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Abstract—Multiweighted modal automata provide a specifi-
cation theory for multiweighted transition systems that have
recently attracted interest in the context of energy games. We
propose a simple fragment of CTL that is able to express
properties about accumulated weights along maximal runs of
multiweighted modal automata. Our logic is equipped with a
game-based semantics and guarantees both soundness (formula
satisfaction is propagated to the modal refinements) as well as
completeness (formula non-satisfaction is propagated to at least
one of its implementations). We augment our theory with a
summary of decidability and complexity results of the general-
ized model checking problem, asking whether a specification—
abstracting the whole set of its implementations—satisfies a
given formula.

Keywords-weighted modal automata; model checking; decid-
ability;

I. INTRODUCTION

Modal transition systems [1] (MTS) have been recently
studied as a suitable specification formalism in connection
with step-wise design of component-based systems [2], [3].
This model is essentially a labelled transition system with
two kinds of transition relations: a may (allowed) and must
(compulsory) transition relation. During the system design
process the must-transitions must be preserved, while the
may-transitions may be omitted.

One of the key elements in model-based design is the
notion of refinement. Specifications are gradually refined
into more concrete ones until we arrive at the most concrete
specification (called implementation) that cannot be refined
any more. Taking the point of view that implementations
can be seen as (abstractions of) the final products like
executable systems we want to implement, we get the
natural notion of so-called thorough refinement: specifica-
tion S; thoroughly refines S, if any implementation of
S1 is also an implementation of So. Unfortunately, the
thorough refinement preorder is computationally hard and
deciding thorough refinement between two specifications
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is EXPTIME-complete [4]. Hence, for feasibility reasons,
thorough refinement is often approximated by modal refine-
ment (defined directly on specifications in a bisimulation-
like manner). Deciding modal refinement is possible in
deterministic polynomial time [5] and modal refinement is
a sufficient condition for concluding thorough refinement,
though not a necessary condition. [6].

On the logical counter-part of the theory, already the first
work on MTS [1] introduced Hennessy-Milner logic for
MTS with a model checking procedure on the specifications
to decide whether all of its implementations satisfy the
formula. Later, (3-valued) extensions of the problem were
considered for several branching and linear time logics [7],
[8], [9], [10], [11], [12], [13]. In this paper we study
the model checking problem for multiweighted modal au-
tomata. In comparison to other related works, we do not
deal with Kripke MTS, but we consider multiweighted
modal automata, that are finite MTS with vectors of integer
intervals as labels. These (multi-)weighted automata have
recently been in the focus of the research community but
treated mainly as reachability/infinite runs problems with
cost/energy objectives without any logical characterization.
The theory of multiweighted modal automata constitutes
an abstraction theory for multiweighted automata which we
already studied in the context of energy games [14].

As a first contribution we investigate model checking
formulae of a simple fragment of CTL with atomic propo-
sitions referring explicitly to accumulated (multi-)weights
along maximal runs in the automata. This logic is inspired
by the one we recently proposed in [15], but with the
crucial addition of a game semantics that is needed to prove
completeness with respect to refinement. More precisely, the
semantics of the logic is defined according to a game-based
interpretation with two players, the must-player and the may-
player. The intuition is that the selections of the must-player
can be realized in every possible implementation, whereas
the may-player can choose between all the design choices
of the specification that are not yet fixed. The fact that
our semantics guarantees that all implementations satisfy
a formula!, immediately implies preservation of formula

1Other works seek for the existence of one such implementation [11].



satisfaction under refinement. This leads to a new aspect
not seen in previous works, namely that of completeness of
our logic: if all implementations of a specification satisfy a
formula, so does the specification. Completeness is also of
practical interest as it allows for counterexample generation.

As our second contribution, we provide an overview of
decidability and complexity analysis of the model checking
problems for our proposed accumulated-weight logic, show-
ing that in their full generality the problems are undecidable
but by imposing some natural restrictions we get decidability
and the problems in many cases specialize to the well studied
problems in the theory. Throughout the paper, we restrict
ourselves to the four EF, EG, AF and AG fragments of CTL
as they provide a good balance between the expressiveness
of the logic for practical applications and on the other hand
allow us to conclude at least partial decidability results.

Related work: Weighted models have been widely studied
over the past years [16], [17]. Other works on quantitative
models with quantitative reasoning include [18], [19], [20].
The main difference with our model is that they do not con-
sider formalisms capable of a step-wise refinement process
like we do through the modalities.

In a very recent paper [21], the branching time logic
CTL has been extended to quantitative objectives that allow
reasoning on several accumulated weights. The underlying
model used in this work is the one of quantitative Kripke
structures and the paper presents a largest decidable frag-
ment of this logic. The logic we propose is only a fragment
of CTL extended with accumulative reasoning on multi-
weights, however, we use multiweighted modal transition
systems as the underlying specification model, not just the
implementations. Hence, contrary to others, our model is
able to express both allowed and required behaviours, and
also looseness of the quantitative information, not possible
in [21].

II. MULTIWEIGHTED MODAL AUTOMATA

We define [a,b] = {n € Z | a < n < b} for a <
b, a € ZU{—o0}, b € ZU {oo} to denote the interval
with lower bound @ and upper bound b, and we use W to
denote the set of all such intervals. A k-weight interval, for
a natural number k£ > 1, is an element W € W¥, in other
words a vector consisting of k intervals. Projection on the
i-th interval, 1 < i < k, is denoted by W [i]. Moreover, we
write W C V where W,V € W¥ iff W[i] C V|[i] for all 4,
1 < i < k. The set of all singleton intervals of the form [a, a]
is denoted by W, and by misusing the notation the set W¥
will often be identified with Z* and we refer to its elements
as k-weights or just weights. The addition of two weights
Wy, Wq € ZF is defined by (W ® W) [i] = Wy [i] + Wali].

A k-weighted modal automaton is a variant of the classical
modal transition systems [1] where transitions are labeled
by k-weight intervals (instead of actions). A k-weighted
modal automaton differs from the usual weighted automaton

by distinguishing two transition relations: the may-transition
relation expresses which transitions are optional for any
implementation, and the must-transition relation contains
those transitions that are mandatory for any implementation.

Definition 1: A k-weighted modal automaton is a tuple
S = (S, sp,wo, --+, —) where S is a set of states, s9 € S
is an initial state, wy € ZF is an initial weight, and — C
--» C SxW¥*x S are the must- and may-transition relations,
respectively.

The set of all k-weighted modal automata is de-
noted by M. Given a k-weighted modal automaton & =
(S, s0,Wp,--+,—) € M, a state s € S and a weight
w € ZF, we write S(;) for the k-weighted modal au-
tomaton (S, s,w, --+, —) where the initial state sy and
the initial weight w, are replaced by s and w, respectively.

A k-weighted modal automaton S = (.S, so, Wo, --+, —)
is an implementation iff all labels are singleton intervals
from W’f and --»=——. In other words, all allowed tran-
sitions are also implemented and all choices of concrete
weights from the interval are realized.

We shall now introduce the classical notion of modal
refinement [1] extended with the interval refinement, defined
similarly as in [15].

Deﬁnition 2: Let S; = (S“ 80,5, W05y == —>Z) for ¢ €
{1,2} be two k-weighted modal automata. We say that Sy
modally refines Sa, written as S; <,,, Sa, if Wp,1 = Wo,2 and
there is a binary relation R C Sy xS such that (s¢,1, 0,2) €
R and for all (s1,s2) € R:

1) whenever s Y{gl s} then there exists so Y[iig sh such

that W, C W, and (s}, s5) € R,

W . W
2) whenever sy —> s, then there exists s; —>; s} such
that W1 C Wo and (s}, s5) € R.

Clearly, modal refinement is a preorder. The set of all
implementations of a modal automaton S is then defined by
[STimpt ={Z | Z <,» S and 7 is an implementation }.

Example 1: Examples of 2-weighted modal automata are
drawn in Figure 1. Figure la shows a specification S of
a Mars vehicle. The vehicle has a battery and a container
for carrying rocks that it collects. The first weight denotes
changes in the battery level, while the second weight denotes
changes in the accumulated volume of rocks. In sy the
battery can be charged, while state s; enables the search for
new rocks or the deposit of a rock. The abilities to collect
a big rock and to reset are not required behaviours in a
possible implementation. The automaton 7 given in Fig-
ure 1b is a refinement of S, demonstrated by the refinement
relation {(to, so), (t1, 51), (t2, $2), (t3, s3)}. This refinement
is furthermore an implementation of S as it implements
two of the three proper may-transitions present in S (and
all must-transitions) and has all transitions labelled with k-
weights from the corresponding interval in S.
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Figure 1. Examples of 2-weighted modal automata

III. GAMES ON MULTIWEIGHTED MODAL AUTOMATA
AND LogGIC £

As motivated in the introduction, the semantics of our
logic will be based on a game characterization in order to
be able to argue for its completeness. We shall now introduce
this game.

Let S = (S, sp,wp,--+, —) be a k-weighted modal
automaton. The game is played in rounds, with two players
called the must- and may-player. The set of states S is
partitioned into must- and may-states in which it is the
turn of the must- and may-player, respectively. A must-state
is a state in which there is at least one outgoing must-
transition, otherwise the state is a may-state. Configurations
are of the form (s,w) where s € S and w € Z* is the so
far accumulated weight. Each round starts from the current
configuration (s,w), initially (sg, Wy ), and has two steps: (i)
selection of a transition and (ii) choosing a specific weight
from the weight interval of the chosen transition. Formally,

(i)a) If s is a must-state, then the must-player chooses

some must-transition (s, W, s’) € —.

b) If s is a may-state, then the may-player chooses some
may-transition (s, W, s’) €--» or decides to stop the
game.

(i1) Afterwards, if the game was not stopped and a transi-
tion (s, W, s’) was selected, the may-player chooses a
weight w’' € W.

The pair (s',w @ w’) now becomes the new current config-

uration and the game continues with a next round.

The intuition is that the must-player can only select
must-transitions in must-states and thus the selections (or
moves) of the must-player can be realized in every possible
implementation. The may-player can choose between all the
design choices of S which are not yet fixed, i.e. the may-

player can choose whether to take any may-transition (and in
this case, which one) or not, and which weight to pick from
a weight interval (both for may- as well as must-transitions).

Any maximal sequence (finite that cannot be pro-
longed using a must-transition or infinite) of configurations

(so,@o)(sl,ﬁl)... such that for all ¢ > 0, we have

W _ _ _ _ =,
s; -=» S;+1 and w;41 = w; ® v; where v; € Wy, is

called a run on S. Let runs(s,w) denote the set of all
runs starting from (s,@) on S, ). Any run complying
with the above rules (i) and (ii) is called a play in S. A
strategy of the must-player is a function ¢ that maps every
finite prefix (so,wo)(s1,W1)-.-(sr, W,) of a play, ending
in a must-state s,, to a must-transition (s,, W,s’) €—.
For a fixed strategy o of the must-player, we define the set
plays(o, (s,w)) of all plays starting from (s,w) on S, w)
in which the choice of the next must-transition is according
to 0. For a run v € runs(s,w) the projection to the i-th
configuration is denoted by ;.

We are now ready to define a fragment £ of the logic CTL
to express properties about accumulated weights of maximal
runs in multiweighted modal automata. The satisfaction
relation will be defined via the games introduced above
and we will show that the logic is sound and complete
w.r.t. refinement. In what follows let k£ implicitly represent
the number of weight coordinates.

The set of linear expressions is given by the abstract
syntax e ::= (i) - ¢ | e+ e where 1 < i <k and ¢ € Z. The
L-formulae are given by the abstract syntax

P,p1, 02 5= €D | P1 A2 | 1V o2
¥ == AGyp | AFp | EGy | EFp

where e is a linear expression, < € {<, <, =,#,> >}, b €
Z U {—00,00}.

In order to give the semantics, we first define, for a linear
expression e and a weight @ € ZF, its denotational semantics
lelz € Z by [{i) - c]& = W[i] - ¢ and [e1 + es]w =
[e1]w + [e2]w- The satisfaction of an L-formula ¢ in a
configuration (s,w) is now given in Figure 2. Notice that the
semantics of the AF and AG fragments can also be defined
using strategies. However, as these reduce essentially to one-
player games, we prefer to give their direct definitions for
clarity.

By the EF, AF, EG and AG fragments we refer to the
four main fragments of £, namely formulae of the form
EFy, AFp, EGp or AGy, respectively. If ¢ moreover does
not contain any disjunction (conjunction), we call the frag-
ment disjunction-free (conjunction-free). In the following,
for S = (.5, s, Wop, --+, —) € M, we shortly write S = ¢
whenever (sq, W) = .

Example 2: As an example of an L-formula consider
Y =EG((1) > 0A(1) <10A(2) > 0A(2) <6) in
connection with the modal automata from Figure 1. The
formula claims the existence of a strategy for the must-



$,W) Eexb iff [e]mz>b
(s,W) |= 1 and (s, ) |= @2
(s,W) [= 1 or (5,W) |= @2

Yy € runs(s, @) Yi:y; E ¢

$,W) = @1 Ao iff

= AGyp iff
s,W) = AFp iff
s,W) = EGy iff

(s, )

(s, W)

(s, W) =1 Vg iff
(s, )

(s,0) Yy € runs(s,w) Ji:v; =@
(s,w) there exists a strategy o

of the must-player such that

Vv € plays(o, (s,W)) Vi: v = ¢
(s,w) E EFyp iff  there exists a strategy o

of the must-player such that

Yy € plays(o, (s,w)) Fi:vi = ¢

Figure 2. Semantics of the logic £
Insg: if(1)=0V ((1)=1A(2)=0)
then charge else collect
Insi: if ((1) >4A(2)=0) vV (1) =3A(2) €{0,1})

then search else deposit

Figure 3. A strategy for the must-player

player such that the battery level is between 0 and 10 and
the volume of accumulated rocks is between 0 and 6 in
any configuration. By consulting Figure 1 we can see that
S E 1. No matter what weight the may-player chooses
within the intervals and regardless whether the may-player
chooses to stop or not in s3, the must-player can always
keep the two accumulated weights between the bounds. A
sufficient strategy for the must-player is seen in Figure 3.
Notice that the choice for the must-player in the state so
is always to go for a small rock, thus this is omitted in
the strategy. As we will see shortly, the logic £ is sound,
implying that an L-formula satisfied by S is also satisfied
by all refinements of S, thus 7 |= v as well.

On the other hand, the formula ¢’ = AG((1) + (2) <
20) can be easily seen not to be satisfied by S. Since the
logic £ in this paper is proved complete, it allows us to
generate counter-examples: implementations of S that do
not satisfy the formula ¢)’. Indeed, the implementation 7°
does not satisfy ¢/’ as a run may consist of continuously
charging using the selfloop in tp.

Remark 1: Note that the formula EFy cannot in general
be expressed as the negation of AG—1 as opposed to the

classical CTL. Consider for example a 1-weighted modal

S " [2,2]
automaton with just one transition sy --+ s;. Clearly,

(50,0) = EF (1) = 2 while also (sg,0) & AG (1) # 2.
Similarly, AF is not dual with EG. On the other hand, as
expected, the classical duality laws for EF and AG, as well
as AF and EG, hold on implementations.

Now we can show that satisfaction of any L-formula is
preserved by modal refinement. In particular this means that
if S = ¢ then any implementation of S also satisfies ).
The proof can be found in the full version of the paper.

Theorem 1: Let S € M be a k-weighted modal automa-
ton and ¢ be an L-formula. Then

Sy = (VTeM:T<,8 = TEY).

We shall now argue for the completeness of our logic.
The proof is more straightforward for the formulae AGy and
AFy, and for the formulae EGy and EFyp the proof relies
on the fact that in our turn-based games the absence of a
winning strategy implies the existence of a spoiling strategy
for the opponent.

Theorem 2: Let S € M be a k-weighted modal automa-
ton and 1 be an L-formula. Then

(VIE[[S]]impliz'I:i/}) - S):ﬂ)

Proof (sketch): Let S = (S, s0,Wp,--+,—) € M
be a k-weighted modal automaton. Let ¢ be a logical
composition of atomic propositions of the form e < b. Since
any k-weighted modal automaton has an implementation 7
and Z |= ¢ by assumption, necessarily also S = ¢.

Now consider the case ¢ € {AGp, AFp}. Let vs be a
run in S. Then, clearly, there exists an implementation Z €
[STimp: and a run vz in Z such that both runs have the
same length, and for all 4, the state of (y7); is in a modal
refinement relation with (vs)i, i.e. Z(y,), <m S(ys),. and
the accumulated weights of (yz); and (vs); coincide. So
essentially both runs have the same sequence of weights,
and we can conclude that S = .

Let us now consider the case ¢ € {EGy,EFyp}.
Assume that S does not satisfy ¢, i.e. S £ 1, then
there does not exist any strategy o for the must-player
such that all plays v € plays(o, (so,Wp)) satisfy the
respective property. We can infer the existence of a
spoiling strategy of the may-player as follows. First, we
define win = {(s,w) | (s,w) is a configuration in &
and must-player has a strategy in S ) witnessing 1}.
Given a configuration (s,w) in S such that (s,w) ¢ win
and s is a must-state, then for all choices of the must-player
we know that there is a next choice of the may-player
(selection of a weight from the interval) such that the next
configuration is not in win. Similarly, if s is a may-state,
we also know that there exists at least one choice of
the next (may-)transition and weight such that the next
configuration is not in win; otherwise it would contradict
with (s,w) ¢ win.

Obviously, we can construct an implementation Z of S,
in the form of a tree, for which the weights and the presence
of transitions are chosen according to the above choices of
the must- and may-players. It is clear that the must-player
does not have any strategy witnessing the formula ) since
any play in Z does not satisfy the respective property. This



contradicts our assumption that all implementations satisfy

1. Hence S = 9. [ ]

IV. DECIDABILITY AND COMPLEXITY OF THE LOGIC £

We shall now study the model checking problem for L:
given a finite k-weighted modal automaton 7 and an £-
formula ¢, the question is to decide whether 7 = 1.
As we will show, the problem is undecidable in general.
Fortunately, there are several practically usable fragments
of the logic for which we show decidability. In the rest
of this section we shall implicitly assume that all input
modal automata are finite. The first part concentrates on
undecidability results, while the two following parts study
the decidable fragments of the logic.

A. Undecidability of EF, EG and AF

We start by showing that in general the model checking
problem is undecidable for three (EF, EG, AF) of the four
fragments of the logic.

The authors of [21] propose a CTL logic on Kripke struc-
tures that can reason about multiple accumulated weights
and they show undecidability of an unnested EG formula. As
our semantics of £ corresponds to normal CTL semantics
when interpreted on implementations (the may-player has no
choices, thus the existence of a strategy corresponds to the
existence of a run), the undecidable formula constructed in
[21] can be expressed using an EG formula from our logic
L. Since the operators are dual on implementations (see
Remark 1), the model checking problems of the EG and AF
fragments of £ are undecidable, even for implementations.

Theorem 3 ([21]): The model checking problems of the
EG and AF fragments are undecidable, even for implemen-
tations.

For the EF fragment we will describe a reduction from the
halting problem of a 2-counter Minsky machine to the model
checking problem of the EF fragment of the logic. Recall
that a Minsky machine [22] consists of a finite number of
instructions and two nonnegative integer counters initially
both set to 0. Each instruction either increases one of the
counters (an increment instruction) or tests for zero and
decreases a counter (a test-and-decrement instruction). We
say that a Minsky machine halts if it is possible to reach
the last instruction called halt when starting from the first
instruction. Otherwise it loops. It is well-known that the
halting problem for Minsky machines is undecidable [22].

We now describe the reduction for the EF fragment
where the problem becomes undecidable even if we restrict
ourselves only to specifications where the may- and must-
transitions coincide (though intervals are not necessarily
singletons).

Let 1:insty; 2:insty; ...; n—1:inst,_1; n: halt be
a Minsky machine over the nonnegative integer counters ¢y
and cy. We construct a 9-weighted modal automaton & =
(S, s1,0,--+,—) € M where every may-transition is also

a must-transition and an £-formulae EFp such that (s1,0) =
EF ¢ iff the Minsky machine halts. The intuition behind the
coordinates is as follows: (1) represents the first counter,
if (3) is set to 1 then the may-player is testing if the first
counter is empty, if (5) is set to 1 then the may-player is
testing if the first counter is nonempty, if (7) is set to 1 then
the may-player indicates that an increment instruction is not
allowed. The role of the coordinates (2}, (4), (6) and (8) is
dual and corresponds to the second counter. Finally, if (9)
is nonzero, the halt instruction has been reached.

Let S = {s; | 1 < i < n} be the set of states. The
transitions are of the following types, depending on the
instructions of the Minsky machine (here 1 < 57 < 2,
1<i,k,0<n).

1) Foreach instructioni: ¢; := ¢; + 1; goto k, we
add the transitions
1,0,0,0,0,0,[0,1],0,0 e
.s,-( [0.1] )sklszl,and
(0,1,0,0,0,0,0,[0,1],0) e
. S; s if j = 2.

2) For each instruction ¢: if ¢; = 0 then goto k

else (¢; :=¢; — 1; goto [{), we add the tran-
sitions
(0,0,[0,1],0,0,0,0,0,0)
e S; 1 and
5 (~1,0,0,0,[0,1],0,0,0,0) spif j =1, and
(0,0,0,[0,1],0,0,0,0,0)
o S; Sk and
5 (0,—1,0,0,0,[0,1],0,0,0) spif j = 2.
3) Finally, we add the transition s,, (0,000,0,0,0,0,0,1) Sp-
Let now
p1=(1)=0A 3)=1 A ((5)=0
p2a=(2)=0 A (4)=1 A (6)=0
p3=(1)>0 A (B)=1 A (7)=0
ps=(2)>0 A (6)=1 A (8=0
s =(5)=0 A (T)=1
e = (6)=0 A (8)=1
wr=(9=1 A 3)=0 A (4)=0A (B)= 0 A
6y=0 A (T)=0 A (8)=

and p=p1 V @2 V o3 V 91 V 95 V ps V @r.

We now argue that (s1,0) = EF¢ iff the Minsky machine
halts. Assume first that the machine halts. Then the must-
player can reach the state s,, with some accumulated weight
w by faithfully simulating the Minsky machine. If the may-
player picks 0 in all intervals, 7 is satisfied in (s,,, w), and
thus also ¢. If, on the other hand, the may-player picks 1
in any interval, this will force 1, 2, ¥3, Y4, Y5 OF Pg
to be true. Therefore (sg,0) = EFp holds regardless of the
choices of the may-player.

Assume now that the Minsky machine does not halt. If
the must-player does not cheat, s,, can never be reached and
(7 can thus never be true. If the may-player chooses 0 in
every interval, neither (1, w2, ©3, Y4, Y5 NOr g can be



true in any configuration, hence (sg,0) = EFy can never
be true.
We investigate what happens if the must-player cheats.

This is possible either by (1) taking the transition
5 (0.0:[0,1],0:0.0.0.0.0) s while ¢; > 0 or (2) taking
5 A ROOOIA0000), il ¢y = 0 (similarly for cy).

In case (1), the may-player sets (3) = 1. Since the
accumulated weight in coordinates 3-8 can never be lowered,
(1 can still hope to be true at some point. This would be
possible if (1) = 0, but for this not to happen the may-player
sets (5) = 1 should the other player try to decrement (1).
This ensures that ¢; cannot be true, so (sg,0) = EFg can
never be true if the may-player chooses O in the remaining
intervals (unless the must-player cheats in the other counter;
here the may-player behaves analogously).

In case (2), the may-player sets (5) = 1. Now 3 can still
be true at some point. However, that would require (1) = 0,
and when incrementing (1), the may-player can set (7) = 1,
making sure that EFy cannot become true. Similarly for cs.

The above construction leads to the following theorem.

Theorem 4: The model checking problem of the EF frag-
ment is undecidable, even for specifications with intervals
but where the may- and must-transition relations coincide.

Notice that in the proof of Theorem 4 we use intervals to
argue for undecidability. We will see that this is exactly the
issue causing undecidability.

B. Decidability with Restricted Fragments

In order to obtain decidability results, we first restrict
our model to contain only singleton intervals and notice
that the EF fragment becomes decidable. Notice that this
restriction is not sufficient for the two remaining undecidable
fragments, EG and AF, since these are undecidable even for
implementations.

Notice that a formula EFy is true on a k-weighted modal
automaton iff it is true on its must-projection that is obtained
by removing all the may-transitions that do not have a corre-
sponding must-transition. The reason is that the may-player
can, in any may-state, decide to stop the game and hence the
formula ¢ must be satisfied in some configuration reachable
via must-transitions only. So in the following we assume
that --+=——. Since the intervals are assumed singletons,
we therefore need to consider only implementations. The EF
fragment was shown to be decidable for implementations in
[21] (even if we allow nesting). We thus have the following
decidability result.

Theorem 5 ([21]): The model checking problem of the
EF fragment of £ against weighted modal automata with
singleton intervals is decidable.

We shall now argue that by restricting the formulae to
contain only conjunctions, some fragments of the logic
become decidable.

First we show that with singleton intervals (though still
allowing modalities) the model checking problem for any

L-formula reduces to the same problem for a formula with
so-called simple linear expressions. A linear expression is
simple if it is of the form (i) >x1 b, where 1 € {<,>} and
beZ.

Lemma 1: Model checking of an L-formula against a
weighted modal automaton with singleton intervals is poly-
nomial time reducible to model checking an L-formula
where all linear expressions are simple.

Proof: Let S = (S, so,Wp, --+,—) be a k-weighted
modal automaton with only singleton intervals. Consider any
linear expression of the form e = (i1) - ¢y + ...+ (in) - Cp,
i1,...,in € {1,...,k}. Notice that for any modal automa-
ton with singleton intervals, step (ii) in the game can be
ignored, since the weights are already uniquely given.

We now construct a (k + 1)-weighted automa-
ton 7 = (S,s0,Wpy,--+7,—7), where w, =
(@0[1], .. ,ﬁo[k],wo[il] -Ccp + .. j— wo[’tn] . Cn). For each

w . v
s --» s’ in --» we add s --» s’ to --s7, where

v = (w[l],...,wk],w[i1] - c1 + ... + W[in] - ¢n). The set
— is constructed similarly. Now any linear expression
exib € {<, <, =#,>,>}, b € Z, is satisfied in S if
and only if the state formula (k+1) > b is satisfied in 7 for
<1 € {<, >}. The relations <, =, # and > can be modelled
using only < and >. For e < b, where d € {<, >} we
instead use e < b — 1 and e > b + 1, respectively. For i,
where 1 € {=,#} weusee <bAe>bande <bAe >Db,
respectively. [ ]

We now prove that the disjunction-free EG fragment is
decidable, by showing a reduction to the so-called multi-
weighted energy games [14].

Energy games are played on k-weighted state-based
games with weights from ZF, where the objective is to
find a strategy for the existential player such that no matter
what the universal player does, all infinite runs maintain the
accumulated weights nonnegative. For a formal definition of
energy games along with a proof of the theorem below we
refer to the full version of the paper.

Theorem 6: Model checking the disjunction-free EG frag-
ment is polynomial time equivalent to deciding the winner
of energy games with lower bound.

Determining the winner of an energy game with only
lower bounds is decidable and EXPSPACE-hard [14]. This
yields the following corollary.

Corollary 1: Model checking the disjunction-free EG
fragment on multiweighted modal automata is decidable and
EXPSPACE-hard.

Another complexity result is obtained by reducing the
model checking problem of the AG fragment to energy
games. This time to the universal version, where all runs
must maintain the accumulated weights nonnegative at all
times, giving us a polynomial time algorithm. The details of
the proof can be found in the full version of the paper.

Theorem 7: Model checking the disjunction-free AG frag-
ment is in P.
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Figure 4.  Translation of (s, ([¢,u]),s’) € --» into singleton weighted
transitions

Let us now prove the decidability of the full AG fragment.

C. Decidability of AG

In order to prove that the AG fragment of L is decid-
able, we need the following lemma, stating that the weight
intervals can be reduced to singleton intervals when model
checking a formula in the EG or AG fragment.

Lemma 2: Let S € M be a k-weighted modal automaton
and ¢ be a formula from the EG or AG fragment. We can
in polynomial time construct a k-weighted modal automaton
T € M with singleton intervals such that

SEv iff TgEq.
Proof: In order to bypass the exponential blow up that

. . . [¢,u]
the straightforward reduction of a transition s --» §', £, u €
Z, (even in the case of k = 1) to u — ¢ different singleton
weighted transitions from s to s’ would give, we instead

use the following construction. Each transition s Y, s’ in
S is translated into a number of transitions in 7. For each
coordinate i of W one of the gadgets depicted in Figure
4 is chosen. Notice that the figure is shown for &k = 1.

Otherwise zeros are put into coordinates different from 7. In

case s ~s s in S the transition from s to s” in each gadget
must be a must-transition as well. The k£ selected gadgets
(Figure 4a-4d) for each coordinate are then connected to
each other in series in any order. What gadget to use depends
on the specific interval, and we thus distinguish between the
following three cases.

Both bounds are integers: In this case coordinate 7 of
W is bounded by the interval [/,u], f,u € Z. We can
assume that the size of the interval, v — ¢, is written in
binary using r + 1 bits as b.b,_; ...b1bg such that b, = 1.
The corresponding gadget is given in Figure 4a. We add the

. 4 .
lower bound of the interval first (s --» s;), and using the
remaining construction we let the may-player construct a
value j € {0,...,u — ¢}, simulating the game semantics of
1, where the may-player chooses a weight in each weight
. . . b,-2"
interval. To see this we observe that taking the path s, --»

by_1-27 1 by_o-272 b1-28  bg-2° 0
tr—1  —-* tp_o -3 L=ty -t -5 & (the

uppermost path) corresponds to the may-player constructing
u — £ and thus picking the weight u from W. Taking the
lowermost path along transitions with weight 0 corresponds
to picking the weight ¢, while any other path from s to s’
builds a weight between ¢ and u. Notice that the may-player
cannot construct a weight larger than u — ¢, since he only
moves to the lowermost part of the figure (where he can
construct any number for the remaining bits) if he chooses
0 for any of the bits in u — ¢ set to 1.

One bound is an integer, one bound is not: In the second
case, where coordinate i of W is bounded below by —o
or above by co (but not both) we use either the gadget in
Figure 4b or the gadget in Figure 4c. We start by adding the
upper bound (in case the lower bound is —co) or the lower
bound (in case the upper bound is co) and then decrease (or
increase) the first coordinate by an arbitrary number.

Both bounds are not integers: The last case, where the
interval equals the set Z, we use the gadget depicted in
Figure 4d in order to decrease or increase the weight
arbitrarily.

Now S |= ¢ if and only if 7 |= «. This is true since
the may-player cannot choose the weights differently in 7°
than he could have done in S. The may-player can however
choose to stop anywhere inside the gadget, but this cannot
break the satisfiability of ¢ due to the G quantifier. [ ]

Let us now prove the decidability of the AG fragment.

Theorem 8: The model checking problem of the AG
fragment of £ is decidable.

Proof: Let S € M and let AGy be a formula from the
AG fragment. By Lemma 2 we can reduce S to a weighted
modal automaton with only singleton intervals. Furthermore
we may consider only the may-projection of S obtained
by turning all may-transitions into must-transitions, thus
obtaining the most permissible implementation. Now ¢ must
be satisfied in every reachable configuration. Since S is an



implementation, AGy corresponds to checking the negation
of EF—¢ and hence it is decidable by Theorem 5. ]

V. CONCLUSION

We studied multiweighted modal automata and proposed
a fragment of CTL in order to reason about the accumulated
weights gathered along the execution of the system, a
practically motivated problem where one of its particular
instances called energy games has recently become an active
research topic. The semantics of the logic is given in terms
of two-player games and the definitions were justified by
showing that the fragment is both sound and, contrary to the
previous attempts, also complete. We believe that a game-
semantics is necessary for achieving the completeness of the
logic, and the paper takes a first step in this direction. We
showed that the logic is in general undecidable, but there
are reasonable fragments that are practically interesting and
remain decidable.

There are various directions for future works. Clearly,
larger fragments of CTL (or generally of the p-calculus),
should be identified for which both soundness and complete-
ness can be obtained. The corresponding AU/EU and AR/ER
fragments of CTL may also be investigated. As the model
checking problem is in general undecidable, a possible way
to attack the problem can be to extend our framework to
a three-valued formalism with refinement, like in the spirit
of [12]. Another direction for future work is to extend the
results to a more general setting using lattices, as in [23].
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APPENDIX

The appendix contains proofs that are omitted in the main
part of the paper due to space limitations.

Remark. We note that although we have omitted actions
from the definition, this is not a real restriction: given a finite
set of actions ¥ = {a1,...,a,} and a k-weighted modal
automaton, we can encode the actions in a (k+n)-weighted
modal automaton by introducing for every i-th action a; €
3, 1 <i < n, anew weight coordinate k + 7 which equals
1 iff the transition is labelled by action a, and 0 otherwise.

Theorem 1. Let S € M be a k-weighted modal automaton
and ¢ be an L-formula. Then

Sky — (VTeM:T<,8 = TEY).

Proof: 1t is clear that the theorem holds for any formula
¢ which is a logical combination of atomic propositions,
because it only refers to the current accumulated weight
(which is 0 in the initial configuration). Let ¢ be a logical
combination of atomic propositions, and let ¥ be a formula
of the form EFy, EGy, AFp, AGp. Let 7 € M be a k-
weighted modal automaton such that 7 <,,, S.

For the case ¢ € {AGy, AFp}, consider a run vz in 7. It
is clear that from the modal refinement 7 <,,, S it follows
that there exists a run s in S such that both runs have the
same length, and for all ¢, the state of (y7); is in a modal
refinement relation with (7s);, i.e. 7(y,), <m S(ys),» and
the accumulated weights of (y7); and (s); coincide. Hence
T E 9.

Consider now the case ¢ € {EGyp, EF¢}. By assumption
we know that there is a strategy o for the must-player that
witnesses S |= 1. We can iteratively construct a strategy o’
for the must-player on 7 as follows. Assume a configuration
(t,w) with a must-state ¢ that is related (the states are related
by modal refinement and the weights are the same) to a
configuration (s,w) of S such that there is a strategy for
the must-player witnessing S, ) = 1. So for (s,w) there
exists a choice of the next must-transition such that for
any choice of the weight of the may-player, in the next
configuration there is again a strategy for the must-player
which witnesses the satisfaction of . This must-transition
is also present in 7, due to modal refinement, hence the
choice of the must-transition by o can be simulated by the
strategy o’ in 7 . Finally, note that the may-player in 7 has at
most the choices (for weights and may-transitions) as there
are in S. Hence T = ). [ |

Definition of an energy game: A k-weighted energy game
is a four tuple G = (S1,S52,50,—) where S; and S

are finite disjoint sets of existential and universal states,
respectively, s € S; U Sy is the start state and — C
(S1USs) X ZF x (S1USy) is a finite multiweighted transition
relation. Furthermore a k-weighted game is non-blocking,
meaning that all states have some outgoing transition.

Configurations, plays and strategies are defined simi-
larly to the same terms on k-weighted modal automata.
A configuration is a pair (s,w), where s € S; U Sy and
w € 7, while a play is an infinite sequence of configura-
tions (80,@0)(81,@1) ... such that (Si,ﬁi,SH_l) €— and
w; +v; = w;y for all ¢ > 0. A strategy for the existential
player is a mapping o from each finite prefix of a play
(s0,Wp) - .. (Sn,Wy) such that s, € S; to a configuration
(841, Wnt1) such that (so, Wo) - . . (Sp, Wn ) (Snt1, Wnr1) 18
a prefix of a play in G. Given a strategy o, the set of all plays
in G of the form (sg,wo)(s1,W1) ..., where Wy = 0 and
U((So,ﬁo)...(sn,@n)) = (Sn—&-lamn-&-l) for all Sn € Sl
is called plays(o, G). Given a k-weighted game G and a
b € N*, the energy game with upper bound asks whether
there exists a strategy o for the existential player such that
all (sg,Wo), (s1,W1)... € plays(o,G) satisfy 0 < w; < b
for all i. If we have only the requirement of 0 < w; for all
1, we call it an energy game with lower bound.

Theorem 6. Model checking the disjunction-free EG frag-
ment is polynomial time equivalent to deciding the winner
of energy games with lower bound.

Proof: Let S = (S, so,w, --»,—) be a k-weighted
modal automaton. We will first reduce the model checking
problem of EG on S to an energy game with only lower
bounds.

Due to Lemma 2 we can assume that S is a weighted
modal automaton with singleton intervals. This ensures
that we can apply Lemma 1 and assume that all linear
expressions in ¢ are simple. First, we notice that any such
© can be rewritten to an equivalent form

k k
so(/\<i>zfi>A</\<i>§ui> : (1)
i=1 i=1
where {;,u; € Z U {—o00,00} and ¢; = —oo implies
u; = oo. This follows since a coordinate with no upper
bound can safely be bounded above by oo and a coordinate
with no lower bound can safely be bounded below by
—o0. In addition a coordinate with an upper bound and no
lower bound can be simulated using only a lower bound by
multiplying all weights on transitions and the bound in this
coordinate by —1. It is clear that there exits a unique /;
giving the largest lower bound and a unique w,; giving the
smallest upper bound for each ¢ € {1,...,k} should there
be multiple constrains related to the coordinate <.

We shall now reduce the model checking problem for
EGy to a k-weighted energy game. The game Gg =
(S1,52,86,—¢) is constructed from S by splitting S
into two sets, such that sg = sg, S1 = {s € S |



s — &' for some s’ € S} (the existential states) and
So = S\S1U{s’} (the universal states). The state s’ is added
to S5 in order to capture the fact that any may-transition
can be dropped. In any universal state we therefore add
a transition to s’ with 0 as weight. Furthermore s’ has a
selfloop also with 0 as weight vector in order to ensure a
non-blocking game. Hence we define

e =—U->U{s Sgs|se 8 uls Lg s}

Now S satisfies EGyp iff there exists a strategy o for
the existential player in Gs such that any infinite play that
proceeds according to o and starts in s with initial weight
(W[1]—4y, ..., w[k]—£)) has accumulated weights which are
always nonnegative and do not exceed (u; —¥1, ..., ur—Lg).
As proved in [14] it is possible to remove the upper bounds
by doubling the number of weights, hence we get an
equivalent instance of the lower bound energy game with
2k weights.

To conclude the other direction of the proof, we can real-
ize that any k-weighted energy game G = (51, S2, sg, —)
with only lower bounds can be reduced to a modal au-
tomaton S with singleton intervals by turning all transitions
s — s, where s € S, into only may-transitions. Clearly,

the existential player wins the energy game with initial
weight wy iff S = EG((1) > 0A ... A (k) >0). ]

Theorem 7. Model checking the disjunction-free AG frag-
ment is decidable in P.

Proof: By using the same reductions as in the proof
of Theorem 6, we find an equivalence with the universal
energy game with only lower bounds. The only modification
is that after constructing the game Gs = (51, Se, s¢, —¢
) we make another game Gs = (0,51 U Sa, s, —¢a),
such that all states belong to the universal player. Deciding
a universal energy game (regardless of the bounds) can be
done in polynomial time [24]. ]



