σ2
(s) be an arbitrary run where for all positions i we have

πi /∈ Goal . Let a1a2a3 · · · ∈ A∗ ∪Aω s.t.

s
d1a1−−−→ π1

d2a2−−−→ π2
d3a3−−−→ · · ·

where di ∈ R≥0 for all positions i where i > 0. There exists a minimal position i
s.t. for all 0 ≤ j < i we have zt(πj), πj is a player 2 state, πj /∈ Goal , and either:

– πi is not a player 2 state,
– ¬zt(πi),
– en(πi) = ∅, or
– `(π) =∞ and a1a2 · · · ∈ Aω2 .

In any case, for all 0 < j ≤ i we have dj = 0 and s
a1a2···ai−−−−−→ πi due to 0

delays not changing the state. Let w = a1a2 · · · ai. We will handle the fourth
case separately.

We want to show that a run to πi is preserved in the reduced game and that
σ′2 brings us to that state. We proceed by induction on i with the induction
hypothesis IH (i): “If s is a player 2 and zero-time state, s w−→ πi, and |w| = i

then there exists w′ ∈ A∗2 s.t. s w′−→
St

πi and |w′| = i”.

The base case where i = 0 is trivial. Let i > 0. Assume for the sake of
contradiction that w ∈ St(s)

∗
. Then by the Conditions G1, T, and D we have

that en1(πi) = ∅, zt(πi), and en(πi) 6= ∅, respectively for the first three cases.
In all cases we have a contradiction. Therefore, there must exist a minimal

position 0 ≤ j < i s.t. aj ∈ St(s) and for all 0 ≤ k < j we have ak /∈ St(s).
We can then divide w s.t. w = vaju and we have s

aj−→ s0
v−→ πj

u−→ πi due to
ConditionW. Clearly, we have |vu| = i−1. By the induction hypothesis we have

that there exists w′ = a′1a
′
2 · · · a′i−1 ∈ A∗2 s.t. s0

w′−→
St

πi and |w′| = |vu| = i − 1.

Let s0
a′1−→ s′1

a′2−→ · · ·
a′i−1−−−→ πi. Since aj ∈ St(s) we have s

ajw
′

−−−→
St

πi. Let σ′2 be

defined s.t. σ′2(s) = (0, aj), σ′2(s0) = (0, a′1), and for all 1 < k < i − 1 we have
σ′2(s

′
k) = (0, a′k+1). Note that there will always exist a run from s using σ′2 or σ2

that ends up in the state πi irrelevant of the opponents strategy.

22

Lastly, we have the case there π is an infinite run. In this case, due to
Theorem 8 presented in [37] and Condition D, we have that there exists

w′′ = a′′1a
′′
2 ∈ Aω2 s.t. s

a′′1−−→
St

s′′1
a′′2−−→
St
· · · . Let σ′2 be defined s.t. σ′2(s) = (0, a′′1), and

for all 1 ≤ k we have σ′2(s′′k) = (0, a′′k+1).
From πi and onwards the constructions continues as described above.
Showing σ′2 is a winning strategy . Next we show that σ′2 is a winning

strategy for player 2 at s inGSt. In the case that s is a deadlock then σ′2 is trivially
a winning strategy. Assume for the sake of contradiction that σ′1 ∈ Σ1

GSt
is a

winning strategy for player 1 s.t. for all π ∈ Πmax
GSt,σ′1,σ

′
2
(s) we have

s = π0
d1a1−−−→ π1

d2a2−−−→ π2
d3a3−−−→ · · ·

and there exists a position i s.t. πi ∈ Goal . Note that if π0 is a winning state for
player 1 in G then πj where 0 ≤ j ≤ i is also a winning state for player 1 in G
due to the definition of a winning strategy.

We want to find a strategy σ1 ∈ Σ1
G s.t. s is a winning state for player 1 at s

in G. Let σ1 be defined identically to σ′1, i.e let σ1(s) = σ′1(s) for all s ∈ S. This
is a well defined strategy since −→

St
⊆−→ due to the definition of a reduced game.

We show that it is possible to construct a run π′ ∈ Πmax
G,σ1,σ2

(s) in the original
game subject to σ1 and σ2 s.t. π′ eventually visits a goal state π′p ∈ Goal for
a position p. Assume that it is possible to construct π′ up to the state π′i for a
position i where i < p and π′i = πi. Next, we show that we can extend π′ from
π′i s.t. there exists a position j > i s.t. π′j = πj where π′j is a winning state for
player 1 in G and for all i < k < j we have π′k /∈ Goal . We have the same cases
used in the construction of σ′2.

Case (1): If ai+1 ∈ A1 then we have σ1(π′i) = σ′1(π
′
i) = (di+1, ai+1) and

π′i
di+1ai+1−−−−−−→ πi+1. If ai+1 ∈ A2 then let π′i

di+1−−−→ s′. In the case that s′ is mixed or

not zero-time then we have σ2(π′i) = σ′2(π
′
i) = (di+1, ai+1) and π′i

di+1ai+1−−−−−−→ πi+1.
Clearly, in either of these two cases we have i+ 1 > i and πj is a winning state
for player 1 in G. Otherwise, s′ is a zero-time and player 2 state and σ2 and σ′2
may not propose the same action at s′. If this is the case then Case (3) applies
at s′ where we by the construction of σ2 have shown that both σ2 and σ′2 end up
in a state πj for a minimal position j > i. For all i < k < j we have π′k /∈ Goal .
Therefore, j is the earliest position a goal state may occur in π and πj is a
winning state for player 1 in G.

Case (2): In this case we have σ1(π′i) = σ′1(π
′
i) = (di+1, ai+1) and π′i

di+1ai+1−−−−−−→
πi+1. Clearly, we have i+ 1 > i and πj is a winning state for player 1 in G.

Case (3): By the construction of σ2 we have shown that both σ2 and σ′2
end up in a state πj for a minimal position j > i. For all i < k < j we have
π′k /∈ Goal . Therefore, j is the earliest position a goal state may occur in π and
πj is a winning state for player 1 in G.

In every case we have shown it is possible to extend the run π′ from π′i to π′j
s.t. j > i and πj is a winning state for player 1 in G. Inductively, we have that π′
exists. We can therefore conclude that σ2 is not a winning strategy for player 2

23

at s in G. However, this contradicts that s is a winning state for player 2 in G.
Hence π does not exist and σ′2 must be a winning strategy for player 2 at s in
GSt. ut

B Proof of Theorem 2

The proof is split into two lemmas for each direction.

Lemma 6. Let G = (S, A1, A2,→,Goal) be TGLTS and St a stable reduction
with Conditions V and D replaced by Conditions V′ and D′. For all s ∈ S if
state s is a winning state for player 1 for a safety objective in G then the state
s is a winning state for player 1 for a safety objective in GSt.

Proof. Assume that s ∈ S is a winning state for player 1 and for a safety objective
in G. By definition we have that there exists a player 1 strategy σ1 ∈ Σ1

G such
that for all σ2 ∈ Σ2

G, for all π ∈ Πmax
G,σ1,σ2

(s), and for all positions i we have
πi /∈ Goal . The goal is to construct a strategy σ′1 ∈ Σ2

GSt
based on σ1 s.t. s is a

winning state for player 1 and for a safety objective in GSt with σ′1. We start by
first constructing σ′1 and then proving it is a winning safety strategy for player 1
at s in GSt.

Constructing σ′1. Assume that s is not a deadlock. There are three cases:
(1) (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s), (2) en2(s) = ∅ and zt(s), and (3)
en1(s) = ∅ and zt(s).

Case (1): (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s). Let σ1(s) = (d, a) s.t.
s

d−→ s′
a−→ s′′. If a ∈ St(s′) then σ′1(s) = σ2(s). Otherwise, a was pruned at s′

and a /∈ St(s′). This implies that the state s′ is zero-time zt(s′) since otherwise
by Condition Z we would have en(s′) ⊆ St(s′) and a ∈ St(s′). Furthermore, due
to Condition I, s′ is a player 1 state since if en2(s′) 6= ∅ then we would again
have en(s′) ⊆ St(s′) and a ∈ St(s′). Therefore Case (2) applies where some
a′ ∈ en1(s′) is proposed s.t. σ′1(s′) = (0, a′) and we let σ′1(s) = (d, a′).

Case (2): en2(s) = ∅ and zt(s). If there exists w ∈ A∗1 s.t. s w−→ s′ and
s′ ∈ Goal then due to Condition V′ we have en1(s) ⊆ St(s) and σ′1(s) = σ2(s).
Otherwise, let π ∈ Πmax

G,σ1
(s) be an arbitrary run where for all positions i we have

πi /∈ Goal . Let a1a2a3 · · · ∈ A∗ ∪Aω s.t.

s
d1a1−−−→ π1

d2a2−−−→ π2
d3a3−−−→ · · ·

where di ∈ R≥0 for all positions i where i > 0. There exists a minimal position i
s.t. for all 0 ≤ j < i we have zt(πj), πj is a player 1 state, πj /∈ Goal , and either:

– πi is not a player 1 state,
– ¬zt(πi),
– en(πi) = ∅, or
– `(π) =∞ and a1a2 · · · ∈ Aω1 .

24

In any case, for all 0 < j ≤ i we have dj = 0 and s
a1a2···ai−−−−−→ πi due to 0

delays not changing the state. Let w = a1a2 · · · ai. We will handle the fourth
case separately.

We want to show that a run to πi is preserved in the reduced game and that
σ′1 brings us to that state. We proceed by induction on i with the induction
hypothesis IH (i): “If s is a player 1 and zero-time state, s w−→ πi, all intermediate

states are player 1 states, and |w| = i then there exists w′ ∈ A∗1 s.t. s w′−→
St

πi, all

intermediate states are player 1, and |w′| = i”.
The base case where i = 0 is trivial. Let i > 0. Assume for the sake of

contradiction that w ∈ St(s)
∗
. Then by the Conditions G2, T, and D′ we have

that en2(πi) = ∅, zt(πi), and en(πi) 6= ∅, respectively for the first three cases.
In all cases we have a contradiction. Therefore, there must exist a minimal

position 0 ≤ j < i s.t. aj ∈ St(s) and for all 0 ≤ k < j we have ak /∈ St(s).
We can then divide w s.t. w = vaju and we have s

aj−→ s0
v−→ πj

u−→ πi due to
Condition W. Clearly, we have |vu| = i− 1. If aj ∈ safe(s) or aj /∈ safe(s) then
we proceed in a similar manner to Case 2 in Lemma 4 where if aj /∈ safe(s)
then σ′1 simply replicates σ1 until πi is reached. If aj ∈ safe(s), we proceed
with the induction. By the induction hypothesis we have that there exists w′ =
a′1a
′
2 · · · a′i−1 ∈ A∗1 s.t. s0

w′−→
St

πi, all intermediate states are player 1 states, and

|w′| = |vu| = i − 1. Let s0
a′1−→ s′1

a′2−→ · · ·
a′i−1−−−→ πi. Since aj ∈ St(s) we have

s
ajw

′

−−−→
St

πi. Let σ′1 be defined s.t. σ′1(s) = (0, aj), σ′1(s0) = (0, a′1), and for all

1 < k < i − 1 we have σ′1(s′k) = (0, a′k+1). Note that any run from s using σ′1
or σ1 will end up in the state πi irrelevant of the opponents strategy as player 2
never has actions enabled before then.

Lastly, we have the case there π is an infinite run. In this case, due to
Theorem 8 presented in [37] and Condition D′, we have that there exists

w′′ = a′′1a
′′
2 · · · ∈ Aω1 s.t. s

a′′1−−→
St

s′′1
a′′2−−→
St
· · · . Let σ′2 be defined s.t. σ′2(s) = (0, a′′1),

and for all 1 ≤ k we have σ′2(s′′k) = (0, a′′k+1).
Case (3): en1(s) = ∅ and zt(s). We have σ′1(s) = σ1(s) = λ due to the

definition of strategies.
From πi and onwards the constructions continues as described above.
Showing σ′1 is a winning safety strategy . Next we show that σ′1 is a

winning safety strategy for player 1 at s in GSt. In the case that s is a deadlock
then σ′1 is trivially a winning strategy. Assume for the sake of contradiction
that σ′2 ∈ Σ1

GSt
is a winning safety strategy for player 2 where there exists

π ∈ Πmax
GSt,σ′1,σ

′
2
(s) s.t.

s = π0
d1a1−−−→ π1

d2a2−−−→ π2
d3a3−−−→ · · ·

and there exists a position i s.t. πi ∈ Goal . Note that if π0 is a winning state
for player 2 and for a safety objective in G then πj where 0 ≤ j ≤ i is also a

25

winning state for player 2 and for a safety objective in G due to the definition
of a winning safety strategy.

We want to find a strategy σ2 ∈ Σ2
G s.t. s is a winning state for player 2

and for a safety objective at s in G. Let σ2 be defined identically to σ′2, i.e let
σ2(s) = σ′2(s) for all s ∈ S. This is a well defined strategy since −→

St
⊆−→ due to

the definition of a reduced game.
We show that it is possible to construct a run π′ ∈ Πmax

G,σ1,σ2
(s) in the original

game subject to σ1 and σ2 s.t. π′ eventually visits a goal state π′p ∈ Goal for
a position p. Assume that it is possible to construct π′ up to the state π′i for a
position i where i < p and π′i = πi. Next, we show that we can extend π′ from
π′i s.t. there exists a position j > i s.t. π′j = πj where π′j is a winning state for
player 2 and for a safety objective in G and for all i < k < j we have π′k /∈ Goal .
We have the same cases used in the construction of σ′2.

Case (1): If ai+1 ∈ A2 then we have σ2(π′i) = σ′2(π
′
i) = (di+1, ai+1) and

π′i
di+1ai+1−−−−−−→ πi+1. If ai+1 ∈ A1 then let π′i

di+1−−−→ s′. In the case that s′ is mixed or

not zero-time then we have σ1(π′i) = σ′1(π
′
i) = (di+1, ai+1) and π′i

di+1ai+1−−−−−−→ πi+1.
Clearly, in either of these two cases we have i+ 1 > i and πj is a winning state
for player 2 and for a safety objective in G. Otherwise, s′ is a zero-time and
player 1 state and σ1 and σ′1 may not propose the same action at s′. If this is the
case then Case (3) applies at s′ where we by the construction of σ1 have shown
that both σ1 and σ′1 end up in a state πj for a minimal position j > i. For all
i < k < j we have π′k /∈ Goal . Therefore, j is the earliest position a goal state
may occur in π and πj is a winning state for player 2 and for a safety objective
in G.

Case (2): By the construction of σ1 we have shown that both σ1 and σ′1
end up in a state πj for a minimal position j > i. For all i < k < j we have
π′k /∈ Goal . Therefore, j is the earliest position a goal state may occur in π and
πj is a winning state for player 2 and for a safety objective in G.

Case (3): In this case we have σ2(π′i) = σ′2(π
′
i) = (di+1, ai+1) and π′i

di+1ai+1−−−−−−→
πi+1. Clearly, we have i+ 1 > i and πj is a winning state for player 2 and for a
safety objective in G.

In every case we have shown it is possible to extend the run π′ from π′i to π′j
s.t. j > i and πj is a winning state for player 2 and for a safety objective in G.
Inductively, we have that π′ exists. We can therefore conclude that σ1 is not a
winning safety strategy for player 1 at s in G. However, this contradicts that s
is a winning state for player 1 and for a safety objective in G. Hence π does not
exist and σ′1 must be a winning safety strategy for player 1 at s in GSt. ut

Lemma 7. Let G = (S, A1, A2,→,Goal) be TGLTS and St a stable reduction
with Conditions V and D replaced by Conditions V′ and D′. For all s ∈ S if
state s is a winning state for player 1 for a safety objective in GSt then the state
s is a winning state for player 1 for a safety objective in G.

Proof. We prove this by contraposition.

26

Assume that s ∈ S is a winning state for player 2 and for a safety objective
in G. By definition we have that there exists a player 2 strategy σ2 ∈ Σ2

G such
that for all σ1 ∈ Σ1

G there exists π ∈ Πmax
G,σ1,σ2

(s) and exists a position i s.t.
πi ∈ Goal . The goal is to construct a strategy σ′2 ∈ Σ2

GSt
based on σ2 s.t. s is

a winning state for player 2 and for a safety objective in GSt with σ′2. We start
by first constructing σ′2 and then proving it is a winning strategy for player 2 at
s in GSt.

Constructing σ′2. Assume that s is not a deadlock. There are three cases:
(1) (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s), (2) en2(s) = ∅ and zt(s), and (3)
en1(s) = ∅ and zt(s).

Case (1): (en1(s) 6= ∅ and en2(s) 6= ∅) or ¬zt(s). Let σ2(s) = (d, a) s.t.
s

d−→ s′
a−→ s′′. If a ∈ St(s′) then σ′2(s) = σ2(s). Otherwise, a was pruned at s′

and a /∈ St(s′). This implies that the state s′ is zero-time zt(s′) since otherwise
by Condition Z we would have en(s′) ⊆ St(s′) and a ∈ St(s′). Furthermore, due
to Condition I, s′ is a player 1 state since if en2(s′) 6= ∅ then we would again
have en(s′) ⊆ St(s′) and a ∈ St(s′). Therefore Case (3) applies at s′ where some
a′ ∈ en2(s′) is proposed s.t. σ′2(s′) = (0, a′) and we let σ′2(s) = (d, a′).

Case (2): en2(s) = ∅ and zt(s). We have σ′2(s) = σ2(s) = λ due to the
definition of strategies.

Case (3): en2(1) = ∅ and zt(s). Let π ∈ Πmax
G,σ2

(s) be an arbitrary run. There
exists a minimal position i s.t. for all 0 ≤ j < i we have zt(πj), πj is a player 2
state, πj /∈ Goal , and either:

– πi is not a player 2 state,
– ¬zt(πi), or
– πi ∈ Goal .

Let w = a1a2 · · · ai ∈ A∗2 be an action sequence of player 2 actions s.t.

s
a1−→ π1

a2−→ · · · ai−→ πi

which is possible because all the states are zero-time and 0 delays do not change
the state.

We want to show that a run to πi is preserved in the reduced game and that
σ′2 brings us to that state. We proceed by induction on i with the induction
hypothesis IH (i): “If s is a player 2 and zero-time state, s w−→ πi, and |w| = i

then there exists w′ ∈ A∗2 s.t. s w′−→
St

πi and |w′| = i”. The base case where i = 0

is trivial. Let i > 0. Assume for the sake of contradiction that w ∈ St(s)
∗
. Then

by the Conditions G2, T, or R we have that en1(πi) = ∅, zt(πi), or πi /∈ Goal ,
respectively. In all cases we have a contradiction. Therefore, there must exist
a minimal position 0 ≤ j ≤ i s.t. aj ∈ St(s) and for all 0 ≤ k < j we have
ak /∈ St(s). We can then divide w s.t. w = vaju and we have s

aj−→ s0
v−→ πj

u−→ πi
due to Condition W. For all 1 ≤ k < j we have en2(πk) = ∅ due to j being
minimal and Condition G1. Clearly, we have |vu| = i − 1. By the induction

hypothesis we have that there exists w′ = a′1a
′
2 · · · a′i−1 ∈ A∗2 s.t. s0

w′−→
St

πi and

27

|w′| = |vu| = i − 1. Let s0
a′1−→
St

s′1
a′2−→
St
· · ·

a′i−1−−−→
St

πi. Since aj ∈ St(s) we have

s
ajw

′

−−−→
St

πi. Let σ′2 be defined s.t. σ′2(s) = (0, aj), σ′2(s0) = (0, a′1), and for all

1 < k < i−1 we have σ′2(s′k) = (0, a′k+1). Note that there will always exist a run
from s using σ′2 or σ2 that ends up in the state πi irrelevant of the opponents
strategy.

From πi and onwards the constructions continues as described above.
Showing σ′2 is a winning safety strategy . Next we show that σ′2 is a

winning safety strategy at s in GSt. We want to show what for any σ′1 ∈ Σ1
GSt

there exists a run π′ ∈ Πmax
GSt,σ′1,σ

′
2
(s) s.t.

s = π′0
d1a1−−−→
St

π′1
d2a2−−−→
St

π′2
d3a3−−−→
St
· · ·

and there exists a position i s.t. πi ∈ Goal . In the case that s is a deadlock or
s ∈ Goal then σ′2 is trivially a winning safety strategy.

Let σ1 ∈ Σ1
G be a strategy for player 1 in the original game and let it be

defined identically to σ′1, i.e. let σ1(s) = σ′1(s) for all s ∈ S. This is a well defined
strategy since −→

St
⊆−→ due to the definition of a reduced game. We know that σ2

is a winning safety strategy for player 2 at s in G, so there exists π ∈ Πmax
G,σ1,σ2

(s)
and there exists a position p s.t. πp ∈ Goal . We construct π′ ∈ Πmax

GSt,σ′1,σ
′
2
(s)

from π to show that π′ visits a goal state. Assume that it is possible to construct
π′ up to the state π′i for a position i where π′i = πi. Next, we show that we can
extend π′ from π′i s.t. there exists a position j > i s.t. π′j = πj where for all
i < k < j we have π′k /∈ Goal . We have the same cases used in the construction
of σ′2.

Case (1): If ai+1 ∈ A1 then we have σ1(π
′
i) = σ′1(π

′
i) = (di+1, ai+1),

π′i
di+1ai+1−−−−−−→ πi+1, and π′i is extended to π′i+1. If ai+1 ∈ A2 then let π′i

di+1−−−→ s′.
In the case that s′ is mixed or not zero-time then we have σ2(π′i) = σ′2(π

′
i) =

(di+1, ai+1), π′i
di+1ai+1−−−−−−→ πi+1, and π′i is extended to π′i+1. Clearly, we have

πi+1 = π′i+1 and i+1 > i. Otherwise, s′ is a zero-time and player 2 state and σ2
and σ′2 may not propose the same action at s′. If this is the case then Case (2)
applies at s′ where we by the construction of σ′2 have shown that both σ2 and
σ′2 end up in a state πj = π′j for a minimal position j > i. For all i < k < j we
have π′k /∈ Goal and j is the earliest position a goal state may occur in π.

Case (2): In this case we have σ1(π′i) = σ′1(π
′
i) = (di+1, ai+1), π′i

di+1ai+1−−−−−−→
πi+1, and π′i is extended to π′i+1. Clearly, we have πi+1 = π′i+1 and i+ 1 > i.

Case (3): By the construction of σ′2 we have shown that both σ2 and σ′2 end
up in a state πj = π′j for a minimal position j > i. For all i ≤ k < j we have
en1(π

′
k) = ∅ so πj is reached. Furthermore, we have π′k /∈ Goal and j is the

earliest position a goal state may occur in π.
In every case we have shown it is possible to extend the run π′ from π′i to π′j

s.t. j > i, πj = π′j , and for all i < k < j we have π′j /∈ Goal . Inductively, we have
that π′ eventually reaches a goal state since π eventually reaches a goal state.
Therefore, σ′2 must be a winning safety strategy for player 2 at s in GSt. ut

28

C Proof of Theorem 3

Proof. We shall argue that any reduction St satisfying the conditions of the
theorem also satisfies the I, Z, W, R, T, G1, G2, S, V, and D conditions.

– (I): Follows from Condition 1.
– (Z): Follows from Condition 2.
– (W): Let M,M ′ ∈ M(N) be markings, t ∈ St(M), and w ∈ St(M)

∗
. We

will show that if M wt−→M ′ then M tw−→M ′.
Let Mw ∈ M(N) be a marking s.t. M w−→ Mw. By contradiction assume
that t /∈ en(M). Then t is disabled in M because there is p ∈ •t such
that |{x ∈ M(p) | x ∈ g((p, t))}| < w((p, t)) or there is p ∈ ◦t such that
|M(p)| ≥ w((p, t)). In the first case, due to Condition 8a all the transitions
that can add tokens that are in the guard g((p, t)) to p are included in St(M).
Since w ∈ St(M)

∗
this implies that |{x ∈Mw(p) | x ∈ g((p, t))}| < w((p, t))

and t /∈ en(Mw) contradicting our assumption thatMw
t−→M ′. In the second

case, due to Condition 8b all the transitions that can remove at least one
token from p are included in St(M). Since w ∈ St(M)

∗
this implies that

|Mw(p)| ≥ w((p, t)) and t /∈ en(Mw), again contradicting our assumption
that Mw

t−→M ′. Therefore we must have that t ∈ en(M).
Since t ∈ en(M) there is Mt ∈ M(N) s.t. M t−→ Mt. We have to show that
Mt

w−→ M ′ is a possible execution sequence. For the sake of contradition,
assume that this is not the case. Then there must exist a transition t′ that
occurs in w that became disabled because t was fired. There are two cases:
t removed one or more tokens from a shared pre-place p ∈ •t ∩ •t′ where
g((p, t))∩g((p, t′)) 6= ∅ or t added one or more tokens to a place p ∈ t•∩◦t′. In
the first case, due to Condition 9a all the transitions that can remove tokens
that are in the guard g((p, t)) from p are included in St(M), implying that
t′ ∈ St(M). Since w ∈ St(M)

∗
such a t′ cannot exist. In the second case, due

to Condition 9b we know that (t•)◦ ⊆ St(M), implying that t′ ∈ St(M).
Since w ∈ St(M)

∗
such a t′ cannot exist. Therefore we must have that

Mt
w−→M ′ and can conlude with M tw−→M ′.

– (R): Follows from Condition 5 and Lemma 1.
– (T): Let M ∈M(N) be a marking and w ∈ St(M)

∗
s.t. M w−→M ′. We will

show that if zt(M) then zt(M ′). Assume that zt(M). Since zt(M) there are
two cases: Turg ∩ en(M) 6= ∅ or there is p ∈ P where I (p) = [a, b] and b ∈
M(p). In the first case, there is t ∈ Turg ∩en(M)∩St(M) and •(◦t) ⊆ St(M)
due to Condition 3a. For any p ∈ •t and p′ ∈ ◦t we have that |{x ∈ M(p) |
x ∈ g((p, t))}| ≥ w((p, t)) and |M(p′)| < w((p′, t)). Due to Condition 9a we
know for all t′ ∈ p• that t′ ∈ St(M) if g((p, t)) ∩ g((p, t′)) 6= ∅. Therefore
we have |{x ∈ M ′(p) | x ∈ g((p, t))}| ≥ w((p, t)) since w ∈ St(M)

∗
. Due to

•(◦t) in Condition 3a w cannot add any tokens to p′ since w ∈ St(M)
∗
and

we have that |M ′(p′)| < w((p′, t)). This implies zt(M ′). In the second case,
there is p ∈ P where I (p) = [a, b] and b ∈ M(p). Due to Condition 9b for

29

all t ∈ p• where b ∈ g((p, t)) we have that t ∈ St(M). Therefore t can never
occur in w since w ∈ St(M)

∗
and we must have that b ∈ M ′(p), implying

that zt(M ′).

– (G1): LetM ∈M(N) be a marking and w ∈ St(M)
∗
s.t.M w−→M ′. We will

show that if en2(M) = ∅ then en2(M ′) = ∅. Assume that en2(M) = ∅. Then
by Condition 7 we have T2 ⊆ St(M). Let t ∈ T2 be a player 2 transition.
By Condition 8 we know that either there exists p ∈ •t s.t. M(p) < w((p, t))
and +p ⊆ St(s), or there exists p ∈ ◦t s.t. M(p) ≥ I((p, t)) and p− ⊆ St(s).
In the first case, in order to enable t at least one transition from +p has to
be fired. However, we know +p ⊆ St(s) is true, and therefore none of the
transitions in +p can occur in w, which implies t /∈ en2(M ′). In the second
case, in order to enable t at least one transition from p− has to be fired.
However, we know p− ⊆ St(s) is true, and therefore none of the transitions
in p− can occur in w, which implies t /∈ en2(M ′). These two cases together
imply that en2(M ′) = ∅.

– (G2): Follows the same approach as G1.

– (S): Follows from Condition 4.

– (V): Follows from Condition 11 and Lemma 2. Notice that if en1(M) 6= ∅
then the antecedent of Condition V never holds if en2(M) = ∅ unless M
is already a goal marking, or M is a mixed state and the consequent of
Condition V always holds due to Condition I.

– (D): Let M ∈ M(N) be a marking and w ∈ St(M)
∗
s.t. M w−→ M ′. We

will show that if en2(M) 6= ∅ then there exists t ∈ en2(M) ∪ St(M) s.t.
t ∈ en2(M ′). Assume that en2(M) 6= ∅. From Condition 10 we know that
there exists t ∈ en2(M) ∩ St(M) s.t. {t′ ∈ (•t)• | ∃p ∈ •t ∪ •t′ ∧ g((p, t′)) ∩
g((p, t))∩M(p) 6= ∅}∪+(◦t) ⊆ St(M). Assume for the sake of contradiction
that t /∈ en2(M ′). In this case there must either exist p ∈ •t s.t. |{x ∈M ′(p) |
x ∈ g((p, t))}| < w((p, t)), or there exsits p ∈ ◦t s.t. |M ′(p)| ≥ I((p, t)). In
the first case, since t ∈ en2(M) we have that |{x ∈ M(p) | x ∈ g((p, t))}| <
w((p, t)). Therefore at least one transition t′ ∈ {t′ ∈ (•t)• | ∃p ∈ •t ∪ •t′ ∧
g((p, t′)) ∩ g((p, t)) ∩M(p) 6= ∅}, i.e. transitions that removes appropriately
ages tokens from the preset of t, has to have been fired in w. However,
due to Condition 10, we know that t′ ∈ St(M) is true, and therefore t′
cannot occur in w. This implies |{x ∈ M ′(p) | x ∈ g((p, t))}| ≥ w((p, t)),
a contradiction. In the second case, since t ∈ en2(M) we have have that
|M(p)| < I((p, t)). Therefore at least one transition from +p has to have
been fired. However, we know +(•t) ⊆ St(M) is true, and therefore none of
the transitions in +p can occur in w, which implies |M ′(p)| < I((p, t)), a
contradiction. Therefore t /∈ en2(M ′) cannot be true, and we must have that
t ∈ en2(M ′). Condition D′ follows the same approach as Condition D with
all instances of T2 switched with T1.

This completes the proof of the theorem. ut

30

D Proof of Theorem 4

Proof. Let N = (P, T1, T2, Turg , IA,OA, g ,w ,Type, I) be a TAPG, M ∈ M(N)
a marking, and ϕ a formula.

Termination. Algorithm 1 contains no loops so it is sufficient to show that
the call to Saturate(Y) in Line 17 (Algorithm 2) terminates. We observe that
the loops at Line 10, 11, 15, and 18 in Algorithm 2 iterates over subsets of places
and transitions which are finite by definition. Therefore, we now only need to
show that the while-loop in Line 2 terminates.

Assume that Y 6= ∅, and we enter the body of the while-loop. A transition
t ∈ T is chosen in Line 3 and Lines 4 to 19 is executed. As shown, every loop
in the body of the while-loop terminates, and we reach Line 20. We remove
t from Y and add t to X in Line 20. Note that during the execution of the
while-loop, a transition is added Y only if is not already in X (Lines 8, 10, 15,
and 18). Therefore, we choose a unique transition in Line 3 in every iteration of
the while-loop, and the number of transitions in X is strictly increasing every
iteration. By definition, the set of transitions T is finite the while-loop iterates
a finite number of times, and Algorithm 2 terminates.

Correctness. To show correctness we argue that Algorithm 1 and 2 imple-
ments the syntactic conditions of Theorem 3.

– Condition 1: Corresponds to the check at Line 3 in Algorithm 1.
– Condition 2: Corresponds to the check at Line 2 in Algorithm 1.
– Condition 3: Corresponds to Lines 10 to 16 in Algorithm 1.
– Condition 4: Corresponds to the check at Line 18 in Algorithm 1.
– Condition 5: Corresponds to at Line 17 in Algorithm 1.
– Condition 6: Corresponds to at Line 7 in Algorithm 1.
– Condition 7: Corresponds to at Line 9 in Algorithm 1.
– Condition 8: Corresponds to Lines 4 to 16 in Algorithm 2. Every disabled

stubborn transition t is initially added to Y is eventually picked at Line 3
before it is added to X. Therefore, the code at Lines 4 to 16 are executed
for t.

– Condition 9: Corresponds to Lines 18 to 19 in Algorithm 2. Every enabled
stubborn transition t is initially added to Y is eventually picked at Line 3
before it is added to X. Therefore, the code at Lines 18 to 19 are executed
for t.

– Condition 10: Corresponds to Line 7 in Algorithm 1.
– Condition 11: Corresponds to the check at Line 18 in Algorithm 1.

This concludes the proof. ut

31

	Stubborn Set Reduction for Timed Reachability and Safety Games

