
TCTL-Preserving Translations from Timed-Arc Petri
Nets to Networks of Timed Automata

Joakim Byg, Morten Jacobsen, Lasse Jacobsen, Kenneth Yrke Jørgensen1,
Mikael Harkjær Møller1, Jǐŕı Srba1

Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300, 9220
Aalborg East, Denmark

Abstract

We present a framework for TCTL-preserving translations between time-
dependent modelling formalisms. The framework guarantees that once the
original and the translated system are in one-by-many correspondence relation
(a notion of behavioural equivalence between timed transition systems) then
TCTL properties of the original system can be transformed too while preserv-
ing the verification answers. We demonstrate the usability of the technique
on two reductions from bounded timed-arc Petri nets to networks for timed
automata, providing unified proofs of the translations implemented in the veri-
fication tool TAPAAL. We evaluate the efficiency of the approach on a number
of experiments: alternating bit protocol, Fischer’s protocol, Lynch-Shavit pro-
tocol, MPEG-2 encoder, engine workshop and medical workflow. The results
are encouraging and confirm the practical applicability of the approach.

Keywords: formal verification, TCTL, timed-arc Petri nets, timed automata

1. Introduction

Formal verification of embedded and hybrid systems is an active research
area. Recently, a lot of attention has been devoted to the analysis of sys-
tems with quantitative attributes like timing, cost and probability. In par-
ticular, several different time-dependent models have been developed over
the two last decades or so. These models are often introduced as time ex-
tensions of well-studied untimed formalisms and include, among others, net-
works of timed automata [5, 6] and different time extensions of the Petri
net model [42]. These formalisms are nowadays supported by a number of

Email addresses: joakim@aptusoft.com (Joakim Byg), morten.jacobsen.2k@gmail.com
(Morten Jacobsen), lassejacobsen@gmail.com (Lasse Jacobsen), kyrke@ist.aau.dk
(Kenneth Yrke Jørgensen), m@mikael.hm (Mikael Harkjær Møller), srba@cs.aau.dk (Jǐŕı
Srba)

1The authors were supported by VKR Center of Excellence MT-LAB.

Preprint submitted to Elsevier August 7, 2013

tools [8, 16, 17, 32, 23, 25, 11, 27] and applied in model-driven system design
methodologies.

We shall focus on the Petri net model extended with continuous time. The
timing aspects can be associated with different parts of the model in the various
time-extended Petri net formalisms. For example, timed transitions Petri nets
where transitions are annotated with their durations were proposed in [43].
A model in which time parameters are associated with places is called timed
places Petri nets and it was introduced in [44]. Time Petri nets of Merlin
and Faber [35, 36] were introduced in 1976 and associate time intervals to each
transition. The intervals define the earliest and latest firing time of the transition
since it became enabled. Yet another model of timed-arc Petri nets (TAPN)
was first studied around 1990 by Bolognesi, Lucidi, Trigila and Hanisch [12, 26].
Here time information is attached to the tokens in the net representing their
relative age while arcs from places to transitions contain time intervals that
restrict the enabledness of the transitions (see [29] for a recent introduction to
TAPNs). For an overview of the different extensions consult e.g. [15, 51, 40,
47]. The TAPN model is particularly suitable for modelling of manufacturing
systems, workflow management and similar applications [4, 2, 38, 49, 50, 39]
and a recently developed tool TAPAAL [19, 23] enables automatic verification
of bounded TAPNs extended with transport/inhibitor arcs and age invariants.

One way to verify formal models is via a translation to another formalism
with a well-established tool support and indeed, several such translations have
already been developed (see e.g. [47] for an overview). Many of the translations
utilize similar tricks that allow for the simulation of one system by another.
Typically, a single step in one formalism is simulated by a sequence of steps in
the other one. Inspired by the translations presented in the literature [21, 14,
24, 30, 9] we identify a general class of model transformations that preserve the
satisfiability of Timed Computation Tree Logic (TCTL) [41], a logic suitable for a
practical specification of many useful temporal properties. The main goal of this
article is to provide a general proof framework directly applicable to the kinds
of translations often implemented by the tool developers, and to demonstrate
its applicability by presenting two concrete translations from timed-arc Petri
nets to networks of timed automata that proved to be the most efficient and are
implemented in the tool TAPAAL.

Unlike much work on TCTL where only infinite alternating runs are con-
sidered [41] or the details of the semantics are not fully discussed [21, 13], we
consider also finite maximal runs that appear in the presence of stuck com-
putations or time invariants (strict or nonstrict) and treat the semantics in
its full generality as necessary for the correct semantics of the models used in
many tools including e.g. Uppaal [8]. This is particularly important for live-
ness properties. While some translations in the literature (not necessarily only
between timed-arc Petri nets and timed automata) preserve some variant of
timed bisimilarity [21, 14, 24, 30], other translations preserve only reachability
or trace equivalence [9, 18]. Our framework allows us to argue that several such
translations preserve the full TCTL or at least its safety fragment.

Further we propose two novel TCTL-preserving translations from timed-arc

2

Petri nets extended with all the additional features implemented in TAPAAL to
Uppaal networks of timed automata. Earlier translations either caused expo-
nential blow-up in the size [45, 46, 14], or where not suitable for implementation
in tools due to an inefficient use of clocks and communication primitives [46].
One of the translations from TAPN to Uppaal timed automata presented in
this article is the first one to run in polynomial time while preserving the full
TCTL. It uses the idea of a controller (like for example in [21] where it was em-
ployed for a translation from time Petri nets to timed automata) that is guiding
the firing of transitions. We implemented both translations in the tool TAPAAL
and the experiments that we shall present confirm their efficiency also in prac-
tice. One of the important contributions of this article is the fact that we treat
the TAPN models in their full generality, including transport and inhibitor arcs
and age invariants, exactly as implemented in the tool TAPAAL. This provides
the evidence that the theory behind the translations in the tool is sound.

The work we present here is based on several conference papers [18, 28,
29, 46] where the initial translations and the theory were originally published.
This journal article, as presented at ICTAC’11 in a half-day tutorial, unifies
the different proofs into a common framework and considerably simplifies the
correctness arguments. In Section 2 we present the proof framework for arguing
about TCTL-preservation of the translations. We give a formal syntax and
semantics of timed-arc Petri nets in Section 3 and of networks of timed automata
in Section 4. In Section 5 and Section 6 we present two translations from TAPN
to NTA, and prove their correctness using the proof framework from Section 2.
Section 7 presents a selection of experiments where we compare the performance
of the implemented translations. Finally, Section 8 gives a short conclusion.

2. Proof Framework

In this section, we shall present a general framework for arguing when a
simulation of one time dependent system by another one preserves the satisfia-
bility of TCTL formulae. We define the notion of one-by-many correspondence,
a relation between two TTSs A and B. If A is in one-by-many correspondence
with B then every transition in A can be simulated by a sequence of transitions
in B. Further, every TCTL formula ϕ can be algorithmically translated into
a formula tr(ϕ) such that A |= ϕ iff B |= tr(ϕ). Before we can describe the
framework, we need to introduce some preliminary definitions.

2.1. Preliminaries

We let Z, N, N0, R and R≥0 denote the sets of integers, natural numbers,
non-negative integers, real numbers and non-negative real numbers, respectively.

Definition 1. A timed transition system (TTS) is a tuple T = (S,−→,AP, µ)
where S is a set of states (or processes), −→⊆ (S × S) ∪ (S × R≥0 × S) is a
transition relation, AP is a set of atomic propositions, and µ : S −→ 2AP is a
function assigning sets of true atomic propositions to states.

3

We write s −→ s′ whenever (s, s′) ∈−→ and call them discrete transitions,

and s
d−→ s′ whenever (s, d, s′) ∈−→ and call them delay transitions. We

require that the TTSs we consider satisfy the following standard axioms for
delay transitions (see e.g. [10]). For all d, d′ ∈ R≥0 and s, s′, s′′ ∈ S:

1. Time Additivity: if s
d−→ s′ and s′

d′−→ s′′ then s
d+d′−→ s′′,

2. Time Continuity: if s
d+d′−→ s′′ then s

d−→ s′
d′−→ s′′ for some s′,

3. Zero Delay: s
0−→ s for each state s, and

4. Time Determinism: if s
d−→ s′ and s

d−→ s′′ then s′ = s′′.

By s[d] we denote the state s′ (if it exists) such that s
d−→ s′. Note that time

determinism ensures the uniqueness of s[d]. We write s −→ if s −→ s′ for some

s′ ∈ S and s 6−→ otherwise. Similarly for
d−→. A run ρ = s0

d0−→ s0[d0] −→
s1

d1−→ s1[d1] −→ s2
d2−→ . . . is a (finite or infinite) alternating sequence of time

delays and discrete actions.

Definition 2. The set of all well formed time intervals I is defined by

I = {[a, a], [a, b], [a, b), (a, b], (a, b), [a,∞), (a,∞) | a ∈ N0, b ∈ N, a < b} .

2.2. Timed Computation Tree Logic

We shall now introduce the syntax and semantics of Timed Computation
Tree Logic (TCTL) where temporal operators are indexed by intervals (see e.g.
[41]).

Definition 3. Let AP be a set of atomic propositions. The set of TCTL for-
mulae Φ(AP) over AP is given by

ϕ ::= ℘ | ¬ϕ | ϕ1 ∧ ϕ2 | E(ϕ1 UI ϕ2) | A(ϕ1 UI ϕ2) | E(ϕ1RI ϕ2) | A(ϕ1RI ϕ2)

where ℘ ∈ AP and I ∈ I. Formulae without any occurrence of the operators
A(ϕ1 UI ϕ2) and E(ϕ1RI ϕ2) form the safety fragment of TCTL.

In the syntax the symbol E stands for the existential and A for the universal
path quantification and the intuition of the until (U) and release (R) operators
(formalized later on) is as follows: E(ϕ1 UI ϕ2) is true if there exists a run such
that ϕ2 eventually holds within the interval I, and until it does, ϕ1 continuously
holds; E(ϕ1RI ϕ2) is true if there exists a maximal run such that ϕ2 holds within
the interval I unless it was released by ϕ1 satisfied earlier in the run.

As we aim to apply our framework to concrete case studies with possible
tool support, we need to handle maximal runs in their full generality. There
are two types of maximal runs. Either the infinite ones or the ones that are
“stuck”. In the second case, we annotate the last transition of such a run with
one of the three special ending symbols (denoted by δ in the definition below).

Definition 4. A maximal run ρ is either

4

(i) an infinite alternating sequence of the form ρ = s0
d0−→ s0[d0] −→ s1

d1−→
s1[d1] −→ s2

d2−→ s2[d2] −→ . . ., or

(ii) a finite alternating sequence of the form ρ = s0
d0−→ s0[d0] −→ s1

d1−→
s1[d1] −→ . . . −→ sn

δ−→ with δ ∈ {∞, d≤n , d<n } where dn ∈ R≥0 such that

– if δ =∞ then sn
d−→ for all d ∈ R≥0,

– if δ = d≤n then sn 6
d−→ for all d > dn and sn

dn−→ sn[dn] such that
sn[dn] 6−→, and

– if δ = d<n then sn 6
d−→ for all d ≥ dn, and there exists ds, 0 ≤ ds < dn,

such that for all d, ds ≤ d < dn, we have sn
d−→ sn[d] and sn[d] 6−→.

By MaxRuns(T, s) we denote the set of maximal runs in a TTS T starting at s.

Intuitively, the three conditions in case (ii) describe all possible ways in
which a finite run can terminate. First, a run can end in a state where time
diverges. The other two cases define a run which ends in a state from which
no discrete transition is allowed after some time delay, but time cannot diverge
either (typically caused by the presence of invariants in the model). These cases
differ in whether the bound on the maximal time delay can be reached or not.

Let us now introduce some notation for a given maximal run ρ = s0
d0−→

s0[d0] −→ s1
d1−→ s1[d1] −→ s2

d2−→ First, r(i, d) denotes the total time
elapsed from the beginning of the run up to some delay d ∈ R≥0 after the i’th

discrete transition. Formally, r(i, d) =
(∑i−1

j=0 dj

)
+ d. Second, we define a

predicate validρ : N × R≥0 × I → {true, false} such that validρ(i, d, I) checks
whether the total time for reaching the state si[d] in ρ belongs to the time
interval I , formally

validρ(i, d, I) =

d ≤ di ∧ r(i, d) ∈ I if di ∈ R≥0
r(i, d) ∈ I if di =∞
d ≤ dn ∧ r(i, d) ∈ I if di = d≤n
d < dn ∧ r(i, d) ∈ I if di = d<n .

Figure 1 illustrates a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→

s2[d2] −→ . . . and three points (marked with ×). Note that discrete transitions
have zero durations and there is no special meaning as to whether the arrow
for discrete transitions goes up or down, this is simply to keep the figure small.
Even though time delays appear identical in the figure, they can be of different
length (even zero). Let us now give some example of the application of the
validρ(i, d, I) function. We see that validρ(1, d, I) is false because s1[d] lies
outside the interval I. Similarly, validρ(2, d

′′, I) is false because s2[d′′] is not a
part of the run (since d′′ > d2). Finally, validρ(2, d

′, I) is true because s2[d′] is
a part of the run and within I.

5

s0 s0[d0]

s1 s1[d1]

s2 s2[d2]

s3 s3[d3]

s4

d0

d1

d2

d3

s1[d]

s2[d
′] s2[d

′′]

. . .

time

I

Figure 1: Illustration of a run ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . .

Next, for a given maximal run ρ, we define a partial function historyρ :

N × R≥0 ↪→ 2N×R≥0 such that historyρ(i, d) returns the set of pairs (j, d′) that
constitute all states sj [d

′] in ρ preceding si[d]. Formally,

historyρ(i, d) = {(j, d′) | 0 ≤ j < i ∧ 0 ≤ d′ ≤ dj} ∪ {(i, d′) | 0 ≤ d′ < d}

for all values of i and d that are relevant to consider for the given run ρ.

Definition 5. We define the satisfaction relation s |= ϕ for a state s ∈ S in a
TTS T = (S,−→,AP, µ) and a TCTL formula ϕ as follows.

s |= ℘ iff ℘ ∈ µ(s)

s |= ¬ϕ iff s 6|= ϕ

s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= E(ϕ1 UI ϕ2) iff ∃ρ ∈ MaxRuns(T, s) .

∃i ≥ 0 .∃d ∈ R≥0 . [validρ(i, d, I) ∧ si[d] |= ϕ2 ∧
∀(j, d′) ∈ historyρ(i, d) . sj [d

′] |= ϕ1

]
s |= E(ϕ1RI ϕ2) iff ∃ρ ∈ MaxRuns(T, s) .

∀i ≥ 0 .∀d ∈ R≥0 . validρ(i, d, I)⇒[
si[d] |= ϕ2 ∨ ∃(j, d′) ∈ historyρ(i, d) . sj [d

′] |= ϕ1

]
The operators A(ϕ1 UI ϕ2) and A(ϕ1RI ϕ2) are defined analogously by replacing
the quantification ∃ρ ∈ MaxRuns(T, s) with ∀ρ ∈ MaxRuns(T, s).

Figure 2 illustrates the satisfaction of an until formula and Figure 3 illus-
trates the satisfaction of a release formula. In particular, notice that in Figure 3
there are four possible ways for a release formula to be satisfied. First, ϕ1 may
have occurred in the past (outside the interval), which releases ϕ2, effectively
ensuring that ϕ2 need not hold in the interval I at all. Second, ϕ2 may not be
released, which means that it must hold continuously within the entire interval
I. Third, ϕ2 can hold continuously in the interval I, until some point in the

6

s0 |= E(ϕ1UIϕ2)

s0

s′0

s1 s′1

s2 s′2

s3 s′3

s4

. . .

ϕ2ϕ1

I

time

Figure 2: Illustration of a run satisfying an until formula

interval where ϕ1 ∧ ϕ2 holds, thereby releasing ϕ2. Finally, ϕ2 can hold in the
interval I until the run stops and cannot be extended any further.

As expected, the until and release operators are dual.

Lemma 6. Let T = (S,−→,AP, µ) be a TTS and s ∈ S. Then s |=
A(ϕ1RI ϕ2) iff s |= ¬E(¬ϕ1 UI ¬ϕ2), and s |= A(ϕ1 UI ϕ2) iff s |=
¬E(¬ϕ1RI ¬ϕ2).

Proof. Straightforward by applying the duality of the logical operators and
the existential and universal quantifiers. 2

2.3. One-By-Many Correspondence

We are now ready to define the notion of one-by-many correspondence that
relates two TTSs A and B whenever every transition in A can be simulated by
a sequence of transitions in B. The relation is defined in a way that a given
TCTL formula ϕ can be algorithmically translated into a formula tr(ϕ) such
that A |= ϕ iff B |= tr(ϕ). In the rest of this section, we shall use A and B to
refer to the original and the translated system, respectively.

As the system B is simulating a single transition of A by a sequence of tran-
sitions, the systems A and B are comparable only in the states before and after
this sequence was performed. This is a similar idea as in the notion of stuttering
bisimulation [37]. We say that B is stable in such states and introduce a fresh
atomic proposition called stable to explicitly identify this situation. States not
satisfying the proposition stable are called intermediate or unstable. The point
is that that once a sequence of transitions through intermediate states reaches
a stable one, this corresponds to a single computation step in the system A.

We now define three conditions that B should possess in order to apply to our
framework. The third condition is optional and necessary only for the preserva-
tion of liveness TCTL properties. A TTS (S,→,AP, µ) such that stable ∈ AP
is called

• delay-implies-stable if, for any s ∈ S, whenever s
d−→ for some d > 0 then

s |= stable,

• delay-preserves-stable if, for any s ∈ S such that s |= stable, whenever

s
d−→ s[d] for some d ≥ 0 then s[d] |= stable, and

7

s0 |= E(ϕ1RIϕ2)

s0

s′0

s1 s′1

s2 s′2

s3 s′3

s4

. . .

ϕ1

s0 |= E(ϕ1RIϕ2)

s0

s′0

s1 s′1

s2 s′2

s3 s′3

s4

. . .

ϕ2

s0 |= E(ϕ1RIϕ2)

s0

s′0

s1 s′1

s2 s′2

s3 s′3

s4

. . .

ϕ1 ∧ ϕ2ϕ2

s0 |= E(ϕ1RIϕ2)

s0

s′0

s1 s′1

s2

s′2

ϕ2

I

time

Figure 3: Illustration of runs satisfying a release formula

• eventually-stable if for any s0 ∈ S such that s0 |= stable and for any infinite
sequence of discrete transitions ρ = s0 −→ s1 −→ s2 −→ s3 −→ s4 −→ . . .
or any finite nonempty sequence of discrete transitions ρ = s0 −→ s1 −→
· · · −→ sn 6−→ there exists an index i ≥ 1 such that si |= stable. We call
such a sequence a maximal discrete sequence.

We write s ; s′ if there is an alternating sequence s = s0 −→ s1
0−→ s1 −→

s2
0−→ s2 −→ · · ·

0−→ sn−1 −→ sn = s′ such that s |= stable, s′ |= stable, and
sj 6|= stable for 1 ≤ j ≤ n− 1.

Remark 7. For technical convenience, we introduced zero delays in the defini-
tion of ; in order to preserve the alternating nature of the sequence. Note that

this is not restrictive as for any s ∈ S we always have s
0−→ s.

Definition 8. Let A = (S,→A,APA, µA) and B = (T,→B ,APB , µB) be two
TTSs such that stable ∈ APB and B is delay-implies-stable and delay-preserves-
stable TTS. A relationR ⊆ S×T is a one-by-many correspondence if there exists
a function trp : APA −→ APB such that whenever (s, t) ∈ R then

8

A: s0
{p, q}

s1

{p, q}

s2

{q}

s3

{p, q}

4.4
B: t0

{stable, p, q}
t1

{stable, p, q}

t7

{stable, q}

t2

{p}

t3

∅

t5

∅

t4

{stable, q}

t6

{stable, p, q}

4.4

C: u0

{stable, p, q}

u1

{stable, p, q}

u2

∅

u3

∅

u4
{stable, q}

u5

∅
u6 ∅ u7

{stable, p, q}

4.4

Figure 4: Three TTSs such that s0
→
=c t0 and s0

→
= u0

1. t |= stable,

2. s |= ℘ iff t |= trp(℘) for all ℘ ∈ APA,

3. if s −→ s′ then t; t′ and (s′, t′) ∈ R,

4. if s
d−→ s[d] then t

d−→ t[d] and (s[d], t[d]) ∈ R,

5. if t; t′ then s −→ s′ and (s′, t′) ∈ R, and

6. if t
d−→ t[d] then s

d−→ s[d] and (s[d], t[d]) ∈ R.

If B is moreover an eventually-stable TTS, then we say that R is a complete
one-by-many correspondence. We write s

→
= t (resp. s

→
=c t) if there exists a

relation R which is a one-by-many correspondence (resp. a complete one-by-
many correspondence) such that (s, t) ∈ R.

Example 9. Consider the TTSs A, B and C in Figure 4 where the
sets of propositions for A, B and C are APA = {p, q} and APB =
APC = {p, q, stable}. Then {(s0[d], t0[d]) | 0 ≤ d ≤ 4.4} ∪
{(s1, t1), (s2, t4), (s3, t6), (s2, t7)} is a complete one-by-many correspondence
which implies that s0

→
=c t0 and {(s0[d], u0[d]) | 0 ≤ d ≤ 4.4} ∪

{(s1, u1), (s2, u4), (s3, u7)} is a one-by-many correspondence which implies that
s0
→
= u0. Notice that the system C is not eventually-stable since the two max-

imal discrete sequences u1 −→ u5 −→ u6 −→ u6 −→ u6 −→ u6 −→ · · · and
u1 −→ u2 −→ u3 do not contain any stable states except for u1.

We shall now describe how to translate TCTL formulae used for prop-
erty specification in the system A into equivalent formulae for the system
B. Referring again to Figure 4, we can see that the maximal run ρ =

s0
4.4−→ s1 −→ s2

0≤−→ in A witnesses that s0 |= E(¬pR[3,5] q) as q holds in

9

the whole interval [3, 5]. The formula can translated into an equivalent one
E((¬p ∧ stable)R[3,5] (q ∨ ¬stable)) for the system B, requiring that q has to
hold unless we are in an unstable state, and it can be released by ¬p while being

in a stable state. Indeed, the maximal run ρ′ = t0
4.4−→ t1 ; t4

0≤−→ witnesses
that t0 |= E((¬p ∧ stable)R[3,5] (q ∨ ¬stable)).

A general translation of TCTL formulae follows. Let APA and APB be sets
of atomic propositions such that stable ∈ APB and let trp : APA −→ APB be
a function translating atomic propositions. We define tr : Φ(APA)→ Φ(APB),
depending on trp, as follows:

tr(℘) = trp(℘)

tr(¬ϕ1) = ¬tr(ϕ1)

tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

tr(E(ϕ1 UI ϕ2)) = E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))

tr(A(ϕ1 UI ϕ2)) = A((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable))

tr(E(ϕ1RI ϕ2)) = E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))

tr(A(ϕ1RI ϕ2)) = A((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable))

We are now ready to state our main result. From now on we fix two TTS
A = (S,→A,APA, µA) and B = (T,→B ,APB , µB) such that stable ∈ APB
and B has the properties delay-implies-stable and delay-preserves-stable.

Theorem 10. Let s0 ∈ S and t0 ∈ T .

• If s0
→
= t0 then for any formula ϕ from the safety fragment of TCTL,

s0 |= ϕ if and only if t0 |= tr(ϕ).

• If s0
→
=c t0 then for any TCTL formula ϕ, s0 |= ϕ if and only if t0 |= tr(ϕ).

The rest of this section is devoted to the proof of this theorem. Before that
we need to introduce some notation and preliminary observations.

Definition 11. Given two finite alternating runs ρ in A and ρ′ in B of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn−→ sn[dn]

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn
dn−→ tn[dn]

we write ρ
→
= ρ′ if si[d]

→
= ti[d] for all i ≤ n and all d ≤ di.

Lemma 12. Let s0 ∈ S and t0 ∈ T be such that s0
→
= t0. There is a finite run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn
dn−→ sn[dn]

in A if and only if there is a finite run

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn
dn−→ tn[dn]

in B such that ρ
→
= ρ′.

10

Proof. Using Conditions 3 and 4 of Definition 8 we can for any finite run ρ in
A construct a run ρ′ in B such that ρ

→
= ρ′. Similarly, Conditions 5 and 6 allow

us to construct a corresponding finite run ρ in A for every finite run ρ′ in B. 2

Lemma 12 is sufficient for proving the first part (safety fragment) of Theo-
rem 10. For the second result of Theorem 10 we need some careful considerations
about the maximal runs.

Definition 13. Given two maximal runs ρ in A and ρ′ in B we write ρ
→
= ρ′ if

• ρ is an infinite maximal run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . ,

ρ′ is an infinite maximal run

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; . . . ,

and si[d]
→
= ti[d] for all i ≥ 0 and all d ≤ di, or

• ρ is a finite maximal run of the form

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . −→ sn

δ−→,

ρ′ is a finite maximal run of the form

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; . . . −→ tn

δ−→,

for some δ ∈ {∞, d≤n , d<n } such that,

– si[d]
→
= ti[d] for all i < n and all d ≤ di,

– sn[d]
→
= tn[d] for all d ∈ R≥0 if δ =∞,

– sn[d]
→
= tn[d] for all d ≤ dn if δ = d≤n and

– sn[d]
→
= tn[d] for all d < dn if δ = d<n .

Lemma 14. Let s0
→
=c t0. There is a maximal run ρ ∈ MaxRuns(A, s0) if and

only if there is a maximal run ρ′ ∈ MaxRuns(B, t0) such that ρ
→
=c ρ

′.

Proof. (⇒): Maximal runs can be either finite or infinite. For the infinite
ones, we can use the same arguments as in the proof of Lemma 12. Hence we
shall argue only for the finite maximal runs.

Let s0
→
=c t0 and let

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ . . . −→ sn

δ−→

be a finite maximal run in A where δ ∈ {∞, d≤n , d<n }. We will show how to
construct a finite maximal run in B of the form

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; . . .; tn

δ−→

11

such that ρ
→
=c ρ

′. Using Lemma 12 it follows that from the prefix of ρ up to
and including sn we can construct the prefix of ρ′ up to and including tn such
that these two prefixes are related as desired and in particular sn

→
=c tn. Hence

we have to discuss only the last transition of the runs. Conditions 4 and 6 of

Definition 8 imply, for all d ∈ R≥0, that sn
d−→ iff tn

d−→. So if δ = ∞ then

clearly ρ
→
=c ρ

′. If δ = d≤n we still have that the same sets of delay transitions
are possible from sn and tn. As B is eventually-stable we have that tn[dn] −→
iff tn[dn] ;. Thus tn[dn] 6−→ since sn[dn] 6−→. Hence ρ

→
=c ρ

′ also if δ = d≤n .
The last case where δ = d<n is similar.

(⇐): First, assume that there is an infinite maximal run in B of the form

ρ′ = t0
d0−→ t0[d0] −→ t1

d1−→ t1[d1] −→ t2
d2−→ t2[d2] −→ · · ·

where intermediate states are also indexed. Let j1 < j2 < j3 < . . . be all the
indices such that tji |= stable for all i > 0. Since B is an eventually-stable
TTS, there are infinitely many stable states in ρ′. Moreover, since B is a delay-
implies-stable and delay-preserves-stable TTS, we can write ρ′ in the form

ρ′ = t0
d0−→ t0[d0] ; tj1

dj1−→ tj1 [dj1] ; tj2
dj2−→ tj2 [dj2] ; · · · .

Now, using Definition 8, we can easily construct an infinite maximal run ρ ∈
MaxRuns(A, s0) such that ρ

→
=c ρ

′.
Second, assume that there exists a finite maximal run in B of the form

ρ′ = t0
d0−→ t0[d0] −→ t1

d1−→ t1[d1] −→ t2
d2−→ t2[d2] −→ · · · −→ tn

δ−→

where intermediate states are also indexed and δ = {∞, d<n , d≤n }. Let j1 < j2 <
j3 < . . . < jk be, as before, all the indices such that tji |= stable for all 0 < i ≤ k.
Since B is an eventually-stable TTS, we know that jk = n. Further, because B
is a delay-implies-stable and delay-preserves-stable TTS, we can write ρ′ in the
form

ρ′ = t0
d0−→ t0[d0] ; tj1

dj1−→ tj1 [dj1] ; · · ·; tjk
δ−→ .

Following a similar strategy as in the other implication, we can construct a finite

maximal run ρ ∈ MaxRuns(A, s0) that ends with
δ−→ such that ρ

→
=c ρ

′. 2

We are now ready to prove Theorem 10.

Proof (of Theorem 10). We shall prove this theorem by structural induc-
tion on ϕ. By Lemma 6 it is sufficient to handle the operators ℘, ¬ϕ, ϕ1 ∧ ϕ2,
E(ϕ1 UI ϕ2) and E(ϕ1RI ϕ2). We start by arguing about the second part of
the theorem assuming that s0

→
=c t0.

• Case ϕ = ℘ is trivial and cases ϕ = ¬ϕ1 and ϕ = ϕ1 ∧ ϕ2 follow immedi-
ately from the induction hypothesis.

12

• Case ϕ = E(ϕ1 UI ϕ2):

(⇒) : Assume that s0 |=A E(ϕ1 UI ϕ2). Thus there exists a maximal run
ρ ∈ MaxRuns(A, s0) that witnesses ϕ, meaning that there exists a prefix
of ρ of the form

ρprefix = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn−1
dn−1−→ sn−1[dn−1] −→ sn

d−→ sn[d]

such that validρ(n, d, I), sn[d] |=A ϕ2 and sk[d′] |=A ϕ1 for all (k, d′) ∈
historyρ(n, d). By Lemma 12 there is a run ρ′prefix in B of the form

ρ′prefix = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn−1
dn−1−→ tn−1[dn−1] ; tn

d−→ tn[d]

such that ρprefix
→
= ρ′prefix and because B is eventually-stable then also

ρprefix
→
=c ρ

′
prefix .

We want to show that t0 |=B E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable)).
Because sn[d]

→
=c tn[d] and sn[d] |=A ϕ2, we have by the induction hypoth-

esis that tn[d] |=B tr(ϕ2) and from Condition 1 of Definition 8 we have
that tn[d] |=B stable. Let j be the index corresponding to the occurrence
of tn in the alternating sequence which unfolds the ; steps. Because time
delays are equivalent in the two runs, it follows that validρ′(j, d, I) and
moreover, for any pair (k, d′) ∈ historyρ′(j, d) either

– tk[d′] is an intermediate state and thus tk[d′] |=B ¬stable, or

– tk[d′] is a stable state. From the construction of ρ′prefix it follows that

there exists a pair (k′, d′) ∈ historyρ(n, d) such that sk′ [d
′]
→
=c tk[d′].

By the induction hypothesis and the fact that sk′ [d
′] |=A ϕ1 we get

tk[d′] |=B tr(ϕ1).

This means that tk[d′] |=B tr(ϕ1) ∨ ¬stable.

Thus any maximal run ρ′ ∈ MaxRuns(B, t0) that extends ρ′prefix witnesses
tr(ϕ), meaning that t0 |=B E((tr(ϕ1) ∨ ¬stable)UI (tr(ϕ2) ∧ stable)).

(⇐) : Assume t0 |=B E((tr(ϕ1)∨¬stable)UI (tr(ϕ2)∧stable)). Thus there
exists a maximal run ρ′ in B that witnesses tr(ϕ). By the fact that B is
a delay-implies-stable and delay-preserves-stable TTS there exists a prefix
of ρ′ of the form

ρ′prefix = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; · · ·; tn−1
dn−1−→ tn−1[dn−1] ; tn

d−→ tn[d]

such that validρ′(j, d, I), tn[d] |=B tr(ϕ2) ∧ stable and tk[d′] |=B tr(ϕ1) ∨
¬stable for all (k, d′) ∈ historyρ′(j, d) where j is the index corresponding

13

to the occurrence of tn in the alternating sequence which unfolds the ;
steps as before.

By Lemma 12 there exists a run ρprefix in A of the form

ρprefix = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ · · · −→ sn−1
dn−1−→ sn−1[dn−1] −→ sn

d−→ sn[d]

such that ρprefix
→
= ρ′prefix and hence also ρprefix

→
=c ρ

′
prefix .

We want to show that s0 |=A E(ϕ1 UI ϕ2). Because sn[d]
→
=c tn[d]

and tn[d] |=B tr(ϕ2) ∧ stable, we have by the induction hypothesis that
sn[d] |=A ϕ2. Since time delays are equivalent in the two runs, it follows
that validρ(n, d, I). Further, for any pair (k′, d′) ∈ historyρ(n, d), it fol-

lows that there exists a (k, d′) ∈ historyρ′(j, d) such that sk′ [d
′]
→
=c tk[d′].

By the induction hypothesis, it follows that sk′ [d
′] |=A ϕ1 because

tk[d′] |=B tr(ϕ1) due to the fact that tk[d′] |=B stable.

It then follows that any maximal run ρ ∈ MaxRuns(A, s0) starting with
ρprefix witnesses ϕ, thus s0 |=A E(ϕ1 UI ϕ2).

• Case ϕ = E(ϕ1RI ϕ2):

(⇒) : Assume that s0 |=A E(ϕ1RI ϕ2). By assumption, there exists a
maximal run (infinite or finite)

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ · · ·

in A that witnesses ϕ. This means that for all i ≥ 0 and all d ∈ R≥0,
if validρ(i, d, I) is true then either si[d] |=A ϕ2 or there exists a (k, d′) ∈
historyρ(i, d) such that sk[d′] |=A ϕ1.

By Lemma 14 it follows that there exists a maximal run

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; · · · (1)

in B such that ρ
→
=c ρ

′ (see Definition 13).

We want to show that t0 |=B E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable)).
For all i ≥ 0 and all d ∈ R≥0, if validρ′(i, d, I) is true then either

– ti[d] is an intermediate state and then ti[d] |=B ¬stable, or

– ti[d] is a stable state. This means that ti[d] has a distinguished index
in Equation 1. Let h be the index of ti[d] in Equation 1. It follows
from the construction of ρ′ that sh[d]

→
=c th[d]. There are two cases

to consider:

∗ either sh[d] |=A ϕ2 and then by the induction hypothesis it fol-
lows that th[d] |=B tr(ϕ2), or

14

∗ there exists (`′, d′) ∈ historyρ(h, d) such that s`′ [d
′] |=A ϕ1.

From the construction of ρ′ it follows that there exists a pair
(`, d′) ∈ historyρ′(i, d) such that s`′ [d

′]
→
=c t`[d

′]. By the induc-
tion hypothesis, it follows that t`[d

′] |=B tr(ϕ1) ∧ stable.

This in turn means that t0 |=B E((tr(ϕ1) ∧ stable)RI (tr(ϕ2) ∨ ¬stable)).

(⇐) : Assume that t0 |=B E((tr(ϕ1)∧stable)RI (tr(ϕ2)∨¬stable)). Hence
there exists a maximal run (infinite or finite) in B that witnesses tr(ϕ) and
since B is a delay-implies-stable, delay-preserves-stable and eventually-
stable TTS, the run has the following form:

ρ′ = t0
d0−→ t0[d0] ; t1

d1−→ t1[d1] ; t2
d2−→ t2[d2] ; · · ·

This means that for all i ≥ 0 and all d ∈ R≥0, if validρ′(i, d, I) is true then
either ti[d] |=B tr(ϕ2) ∨ ¬stable or there exists a (k, d′) ∈ historyρ′(i, d)
such that tk[d′] |=B tr(ϕ1) ∧ stable.

By Lemma 14 it follows that there exists a maximal run

ρ = s0
d0−→ s0[d0] −→ s1

d1−→ s1[d1] −→ s2
d2−→ s2[d2] −→ · · ·

in A such that ρ
→
=c ρ

′.

We want to show that s0 |=A E(ϕ1RI ϕ2). For all i ≥ 0 and all d ∈ R≥0,

we have that si[d]
→
=c ti[d] and whenever validρ(i, d, I) is true then

– either ti[d] |=B tr(ϕ2) and then by the induction hypothesis we have
that si[d] |=A ϕ2, or

– there exists some (`′, d′) ∈ historyρ′(j, d), where j is the index corre-
sponding to the occurrence of ti in the alternating sequence which un-
folds the ; steps, such that t`′ [d

′] |=B tr(ϕ1)∧ stable. From the con-
struction of ρ, it follows that there exists a pair (`, d′) ∈ historyρ(i, d)

such that s`[d
′]
→
=c t`′ [d

′]. By the induction hypothesis, it follows that
s`[d

′] |=A ϕ1.

This in turn means that s0 |=A E(ϕ1RI ϕ2).

Observe that for the case of E(ϕ1 UI ϕ2) we used Lemma 12 which requires
only a one-by-many correspondence. On the other hand, to prove the case of
E(ϕ1RI ϕ2) we used the eventually-stable property and Lemma 14, which re-
quires a complete one-by-many correspondence. Hence, if the relation is only
a one-by-many correspondence then the theorem still works for the safety frag-
ment of TCTL as claimed in the first part of the theorem. 2

Example 15. The reason we need a complete one-by-many correspondence to
preserve the full TCTL can be illustrated by considering systems A and C in
Figure 4 where {(s0, u0), (s1, u1), (s2, u4), (s3, u7)} is a one-by-many correspon-
dence between states in A and C. In this particular example, s0 |=A A(pU[3,5] q)

15

but u0 6|=B tr(A(pU[3,5] q)) = A((p ∨ ¬stable)U[3,5] (q ∧ stable)). Both of the
following maximal runs

ρ = u0
4.4−→ u1 −→ u2

0−→ u2 −→ u3
0≤−→

ρ′ = u0
4.4−→ u1 −→ u5

0−→ u5 −→ u6
0−→ u6 −→ u6

0−→ u6 −→ u6
0−→ · · ·

in C are counter examples to tr(A(pU[3,5] q)).

2.4. Overall Methodology

We finish this section by recalling the steps needed in order to apply the
framework to a particular translation between two time-dependent systems.
Assume that we designed an algorithm that for a given system A constructs a
system B together with the notion of stable states in the system B. In order to
apply our framework, we need to perform the following steps.

1. Show that B is a delay-implies-stable and delay-preserves-stable TTS (and
optionally an eventually-stable TTS).

2. Define a proposition translation function trp : APA −→ APB .

3. Define a relation R and show that it fulfills Conditions 1–6 of Definition 8.

Theorem 10 now allows us to conclude that the translation preserves the full
TCTL (or its safety fragment if R is only a one-by-many correspondence).

The framework generalizes earlier translations presented in [18] and [21] that
dealt with concrete cases. Apart from these, the framework covers some other
concrete results as those in [14, 24, 30, 46].

In what follows, we shall demonstrate an application of this general method
to proving the correctness of two translation from timed-arc Petri nets to net-
works of timed automata.

3. Timed-Arc Petri Net

We shall now define the model of Timed-Arc Petri nets (TAPN) where time
features are associated to tokens in the net and arcs contain time intervals
restricting the ages of tokens available for transition firing. We define the model
in its full generality as implemented in TAPAAL, including age invariants and
transport/inhibitor arcs. We start by an informal description of the model.

Figure 5 shows a graphical representation of a simple TAPN. The net con-
tains five places drawn as circles, and one transition drawn as a rectangle. In
the places p0 and p1 there is one token of age 0, and in the place p3 there is
one token of age 2. The tokens’ age and their placement in the net constitute
a marking. The net contains three types of arcs: normal arcs drawn with an
arrow tip, transport arcs drawn with a diamond tip, and inhibitor arcs drawn
with a circle tip. Arcs pointing from a place to a transition are called input
arcs and arcs from transitions to places are called output arcs. The places p2
and p5 moreover contains age invariants written below the places. Note that
the transport arcs always come in pairs of an input and an output arc and the

16

p0 0

p1 0

p2

inv: ≤ 8

2

p4

p5

inv: < 5

t
[1, 5]:1 :1

[2,
∞)

[2, 3]

Figure 5: A timed arc Petri Net

annotation :1 after the interval and on the output arc denotes the pairing of
the two arcs (if there was another pair of transport arcs associated with the
transition t it would have the annotation :2 and so on).

The behaviour of the net is described through evolution of markings. A
marking can evolve either through a time-delay where all tokens in the net
simultaneously become older, or trough transition firing where tokens are moved
between places. A time-delay increases the age of all tokens with the same value
as long as no tokens break the age invariants in their locations. In the example
of Figure 5 we can delay e.g. 1.7 units of time but we can not make a time-delay
of 6.1 as this would break the age invariant in place p2. A transition can fire
only if all its normal and transport input arcs have at least one token in their
input places such that the ages of these tokens satisfy the time intervals on
the corresponding arcs. On the contrary, an inhibitor arc inhibits the firing of a
transition if there is a token within the time-interval on the inhibitor arc. When
we fire a transition we remove a token from each input place and create a new
token in each of the output places. For normal arcs we produce new tokens of
age 0; for transport arcs we carry the age of the consumed token to the target
place. Moreover, a transition can only be fired if the tokens transmitted by the
transport arcs do not violate any age invariants.

3.1. Syntax

We define the set of invariant intervals Iinv as a subset of time intervals I
that contain the value zero, i.e., Iinv = {I ∈ I | 0 ∈ I}. Let also Type be a set
of arc types such that Type = {Normal , Inhib} ∪ {Transport i | i ∈ N} where
the transport arc types have an index as we need to pair exactly one input and
output arc in order to form a pair of transport arcs.

Definition 16 (Timed-Arc Petri Net). A timed-arc Petri net (TAPN) is a
7-tuple N = (P, T, IA,OA, c,Type, Inv) where

• P is a finite set of places,

• T is a finite set of transitions such that P ∩ T = ∅,

17

• IA ⊆ P × T is a finite set of input arcs,

• OA ⊆ T × P is a finite set of output arcs,

• c : IA → I is a time constraint function assigning intervals to all input
arcs,

• Type : IA ∪ OA → Type is a type function assigning a type to all arcs
such that

– if Type(a) = Inhib then a ∈ IA,

– if Type((p, t)) = Transport i for some (p, t) ∈ IA then there is exactly
one (t, p′) ∈ OA such that Type((t, p′)) = Transport i, and

– if Type((t, p′)) = Transport i for some (t, p′) ∈ OA then there is ex-
actly one (p, t) ∈ IA such that Type((p, t)) = Transport i,

• Inv : P → Iinv is a function assigning age invariants to places.

The preset of input places of a transition t ∈ T is defined as •t = {p ∈ P |
(p, t) ∈ IA,Type((p, t)) 6= Inhib}. Similarly, the postset of output places of t is
defined as t• = {p ∈ P | (t, p) ∈ OA}. Let the inhibitor preset be defined as ◦t =
{p ∈ P | (p, t) ∈ IA,Type((p, t)) = Inhib}. We also let max(t) = max(|•t|, |t•|)
denote the largest in or out degree of the transition t.

3.2. Semantics

We will now introduce the semantics of TAPN. Given a set X, we define
the set of finite multisets on X, B(X), as the set of functions B : X → N0 such
that |{x ∈ X | B(x) > 0}| < ∞. We say that x ∈ B iff B(x) > 0 and use the
standard set notation and operations for manipulating with multisets.

Now we define the markings of a TAPN considering finite multisets of non-
negative real numbers in B(R≥0). These real numbers represent the ages of
tokens in each place and of course they have to respect the corresponding age
invariants.

Definition 17 (Marking). Let N = (P, T, IA,OA, c,Type, Inv) be a TAPN.
A marking M on N is a function M : P −→ B(R≥0) where for every place
p ∈ P and every (age of a) token x ∈ M(p) we have x ∈ Inv(p). The set of all
markings over N is denoted by M(N).

We will use the notation (p, x) to refer to a token in the place p of age
x ∈ R≥0. Likewise, we will write M = {(p1, x1), (p2, x2), . . . , (pn, xn)} for a
multiset representing a marking M with n tokens. A marked TAPN is a pair
(N,M0) where N is a TAPN and M0 is an initial marking on N where all tokens
have the age 0.

Definition 18 (Enabledness). Let N = (P, T, IA,OA, c,Type, Inv) be a
TAPN. We say that a transition t ∈ T is enabled in a marking M by the
sets of tokens In(t) = {(p, xp) | p ∈ •t} ⊆M if

18

• for all input arcs except the inhibitor arcs there is a token in the input
place with an age satisfying the age guard of the arc, i.e.

∀p ∈ •t. xp ∈ c((p, t))

• for all inhibitor arcs there is no token in the input place of the arc with
an age satisfying the age guard of the arcs respectively, i.e.

∀p ∈ ◦t. ∀x ∈M(p). x 6∈ c((p, t))

• for any pair of transport arcs, the age of the transported token must satisfy
the invariant of the target place, i.e.

∀(p, t) ∈ IA. ∀(t, p′) ∈ OA.

Type((p, t)) = Type((t, p′)) = Transport i ⇒ xp ∈ Inv(p′) .

Definition 19 (Behaviour). Let N = (P, T, IA,OA, c,Type, Inv) be a TAPN,
M a marking on N and t ∈ T a transition.

• Let t be enabled in the marking M by the set In(t) = {(p, xp) | p ∈ •t} ⊆
M and let

Out(t) = {(p′, 0) | (t, p′) ∈ OA,Type((t, p′)) = Normal} ∪

{(p′, xp) | (t, p′) ∈ OA,Type((t, p′)) = Transport i = Type((p, t))} .

Then t can fire and produce a marking M ′ defined as

M ′ = (M \ In(t)) ∪Out(t)

where \ and ∪ are operations on multisets.

• A time delay d ∈ R≥0 is allowed in M if (x + d) ∈ Inv(p) for all p ∈ P
and all x ∈ M(p), i.e., by delaying d time units no token violates any of
the age invariants. By delaying d time units in M we reach a marking M ′

defined as
M ′(p) = {x+ d | x ∈M(p)}

for all p ∈ P .

A given TAPN N defines a timed transition system (M(N),−→,AP, µ)
where states are markings of N and for two markings M and M ′ we have
M −→M ′ if by firing some transition in M we can reach the marking M ′ and

M
d−→ M ′ if by delaying d time units in M we reach the marking M ′. For

notational convenience, we shall sometimes annotate discrete transitions with
the names of the transitions that were fired. Observe that due to age invariants
there may be markings from which no firing nor time delay transitions are
possible.

19

The atomic propositions are defined as

AP def
= {(p ./ n) | p ∈ P, n ∈ N0 and ./ ∈ {<,≤,=,≥, >}} .

The interpretation is that a proposition (p ./ n) is true in a marking M iff the
number of tokens in the place p satisfies the proposition in question with respect

to n, formally µ(M)
def
= {(p ./ n) | |M(p)| ./ n} where ./ is one of the (standard

mathematical) operators and |M(p)| is the cardinality of the multiset M(p).
We made the choice of observing only the number of tokens in the places of

the net, not their ages. This will simplify our exposition but it is still possible
to ask about the presence of a token of a given age d in a place p. This can
be, for example, done by adding a new transition consuming a token in the
interval [d, d] from p while marking a newly added “observer” place. Then the
reachability of a marking with a token in the added place corresponds to the
presence of a token of the age d in the place p.

4. Networks of Timed Automata

Now we introduce the model of Networks of Timed Automata (NTA) with
integer variables, handshake synchronization and broadcast synchronization.

4.1. Preliminaries

Let C = {c1, c2, . . .} be a finite set of real-valued clocks. A clock guard is a
boolean expression defined by the abstract syntax:

g1, g2 ::= true | c1 ./ n | c1 − c2 ./ n | g1 ∧ g2

where c1, c2 ∈ C, n ∈ N0 and ./ ∈ {<,≤,=,≥, >}. The set of all clock guards
over the set of clocks C is denoted by G(C). Invariants are defined as guards
with the restriction that ./ ∈ {≤, <}. We denote the set of all clock invariants
over the set of clocks C as GInv (C).

A clock valuation of C is a function v : C → R≥0. Let v be a valuation
and d ∈ R≥0. We define the valuation v + d, where all clocks are delayed by

d, by (v + d)(c)
def
= v(c) + d for every c ∈ C. For every set R ⊆ C we define

the valuation v[R] : C → R≥0, where all clocks in R are reset to zero, by

v[R](c)
def
= v(c) for c ∈ C \R and v[R](c) = 0 for c ∈ R.

The satisfaction relation v |= g (i.e. when a valuation satisfies a guard or an
invariant g) is defined in the natural way.

Let X be a finite set of integer variables. Arithmetic variable expressions
over X are defined by the abstract syntax:

expr1, expr2 ::= m | x | expr1 + expr2 | expr1 − expr2

where m ∈ Z and x ∈ X. We denote the set of all arithmetic variable expressions
over the set of variables X by VE (X).

20

A variable guard over X is a boolean expression defined by the following
abstract syntax

φ1, φ2 ::= true | expr1 ./ expr2 | φ1 ∧ φ2 | φ1 ∨ φ2

where expr1, expr2 ∈ VE (X) and ./ ∈ {<,≤,=,≥, >}. We denote the set of all
variable guards over the set of variables X by VG(X).

Variable assignments over X are expressions of the form x := expr where
x ∈ X and expr ∈ VE (X). We denote the set of all variable assignments over X
by VA(X). A set of non-conflicting variable assignments A is a finite subset of
VA(X) where for every x ∈ X whenever (x := expr1) ∈ A and (x := expr2) ∈ A
then expr1 = expr2.

A variable valuation is a function z : X −→ Z and it is in the natural way
extended to arithmetic variable expressions. A variable valuation z satisfies a
variable guard φ ∈ VG(X) (written as z |= φ) if the variable guard evaluates to
true under the valuation z.

Given a set of non-conflicting variable assignments A and a variable valua-
tion z, by z[A] we denote the variable valuation such that

z[A](x) =

{
z(expr) if (x := expr) ∈ A
z(x) otherwise.

4.2. Syntax

We can now define the model of timed automata.

Definition 20 (Timed Automaton). A Timed Automaton (TA) is a tuple
(L,Act, C,X,−→, IC , IX , `0), where

• L is a finite set of locations,

• Act is a finite set of actions,

• C is a finite set of clocks,

• X is a finite set of integer variables,

• −→ ⊆ L × G(C) × VG(X) × Act × 2C × 2VA(X) × L is a finite set of
edges where for any (`, g, φ, a,R,A, `′) ∈−→ we require that A is a finite
non-conflicting set of variable assignments,

• IC : L→ GInv (C) is a function assigning clock invariants to locations,

• IX : L→ VG(X) is a function assigning variable invariants to locations,

• `0 is the initial location.

We write `
g,φ,a,R,A−−−−−−→ `′ instead of (`, g, φ, a,R,A, `′) ∈−→ and say that ` is

the source location, g is the tested clock guard and φ the variable guard, a is the
executed action, R is the set of clocks to be reset, A is the set of non-conflicting

21

variable assignments to make and `′ is the target location. For notational conve-
nience, we shall sometimes conjunct clock and variable invariants when drawing
the automata.

A network of timed automata (NTA) is a parallel composition of a finite num-
ber of timed automata. We adopt the handshake synchronization and broadcast
synchronization as supported by Uppaal.

Let Chan be a finite set of channels for handshake synchronization and
let Broad be a finite set of channels for broadcast synchronization such that
Chan ∩ Broad = ∅. Let τ be an internal action such that τ 6∈ Chan ∪ Broad .
We then define

Act = {c!, c? | c ∈ Chan} ∪ {a

!

, a
?
| a ∈ Broad} ∪ {τ} .

The intuition is that c! makes a handshake synchronization request on the
channel c and c? is used to indicate that an automaton is prepared to receive
the handshake signal. Furthermore, a

!

indicates broadcasting on the channel a
and a

?
means that an automaton is prepared to receive a broadcast signal on

the channel a.

Definition 21 (Network of Timed Automata). Let n ∈ N and let Ai =
(Li, Act, C,X,−→i, I

i
C , I

i
X , `

i
0), for all 1 ≤ i ≤ n, be timed automata over

a fixed set of actions Act, clocks C and integer variables X. A Network of
Timed Automata (NTA) is a parallel composition of A1, A2, . . . , An denoted by
A = A1 ‖ A2 ‖ . . . ‖ An.

4.3. Semantics

The semantics of a network of timed automata is given in terms of a TTS.
The technical details, in particular of the broadcast synchronization, may look
complicated but this is a necessary step as our aim is to argue about (and
implement) translations producing UPPAAL timed automata and then use the
model checker UPPAAL. The semantics below reflects the semantical choices
made in the tool.

A configuration of an NTA is a tuple (`1, `2, . . . , `n, z, v) where `i ∈ Li for
all 1 ≤ i ≤ n, z is a variable valuation over X and v is a clock valuation over C
such that for every i, 1 ≤ i ≤ n, we have z |= IiX(`i) and v |= IiC(`i). We will
denote the set of all configurations of a given NTA A by Conf (A).

An NTA A = A1 ‖ A2 ‖ . . . ‖ An where Ai = (Li, Act, C,X,−→i, I
i
C , I

i
X , `

i
0)

generates a TTS T (A) = (S,−→,AP, µ) such that

• S = Conf (A),

• the transition relation −→ consists of

– ordinary transitions:
(`1, . . . , `i, . . . , `n, z, v) −→ (`1, . . . , `

′
i, . . . , `n, z

′, v′) if there exists an

edge `i
g,φ,τ,R,A−−−−−−→i `

′
i in the i’th automaton such that v |= g, z |= φ,

v′ = v[R], z′ = z[A], v′ |= IiC(`′i) ∧
∧
j 6=i I

j
C(`j) and z′ |= IiX(`′i) ∧∧

j 6=i I
j
X(`j),

22

– handshake synchronization transitions:
(`1, . . . , `i, . . . , `j , . . . , `n, z, v) −→ (`1, . . . , `

′
i, . . . , `

′
j , . . . , `n, z

′, v′) if

i 6= j and there are edges `i
gi,φi,a!,Ri,Ai−−−−−−−−−→i `

′
i and `j

gj ,φj ,a?,Rj ,Aj−−−−−−−−−−→j `
′
j

such that v |= gi ∧ gj , z |= φi ∧ φj , v′ = v[Ri ∪Rj], z′ = (z[Ai])[Aj],
v′ |= IiC(`′i) ∧ I

j
C(`′j) ∧

∧
k 6=i,j I

k
C(`k) and z′ |= IiX(`′i) ∧ I

j
X(`′j) ∧∧

k 6=i,j I
k
X(`k),

– broadcast synchronization transitions:
(`1, . . . , `n, z, v) −→ (`′1, . . . , `

′
n, z
′, v′) if there exists an a ∈ Broad

such that

∗ there exists an i, 1 ≤ i ≤ n, such that there is an edge

`i
gi,φi,a

!

,Ri,Ai−−−−−−−−−→i `
′
i in the i’th automaton and v |= gi and z |= φi,

∗ let J be the set of all j, 1 ≤ j 6= i ≤ n where there is an

edge `j
gj ,φj ,a

?
,Rj ,Aj−−−−−−−−−−→j `

′
j in the j’th automaton such that v |=

gj and z |= φj ,

∗ for all j ∈ J we set `′j , Aj and Rj according to the edge

`j
gj ,φj ,a

?
,Rj ,Aj−−−−−−−−−−→j `

′
j (note that there may be more options),

∗ for all j 6∈ J , 1 ≤ j 6= i ≤ n we let `′j = `j , Aj = ∅ and Rj = ∅,
∗ z′ = (. . . ((. . . (z[Ai])[A1])[A2]) . . . [Ai−1])[Ai+1]) . . . [An] and
z′ |=

∧n
k=1 I

k
X(`′k), and

∗ v′ = v[R] where R =
⋃n
k=1Rk and v′ |=

∧n
k=1 I

k
C(`′k),

– delay transitions:

(`1, . . . , `n, z, v)
d−→ (`1, . . . , `n, z, v + d) for all d ∈ R≥0 such that

v + d |=
∧n
i=1 I

i
C(`i),

• AP def
= {(#` ./ m) | ` ∈ ∪ni=1Li,m ∈ N and ./ ∈ {<,≤,=,≥, >}}, and

• µ : S −→ 2AP is a function assigning sets of true atomic propositions to
states. A proposition (#` ./ m) is true in a configuration s ∈ S if and only
if the number of parallel components that are currently in the location `
satisfies the proposition with respect to m.

The initial state is (`10, `
2
0, . . . , `

n
0 , z0, v0) where z0(x) = 0 for all x ∈ X and

v0(c) = 0 for all c ∈ C. We assume that z0 and v0 always satisfy the invariants,
i.e. z0 |=

∧n
i=1 I

i
X(`i0) and v0 |=

∧n
i=1 I

i
C(`i0).

Remark 22. The set of atomic propositions used in the tool UPPAAL is more
general; we defined only those that are needed for the purpose of our transla-
tions. Also note that for handshake and broadcast synchronizations, variable as-
signments are always evaluated in a specific order. First any assignments on the
edge of the sender are evaluated and after that the assignments of any receivers
are evaluated in the order from A1 to An. This follows the semantics of UP-
PAAL timed automata and it will become important in the liveness-preserving
translation. Finally, observe that transitions cannot be taken if the resulting
configuration breaks some of the clock or variable invariants.

23

5. Safety-Preserving Translation

In this section we describe a safety-preserving reduction from timed-arc Petri
nets to networks of timed automata so that we can use the model checker Up-
paal to verify TAPN properties. As the reachability problem for TAPN is in
general undecidable [48], we restrict ourselves to bounded nets. A TAPN is
k-bounded if the total number of tokens in any of its reachable markings is no
more than k. A net is called bounded if it is k-bounded for some k.

Remark 23. In the actual implementation, we ask the user to provide a sug-
gestion for k before we run the verification. If the net is k-bounded, and this
is a decidable problem, then we provide conclusive answers. If not, then we
still explore the state-space up to k tokens and report possibly discovered error
traces but the answer can be also inconclusive. In this case the user is invited
to increase k and try again.

In our first reduction we do not consider inhibitor arcs. This will allow us
to develop an efficient safety-preserving translation for nets that do not use
inhibitor arcs. In the section to follow, we will describe a different translation
approach supporting inhibitor arcs and preserving also liveness properties.

In the presentation of the safety-preserving translation, we shall first de-
scribe a reduction from bounded TAPNs without inhibitor arcs to TAPNs of
degree 2 where every transition has exactly two input and two output arcs. This
reduction is followed by a translation from TAPNs of degree 2 to networks of
timed automata using a handshake synchronization.

5.1. From k-Bounded TAPN to TAPN of Degree 2

To translate a given k-bounded TAPN with transitions that have more than
two input or output places into a TAPN of degree 2 we have to simulate a
single transition firing in the original net by a series of transitions in the net
of degree 2. The problem is that when firing a given transition in a number of
steps, other transition firings may interleave and thus some extra behaviour can
be introduced. To prevent this from happening, we introduce a new mutex-like
place called pstable such that it contains a token that is consumed before the
sequence of transition firings begins and the token is returned back after the
simulation of the selected transition is ended.

The translation is demonstrated in Figure 6, where a simple 3-bounded
TAPN is translated into a TAPN of degree 2. The idea is that the token in the
place pstable will travel through the intermediate places p(t1in), p(t2in), p(t2out),
p(t1out) and finally return to pstable . When the first transition p(t1in) is fired, a
token of a suitable age from p0 is consumed and it is placed into the holding
place ph(t1). Then a token from p1 is consumed and placed into ph(t2). Because
|•t| < |t•| a special place called pcapacity (used as a repository of the presently
unused tokens) is created. By firing the transition t3 a new token of age 0 is
produced into p3. Finally, the tokens placed in ph(t2) and ph(t1) are moved
to the appropriate output places by firing the transitions t2out and t1out. Note

24

-

p0 p1

p2 p3

t

0.0 0.0

[3
,7
)

[0,9]:1

:1

-

-

-

-

-

pstable

pcapacity

p0 p1

p2 p3

ph(t
1) ph(t

2)

p(t1in)

Inv: ≤0

p(t2in)

Inv: ≤0

p(t2out)
Inv: ≤0

p(t1out)
Inv: ≤0

t1in

t1out

t2in

t2out

t3

[3,7) [0,9]:1

:1

[0,∞)

[0,∞)

[0,∞)[0,∞)

[0,∞) [0,∞):1

:1

[0
,∞

)
[0,∞

)

0.0 0.0

0.0

0.0

Figure 6: Example of a 3-bounded net and the corresponding net of degree 2

that because of the invariants on the intermediate places, time cannot elapse
during such a series of transition firing and so the age of the token in p1, that
is moved via the two transport arcs into p2, is preserved. Notice that the use of
the holding places ph(t1) and ph(t2) is essential as without them a token from
p0 can be consumed by t1in while creating a new token in p1. This may allow to
fire t2in even if there were no tokens in p1 in the original net. Also notice that
by this construction we may introduce extra deadlocks (e.g. if there is no token
present in p1 after the transition t1in was fired). This relaxes the eventually-stable
property but it is sufficient for preservation of safety properties.

Let us introduce some notation for each transition t ∈ T . The intuition is
that the set Pairing(t) defined below fixes the paths from input to output places
on which the tokens travel when firing the transition t, and it also remembers
the associated time intervals and the type of the path (tarc for transport arcs
and normal for the standard arcs that reset the ages of produced tokens). There
may be more than one pairing that satisfies the definition. It is important (for
the use in the algorithms) to fix one such pairing.

25

Pairing(t) =
{

(p, I, p′, tarc) | (p, t) ∈ IA, c((p, t)) = I, (t, p′) ∈ OA,

Type((p, t)) = Type((t, p′)) = Transport i
}
∪{

(p1, I1, p
′
1,normal), . . . , (pm, Im, p

′
m,normal) |

{p1, . . . , p`} = {p | (p, t) ∈ IA,Type((p, t)) = Normal},
{p′1, . . . , p′`′} = {p | (t, p) ∈ OA,Type((t, p)) = Normal},
m = max(`, `′), Ii = c((pi, t)) if 1 ≤ i ≤ ` else Ii = [0,∞),

pi = pcapacity if ` < i ≤ m, p′i = pcapacity if `′ < i ≤ m
}
.

For the net in Figure 6 where max(t) = 3 a possible pairing is Pairing(t) =
{(p0, [3, 7), p1,normal), (p1, [0, 9], p2, tarc), (pcapacity , [0,∞), p3,normal)}. The
special capacity place simply ensures that the number of tokens in the net is
constant.

Moreover, by p
I−→ t −→ p′ we shall abbreviate the presence of an arc from

p to t with the time interval I and an arc from t to p′; the type of the arcs
(normal or transport) will be clear from the context. The complete translation
is now given in Algorithm 1 and it clearly terminates as the body of the while-
loop decreases the size of the set pairing. Notice that the algorithm causes only
a modest growth in the size of the net. More precisely, the number of places
P ′ in the constructed net is bounded by |P |+ 2 + 3|T |(D − 1) and the number
of transitions T ′ is bounded by 2|T |D where D is the maximum degree of any
transition in the net, in other words the maximum of max(t) over all transitions
t ∈ T .

We shall now argue about the correctness of the translation by using the
methodology described in Section 2.4. Given a k-bounded TAPN (N,M0), let
(N ′,M ′0) be the corresponding net of degree 2 constructed by Algorithm 1.
We define the proposition stable as (pstable = 1) meaning that stable mark-
ings contain a token in the place pstable . The proposition translation func-
tion trp is defined as the identity function. We define the correspondence
relation R between markings of N = (P, T, IA,OA, c,Type, Inv) and N ′ =
(P ′, T ′, IA′,OA′, c′,Type ′, Inv ′) so that (M,M ′) ∈ R if and only if

M ′(p) =

M(p) if p ∈ P
{x} if p = pstable

{x1, . . . , xk−|M |} if p = pcapacity

∅ otherwise .

for some x, x1, . . . , xk−|M | ∈ R≥0

As mentioned before, the place pcapacity contains all unused tokens in the k-
bounded TAPN N . Hence it contains k − |M | tokens. The whole net can
contain either k + 1 or k tokens, depending on whether there is a token in the
place pstable or not.

Lemma 24. The relation R is one-by-many correspondence.

26

Algorithm 1: Translation from k-bounded TAPN to TAPN of degree 2

Input: A k-bounded TAPN N = (P, T, IA,OA, c,Type, Inv) with marking M0.
Output: A TAPN N ′ = (P ′, T ′, IA′,OA′, c′,Type′, Inv ′) of degree 2 and marking M ′0.
begin

P ′ := P ∪ {pstable , pcapacity} ∪ {ph(ti) | t ∈ T, 1 ≤ i < max(t)}
∪ {p(tiin), p(tiout) | t ∈ T, 1 ≤ i < max(t)}

T ′ := {tiin, tiout | t ∈ T, 1 ≤ i < max(t)} ∪ {tmax(t) | t ∈ T}

Inv ′(p) :=

Inv(p) if p ∈ P
[0, 0] if p ∈ {p(tiin), p(tiout) | t ∈ T, 1 ≤ i < max(t)}
[0,∞) otherwise

forall the t ∈ T do
i := 1
forall the (p, I, p′, type) ∈ Pairing(t) do

if i < |Pairing(t)| then

Add arcs p
I−→ tiin −→ ph(ti) and ph(ti)

[0,∞)−−−−→ tiout −→ p′ of type
type.

else

Add arcs p
I−→ ti −→ p′ of type type.

i := i+ 1

Add normal arcs pstable
[0,∞)−→ t1in −→ p(t1in) and p(t1out)

[0,∞)−→ t1out −→ pstable .

Add normal arcs p(tiin)
[0,∞)−→ ti+1

in −→ p(ti+1
in) for 1 ≤ i < max(t)− 1.

Add normal arcs p(t
max(t)−1
in)

[0,∞)−→ tmax(t) −→ p(t
max(t)−1
out).

Add normal arcs p(ti+1
out)

[0,∞)−→ ti+1
out −→ p(tiout) for 1 ≤ i < max(t)− 1.

M ′0(p) =

M0(p) if p ∈ P
{0} if p = pstable

{0, . . . , 0︸ ︷︷ ︸
k−|M0|

} if p = pcapacity

∅ otherwise

Proof. We will first notice that the transition system generated by (N ′,M ′0) is
a delay-implies-stable and delay-preserves-stable TTS. The first property follows
from the construction by noticing that invariants on the intermediate places
prevent time elapsing whenever the place pstable is empty. The second property is
immediate as time delays do not change the distribution of tokens. We shall now
argue that the relation R satisfies the remaining six conditions of Definition 8.
Let (M,M ′) ∈ R.

1. M ′ |= (pstable = 1) follows from the definition of R.

2. M |= ℘ iff M ′ |= trp(℘) again follows directly from the definition of R.

3. Assume that M
t−→ M1 by firing some transition t. As (M,M ′) ∈ R,

the tokens consumed when t is fired in the marking M are present also
in M ′ in identically named places and with the same age. From the
construction of the net N ′ we can see that firing the series of transi-

tions t1in, t
2
in, . . . , t

max(t)−1
in , tmax(t), t

max(t)−1
out , t

max(t)−2
out , . . . , t1out will bring

27

-

p0
Inv: < 3

p1

p2 p3
Inv: ≤ 5

t

0.0 0.0

[1,4] (5,∞):1

:1

p0
c1 < 3

p1

p2 p3
c1 ≤ 5

1 ≤ c1 ≤ 4

t!

c1 := 0

5 < c1

t?

p0
c2 < 3

p1

p2 p3
c2 ≤ 5

1 ≤ c2 ≤ 4

t!

c2 := 0

5 < c2

t?

Figure 7: Example of the translation from TAPN to NTA

the net N ′ into a stable marking M ′1 such that (M1,M
′
1) ∈ R.

4. Assume that M
d−→ M1. As M ′ is a stable marking, there are no tokens

in any of the newly added places except for pstable . Because pstable has
the invariant [0,∞), all time delays allowed in M are allowed also in M ′

and by M ′
d−→M ′1 we clearly get (M1,M

′
1) ∈ R.

5. Assume that M ′ ; M ′1. By the construction of N ′ we observe that the

actual firing sequence must have the form: t1in, t
2
in, . . . , t

max(t)−1
in , tmax(t),

t
max(t)−1
out , t

max(t)−2
out , . . . , t1out for some t. Since every transition in this se-

quence can be fired, we get that M
t−→ M1 such that (M1,M

′
1) ∈ R by

selecting the same ages of tokens in places from •t as those consumed in

the firing of the transitions t1in, t
2
in, . . . , t

max(t)−1
in , tmax(t).

6. Assume that M ′
d−→ M ′1. By the construction the same time delay is

possible also from M such that M
d−→M1 (all invariants in N are present

also in N ′) and clearly (M1,M
′
1) ∈ R. 2

5.2. From TAPN of Degree 2 to Networks of Timed Automata

We can now assume a given net of degree 2 (with no inhibitor arcs) and we
will continue with a construction of a network of timed automata. The idea
of the translation is to represent each token in the net by a single timed au-
tomaton with one local clock, and to simulate a transition firing by a handshake
synchronization on a channel named after the transition.

The intuition is described on an example in Figure 7. We can see that
every place in the net gives rise to an identically named location in the parallel
component corresponding to a given token, while all invariants are carried over.
Time intervals on arcs are naturally transformed into guards and the local clocks
of each parallel component are reset if and only if the transitions correspond to

28

Algorithm 2: Algorithm for translation of TAPN of degree 2 to NTA

Input: A TAPN N = (P, T, IA,OA, c,Type, Inv) of degree 2 and a marking M0.
Output: An NTA PTA = A1||A2|| . . . ||A|M0| where Ai = (L,Act, C, ∅,−→i, I

i
C , I

i
X , `

i
0).

begin
L := P ; Act := {t!, t? | t ∈ T}; C := {c1, c2, . . . , c|M0|}
forall the t ∈ T do

Let {(p1, I1, p′1, type1), (p2, I2, p′2, type2)} := Pairing(t).
for i := 1 to |M0| do

Add p1
ci∈I1,t!,R−−−−−−−→i p

′
1 such that R = {ci} if type1 = normal else R = ∅.

Add p2
ci∈I2,t?,R−−−−−−−→i p

′
2 such that R = {ci} if type2 = normal else R = ∅.

i := 1; forall the p ∈ P , forall Token ∈M0(p) do `i0 := p; i := i+ 1;
for i := 1 to |M0| do

forall the p ∈ P do
IiC(p) := (ci ∈ Inv(p))

IiX(p) := true

normal arcs. In fact, the timed automata for all tokens in the net are identical,
except for their initial locations that are determined by the placement of tokens
in the initial marking and the names of their local clocks. For clarity reasons, we
draw in the illustrations also clearly unreachable parts of the timed automata;
in the actual implementation any unreachable states can be omitted.

In the general construction, as presented in Algorithm 2, we create for a
k-bounded TAPN of degree 2 a network of k parallel components, each of them
of a linear size w.r.t. the size of the input net (with the number of locations
corresponding to the number of places and with twice as many edges as the
Petri net transitions).

We are not using any integer variables in this translation, so the variable
guards and assignments are left out; we also use expressions like c ∈ I for
lock guards/invariants on the transitions and implicitly assume that they are
converted to the correct timed automata syntax (a straightforward conjunction
of two guard constraints).

For the proof of correctness, we will again apply the methodology from
Section 2.4. In this case every configuration of the NTA is stable, thus we set
the proposition stable everywhere to true. The proposition translation function
trp will translate atomic Petri net propositions of the form (p ./ n) into NTA
propositions (#p ./ n), meaning that the number of components in the location
p determines the number of tokens in the place p.

Let M be a marking of a k-bounded TAPN of degree 2 and let s =
(`1, · · · , `k, v) be a configuration of the constructed NTA (variable valuation
is omitted as it is not used). Then we define (M, s) ∈ R if and only if we
can enumerate the elements of M as {(p1, r1), (p2, r2), · · · , (pk, rk)} such that
pi = `i and ri = v(ci) for all i, 1 ≤ i ≤ k.

Lemma 25. The relation R is a complete one-by-many correspondence.

29

Proof. We need to prove that R satisfies all requirements of Definition 8. As
every configuration of the constructed NTA satisfies the proposition stable, we
immediately get that the generated transition system is a delay-implies-stable,
delay-preserves-stable and eventually-stable TTS. Let M ∈ M(N,M0) and let
s be a reachable configuration of PTA constructed by the algorithm such that
(M, s) ∈ R. We shall prove that R satisfies Conditions 1-6 of Definition 8.

1.,2. These two conditions are immediate from the definition of R and the
proposition translation function.

3. Assume that M
t−→ M ′. Because t has exactly two input places, say p0

and p1, that contain tokens with ages satisfying the invariants on arcs and
(M, s) ∈ R, we can find two parallel components Aj and Ak in PTA such
that their current locations in s are p0 and p1, and their local clocks cj
and ck correspond to the ages of the two tokens in p0 and p1 consumed
when firing t. Because these components share the same time constraints
as the time intervals on the arcs in the Petri net, they can synchronize on
the channel t and produce a state s′ where clearly (M ′, s′) ∈ R.

4.,6. By construction of the timed automata network where all invariants are
simply overtaken, any time delay allowed in M are also allowed in s and
vice versa.

5. Let s
t−→ s′ via a synchronization of two parallel components Aj and Ak

on a channel t. Due to the construction we can see that this can happen

only if the transition t can be fired in M . Now let M
t−→M ′ such that the

firing of t involves tokens in •t that correspond to the parallel components
Aj and Ak. Clearly, (M ′, s′) ∈ R. 2

5.2.1. Summary

We have now proved that the first step of the translation preserves the safety
fragment of TCTL and the second preserves the full TCTL. This means that
the combined translation from k-bounded TAPN into NTA (via Algorithm 1
followed by Algorithm 2) will preserve the safety fragment of TCTL.

Theorem 26. Any k-bounded TAPN without inhibitor arcs can be translated
into a network of timed automata while preserving the safety fragment of TCTL.

Clearly, if the input k-bounded net has at most two input and at most two
output arcs for each transition, it can be easily turned into a degree 2 net by
adding the pcapacity place together with the missing input or output arcs. We
can now apply directly the second translation, hence preserving also the liveness
properties. Moreover, in the actual implementation in the tool TAPAAL, we
exploit the possibility of a direct handshake synchronization for transitions of
degree 2 presented in Figure 7 and use the full construction depicted in Figure 6
only for transitions with more than two input or output arcs.

30

Clocks:

c = 0.0

c1 = 1.2

c2 = 2.5

c3 = 3.3

c4 = 5.5

p0

#4

{1.2, 2.5, 3.3, 5.5}

p1t
[0, 4]

`stable `(t)
inv:
c ≤ 0 ∧
count1 ≥ 1

ttest

!

c := 0

count1 = 1tfire

!count1 := 0

Token automata template repeated four times for 1 ≤ i ≤ 4:

p0

`(tp0p1)

p1
0 ≤ ci ≤ 4 count1++ttest

?

τcount1−− count1 > 1

tfire
?

ci := 0

Figure 8: A simple TAPN and the constructed NTA

6. Liveness-Preserving Translation

We will now present another translation from k-bounded TAPN to NTA,
this time considering also inhibitor arcs. As in the previous translation, there
will be one TA with a local clock for each token in the net. Because there may
not always be exactly k tokens present during the execution of the net, we add a
new location `capacity in order to represent currently unused tokens. In addition
to the automata modelling tokens, we create a single control automaton. Its
purpose is to simulate the firing of transitions and to move tokens around via
broadcast communication. The control automaton has a location `stable and
it moves out of this location once the simulation of a transition begins and
returns back once the simulation of the transition ends. Moreover, each time
the automaton is in `stable , the token automata in the composed NTA correspond
to a marking in the TAPN. The whole point of this construction is to ensure
that we do not introduce any new deadlocks as it was the case in the previous
translation. We will first show how the translation works on two examples.

Example 27. Figure 8 shows a simple TAPN with a single transition, no in-
hibitor arcs, and four tokens of different ages. The translated NTA consists
of five automata, one control automaton (topmost automaton) and four token
automata, one for each token. Notice that in this example we have refrained
from drawing the pcapacity location as it is not used.

31

The translated NTA first tests using the broadcast communication whether
a transition can be fired at all and then executes the firing. Concretely, the
control automaton first broadcasts on the channel ttest . Any token automaton
with its clock in the interval [0, 4] is forced to participate in the broadcast; in our
case three token automata will participate. We use integer variables to count
the number of token automata that took part in the broadcast. Because the
preset of t has size one, we only need one counter variable count1. Once the
token automata synchronized in the broadcast, they move to the intermediate
locations `(tp0p1) and during the update each increments count1 by one2; in our
case the value of count1 will become three. This means that the invariant on `(t)
in the control automaton is satisfied. In other words, we know that there are
enough tokens with appropriate ages in the input places for t to fire. Notice that
if there were not enough tokens in some of the input places, then the invariant
on `(t) was not satisfied and the broadcast could not take place at all. This is
one of the crucial aspects to realize in order to see why this translation preserves
liveness properties.

Now the value of count1 is three and the control automaton may not broad-
cast on the tfire channel yet since the guard ensures that this is only possible
when exactly one token automaton remains in its intermediate place. Therefore,
we are forced to move two of the token automata back to p0 via the τ -transitions.
This is possible only as long as count1 is strictly greater than one. Hence ex-
actly one token automaton has to remain in its intermediate place before the
control automaton can broadcast on the tfire channel and finalize the simulation
of firing t. Note that due to the invariant c ≤ 0 in the control automaton, no
time delay is possible during the simulation of the transition.

After demonstrating the basic idea of the broadcast translation, let us discuss
a slightly more elaborate example using all of the features of the TAPN model.

Example 28. Consider the TAPN model in Figure 9 that uses transport arcs
(the pair of arcs with diamond tips from p1 to p4) for moving tokens while pre-
serving their ages, an inhibitor arc (the arc with the circle tip) and an invariant
in place p4. The NTA created by our algorithm is below the net. As before, the
template is repeated three times, once for each token, the only difference being
the initial location (p1, p2 and p3, respectively) and the name of the clock (c1,
c2 and c3, respectively).

We see that the control automaton has a test-fire loop for every transition in
the TAPN model. There are some special constructions worth mentioning. First
of all, consider the inhibitor arc from p3 to t. This arc is encoded using a self-
loop participating in the ttest broadcast transition. We use a counter variable
to count the number of automata that take this edge. We simply encode the
requirement that there is no token in the interval [0, 2] by adding the invariant
count3 = 0 on the location `(t).

2The updates for each token automaton are executed in a fixed order but the ordering is not
important as the resulting value will only depend on the number of participating automata.

32

p3p1

p2

t

t′

p4

inv: ≤ 3

[0, 4][1, 5]

[0, 2]

[0,∞)

3.02.8 1.4

`stable `(t)
inv:
c ≤ 0 ∧
count1 ≥ 1 ∧
count2 ≥ 1 ∧
count3 = 0

`(t ′)
inv:
c ≤ 0 ∧
count1 ≥ 1

t′test

!

c := 0

t′fire

!

count1 = 1 count1 := 0

ttest

!

c := 0

count1 = 1 ∧
count2 = 1

tfire

!

count1 := 0,
count2 := 0

Token automata template repeated three times for 1 ≤ i ≤ 3:

p3
0 ≤ ci ≤ 2
ttest

?

count3++

p1

`(tp1p4)

p4

ci ≤ 3

1 ≤
ci
≤ 3

ttest

?

co
unt 1

++

count1−−
τ

count1 > 1

tfire
?

p2

`(tp2pcapacity)

pcapacity

0 ≤
ci
≤ 4

ttest

?

co
unt 2

++

count
2−−
τcount

2 >
1

tfire
?

ci := 0

`(t′p3p4)

t′test

?

count1++

count
1−−
τcount

1 >
1

t′fire

?

ci := 0

Figure 9: A TAPN and the constructed NTA

The second observation is related to the guard on the edge from p1 to `(tp1p4).
It is evident that this does not match the interval [1, 5] located on the arc from
p1 to t in the TAPN model. The guard 1 ≤ ci ≤ 3 is in fact the intersection
of the interval [1, 5] and the invariant ≤ 3 representing the interval [0, 3] on the
place p4. This is because the age of the token consumed in p1 will be preserved
once moved to p4 and by intersecting the intervals we avoid possible deadlocks.
One may think that it is enough to add the invariant [0, 3] on the intermediate
place, however, this may result in incorrect behavior. If there were two tokens
in p1 with ages 4 and 2, the broadcast on ttest would be blocked. This is because
invariants block the entire broadcast transition even if only a single automaton
with a satisfied guard cannot participate due to the violation of the invariant in
its target location.

33

For our specific example, we need at least one token of age [1, 3] in p1, at
least one token of age [0, 4] in p2 and zero tokens of age [0, 2] in p3 in order
for t to be enabled, which is precisely what is encoded in the invariant on `(t).
The reader may also notice that different transitions share counter variables.
The variable count1 is used in the simulation of both t and t′ but they are used
in a non-conflicting way, in the sense that we are never simulating t and t′ at
the same time. We also see that during the simulation of t′ we do not take
the invariant of the target location into account since the arc from t′ to p4 is a
normal arc and produces a token of age zero which always satisfies any invariant.

The complete translation is given in Algorithm 3 where the function Pairing

is the one used also in the previous translation and where NumVars(N)
def
=

maxt∈T (|Pairing(t)| + |{(p, t) | (p, t) ∈ IA,Type((p, t)) = Inhib}|) denotes the
maximum number of integer variables needed in the translation since we need
a counter for each pair in Pairing(t) plus a counter for each inhibitor place of t.
As explained, these counters can be reused for different transitions. As before,
we shall also use the expressions like c ∈ I in guards and invariants of the timed
automata, meaning the obvious conjunction of two constraints on the clock c.

Observe that the algorithm clearly terminates as the only while-loop always
removes one element from Pairing(t) and finishes once the set is empty. The
algorithm creates k parallel timed automata for each token and one extra control
component. The token automata contain at most |P |+ 1 + |T | ·D locations and
3 · |T | ·D edges where D is the maximum degree of any transition. The control
automaton contains |T |+ 1 locations and 2|T | edges.

To prove the correctness of the translation, we will follow the methodology
described in Section 2.4. We let (N,M0) be a marked k-bounded TAPN and let
PTA be the NTA constructed by Algorithm 3 with the initial configuration s0.
We define the stable proposition as (#`stable = 1). Observe that the proposition
(#`stable = 1) is true whenever the control TA is in the `stable location. The
proposition translation function trp translates a TAPN proposition (p ./ n) into
(#p ./ n), hence the number of tokens in p corresponds to the number of token
automata that are currently in their location p.

Now we define a correspondence relation R between markings of N and
configurations of the constructed PTA. Let M = {(p1, r1), (p2, r2), . . . , (pn, rn)}
be a reachable marking of N and let s = (`, `1, `2, . . . , `k, z, v) be a reachable
configuration of PTA. As (N,M0) is k-bounded, clearly n ≤ k. We define
(M, s) ∈ R iff

• ` = `stable ,

• count i = 0 for all 1 ≤ i ≤ NumVars(N), and

• there is an injection h : {1, 2, . . . , n} −→ {1, 2, . . . , k} such that

– `h(i) = pi and v(ch(i)) = ri for all i where 1 ≤ i ≤ n,

– `j = pcapacity for all j ∈ {1, 2, . . . , k} \ range(h).

34

Algorithm 3: Translation from k-bounded TAPN to NTA.

Input: A k-bounded TAPN N = (P, T, IA,OA, c,Type, Inv) with a marking M0

Output: NTA PTA = A||A1||A2|| . . . ||Ak s.t. A = (L,Act, C,X,−→, IC , IX , `0) and
Ai = (Li,Act, C,X,−→i, I

i
C , I

i
X , `

i
0)

begin
for i := 1 to k do Li := P ∪ {pcapacity}
L := {`stable}; Act := {ttest

!

, ttest
?
, tfire

!

, tfire
?
| t ∈ T} ∪ {τ}

C := {c, c1, c2, . . . , ck}; X := {counti | 1 ≤ i ≤ NumVars(N)}
forall the t ∈ T do

j := 0; varInv t := true; varGuardt := true
forall the (p, I, p′, type) ∈ Pairing(t) do

j := j + 1;
for i := 1 to k do

Li := Li ∪ {`(tpp′)}

Add p
g,true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−→i `(t
p
p′) s.t. g := (ci ∈ I) if

type = normal else g := (ci ∈ I ∩ Inv(p′))

Add `(tp
p′)

true, true, tfire

?
, R, ∅

−−−−−−−−−−−−−−→i p
′ s.t. R := {ci} if type = normal else

R := ∅

Add `(tp
p′)

true, countj>1, τ, ∅, countj−−−−−−−−−−−−−−−−−−−−−−−→i p

varInv t := varInv t ∧ countj ≥ 1; varGuardt := varGuardt ∧ countj = 1

forall the p ∈ P where (p, t) ∈ IA and Type((p, t)) = Inhib do
j := j + 1;
for i := 1 to k do Add p

ci∈c((p,t)), true, ttest

?
, ∅, countj++

−−−−−−−−−−−−−−−−−−−−−−−−→i p
varInv t := varInv t ∧ countj = 0; varGuardt := varGuardt ∧ countj = 0

L := L ∪ {`(t)}; Add `stable
true, true, ttest

!

, {c}, ∅−−−−−−−−−−−−−−−→ `(t) and

`(t)
true, varGuardt, tfire

!

, ∅, {counti:=0|1≤i≤j}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ `stable

for i := 1 to k do

IiC(p) :=

ci ≤ a if p ∈ P and Inv(p) = [0, a]

ci < b if p ∈ P and Inv(p) = [0, b)

true if p ∈ Li \ P
IiX(p) := true for p ∈ Li

IC(p) :=

{
true if p = `stable

c ≤ 0 if p ∈ L \ {`stable}

IX(p) :=

{
varInv t if p = `(t) for t ∈ T
true if L \ {`(t) | t ∈ T}

i := 1; forall the p ∈ P do forall the Token ∈M0(p) do `i0 := p; i := i+ 1

for i := |M0|+ 1 to k do `i0 := pcapacity

`0 := `stable

Intuitively, if (M, s) ∈ R then for every token in M there is a TA where its
location and clock valuation matches the token data and vice versa.

We shall now prove that R is a complete one-by-many correspondence.

Lemma 29. The relation R is a complete one-by-many correspondence.

Proof. We will first show that PTA possesses the three properties required by
complete one-by-many correspondence. The transition system generated by PTA

35

is clearly a delay-implies-stable TTS since all locations in the control automaton
except for `stable have the invariant c ≤ 0 and delay is hence possible only if
the control automaton is in the location `stable . It is also easy to see that it is
delay-preserves-stable TTS as time delays do not change the current locations
of any automata, so if the control automaton is in the location `stable it will
be there also after any time delay. Finally we should argue that the transition
system of PTA is also eventually-stable TTS. This follows from the construction.
The control automaton moves out of the `stable location after broadcasting on
some channel ttest . The automaton can broadcast only if for every input place
of t there is at least one corresponding token automaton that will participate
in the broadcast, otherwise the invariant in `(t) would break. Now we are in
an unstable situation and we can fire only the τ transitions returning some of
the token automata into their initial locations, while decreasing the value of
the corresponding variable count . This will happen only finitely many times
as we eventually reach the situation when the guard in the control automaton
broadcasting on the channel tfire will be satisfied and the only remaining action
is to return to a stable configuration.

We shall now prove that R satisfies Conditions 1-6 of Definition 8. Let
(M, s) ∈ R.

1.,2. These two conditions follow immediately from the definitions.

3. Assume that M
t−→M ′. We must show that s; s′ such that (M ′, s′) ∈

R. We first notice that ttest is enabled in s. Since ttest is a broadcast
channel, the first requirement is that the ttest sender has to be enabled.
There are no guards in the control automaton, so only the invariant on `(t)
may block the broadcast. The second requirement is that every possible
receiver (i.e. any receiver whose guard is satisfied) must participate in
the broadcast synchronization. Due to the construction of PTA, there are
no invariants on the intermediate places `(tpp′). Thus, any receiver with a
satisfied guard can participate in the broadcast synchronization. By the
fact that (M, s) ∈ R it follows that enough TA will participate in the
broadcast synchronization to satisfy the invariant on `(t). By returning
the token automata representing tokens that do not take part in firing
t into their previous locations and issuing the broadcast on tfire we get

s
ttest−→ s1 −→ s2 −→ · · · −→ sn−1

tfire−→ sn = s′ and hence s ; s′ while
clearly (M ′, s′) ∈ R.

4.,6. Time delays can only be restricted by invariants. By the fact that the
invariant on each place p inN is carried over to the corresponding locations
p in the network, we have that it is always possible to do the same time
delays in M and s.

5. Assume that s ; s′. By the construction of PTA, we get that this se-

quence must be of the form (leaving out 0 delays) s
ttest−→ s1 −→ s2 −→

· · · −→ sn−1
tfire−→ sn. Since s

ttest−→ s1 we know that the invariant on `(t) is
satisfied. By the construction, this in turn means that there are enough
token automata that can synchronize on ttest in such a way that for each

36

input place p ∈ •t there is at least one automaton whose current location
is p and the clocks of these automata satisfy the guards on the ttest

?
tran-

sitions. Further, for each place p′ such that there is an inhibitor arc from
p′ to t, there is no automaton in location p′ with a clock satisfying the
respective guard. Finally, the token automata that moved to their inter-
mediate locations and represent a token moving along a pair of transport
arcs are guaranteed to satisfy the invariants in their target locations due
to the fact that the guards were intersected with the invariants. This is

exactly what is needed to fire t from M and we get M
t−→ M ′ such that

(M ′, s′) ∈ R. 2

6.1. Summary

We have now showed that any bounded TAPN with age invariants and trans-
port/inhibitor arcs can be translated into a network of timed automata with (a
very restricted use of) integer variables and with broadcast communication like
used in the tool Uppaal. As the original and the translated models are related
using a complete one-by-many correspondence relation, we know that the whole
logic TCTL is preserved.

Theorem 30. Any k-bounded TAPN can be translated into a network of timed
automata while preserving the full TCTL.

As discussed in the previous translation, if a transition in a concrete k-
bounded net has at most two input and two output arcs, the whole construc-
tion presented in this section can be replaced by a simple handshake synchro-
nization (still preserving liveness properties). Such an optimization has been
implemented in the tool TAPAAL.

7. Experiments

During the development of the tool TAPAAL we have tested several variants
of possible translations and concluded that the two presented in this article are
the most efficient ones. The translations are available in the current distribution
of the tool and we shall document their efficiency by presenting a selection of
experimental results and comparing the performance of our translations with
native Uppaal models. We present six selected experiments; all models are
available from the download section at www.tapaal.net.

• Alternating Bit Protocol [34, 7] is a network protocol for communication
between a sender and a receiver over a lossy communication channel. We
verify a safety property that guarantees that the sender and the receiver
never get out of synchrony; the property is satisfied.

• Fischer’s Protocol [31] is a time based mutual exclusion protocol and it
is a standard example for testing the performance of tools. The TAPN
model was presented in [4] and it is available as a TAPAAL example net;

37

timed automata model is a part of the standard Uppaal distribution. We
verify a safety property ensuring that at most one process can be in the
critical section at any time; the property is satisfied.

• Lynch and Shavit Protocol [33] is another, more complex, timed-based
mutual exclusion algorithm. Both TAPAAL and Uppaal models are taken
from [3]. We verify a safety property as in the previous case study; it is
also satisfied.

• MPEG-2 Video Encoder [1] is a model of the MPEG-2 encoding algorithm
for analyzing its performance on a group of frames on a multiprocessor
architecture; we scale the model by varying the number of B frames. The
TAPN model was taken directly from [38]. We recreated the Uppaal
model from the descriptions in [20] since their original Uppaal model was
not available anymore. We verify a reachability query asking whether all
frames can be produced within a given deadline and the deadline is set so
that the query is unsatisfied and the whole state-space is searched.

• Engine Workshop is a time based model of a small workshop with several
workers that maintain a number of running engines with different mainte-
nance deadlines and requirements. We verify a liveness property asking,
for a given number of engines, whether 15 workers can keep them running
indefinitely; the query is satisfied and the reported times correspond to
the effort needed to find a feasible maintenance schedule.

• Medical Workflow is a simplified model of a workflow with time require-
ments, inspired by [22], with three types of roles: patient, nurse and doc-
tor. The case study is scaled by the number of patients. We verify a
liveness query asking, for a given number of patients arriving in regular
intervals, if in any execution scenario all patients are checked out before
missing the deadlines. The query is satisfied and the whole state-space is
searched.

The experiments where performed on a quad-core Intel Core I7 620 2.67
GHz with 4GB of RAM running Ubuntu 11.04, using the 64-bit Uppaal 4.1.7
verification engine and TAPAAL 2.0.0. Symmetry reduction was enabled in
the Uppaal engine for all safety queries and disabled for the liveness ones as
the Uppaal engine does not support trace generation in this case. We used
standard engine settings with the BFS search strategy. Running times are given
in seconds, experiments that did not finish within 5 minutes (300 seconds) are
marked with � and experiments that run out of memory are marked with OOM.
For the translations, the reported time includes both the translation time to
NTA (often negligible) plus the actual verification.

Table 1 provides a summary of the experiments where we tested safety prop-
erties. For the first three experiments, both the safety and liveness translations
show similar execution times. The reason is that in these models most of the
transitions have no more than two input and two output arcs and the handshake
optimization technique creates a similarly performing Uppaal models.

38

Messages Safety Translation Liveness Translation Uppaal

A
lt

er
n

a
ti

n
g

B
it

10 1.18 1.23 0.85
11 1.98 1.90 2.00
12 4.84 4.56 3.85
13 7.94 7.67 7.95
14 23.61 18.28 19.02
15 61.61 48.13 51.44
16 214.7 165.91 145.92
17 � � �

Processes Safety Translation Liveness Translation Uppaal

F
is

ch
er

40 0.89 0.88 1.97
50 2.14 2.16 21.20
70 8.92 8.81 30.25
90 27.25 26.51 42.10

110 67.03 65.01 244.51
130 143.65 142.88 �
150 282.27 277.71 �

Processes Safety Translation Liveness Translation Uppaal

L
y
n

ch
-S

h
a
v
it

20 0.21 0.19 0.95
30 0.69 0.67 8.69
40 2.25 2.00 49.95
50 5.15 4.97 179.43
60 10.91 10.81 �
80 39.64 39.23 �

100 105.76 105.74 �
120 249.44 253.534 �

B-frames Safety Translation Liveness Translation Uppaal

M
P

E
G

-2
E

n
co

d
er 1 ≤ 0.1 0.11 ≤ 0.1

2 ≤ 0.1 9.37 ≤ 0.1
3 0.12 � ≤ 0.1
4 0.35 OOM ≤ 0.1
5 1.53 OOM 1.16
6 8.96 OOM 1.60
7 74.26 OOM 41.62
8 � OOM �

Table 1: Verification results for safety properties

It is also noticeable that in case of Fischer’s and Lynch-Shavit’s protocols,
the translated timed automata models verify considerably faster than the native
Uppaal models do. The reason seems to be that even though these translated
models are more complex than the native Uppaal ones and the number of
symbolic states is larger, the DBM operations use less CPU time. This perfor-
mance seems to be most visible in case of a large number of similarly behaving
processes.

In case of the MPEG-2 encoder where there are transitions with a large inde-
gree, we can see a weakness of the liveness translation as during the verification
the number of explored token combinations in which a transition can be fired
explodes, causing the Uppaal verification engine quickly run out of memory.

On the other hand, the liveness reduction can handle also inhibitor arcs and
verify liveness properties, as documented on the engine maintenance workshop

39

Engines Safety Translation Liveness Translation Uppaal

E
n

g
in

e
W

o
rk

sh
o
p

55 - 3.38 3.04
60 - 4.49 4.08
65 - 7.42 4.22
70 - 7.56 5.04
75 - 7.99 6.12
80 - 12.68 6.06
85 - 13.23 7.34
90 - 12.59 8.49
91 - � �

Patients Safety Translation Liveness Translation Uppaal

M
ed

ic
a
l

W
o
rk

fl
o
w

9 - 1.15 0.32
10 - 2.16 0.78
11 - 6.16 1.86
12 - 14.19 4.44
13 – 32.85 10.28
14 - 75.32 23.64
15 - 169.953 54.16
16 - � 122.84
17 - � �

Table 2: Verification results for liveness properties

and the medical workflow case studies in Table 2. The performance is slower,
though comparable with that of the Uppaal engine verifying native timed au-
tomata models.

8. Conclusion

We have presented a general framework for translating one time-dependent
model into another one while preserving the satisfaction of TCTL properties.
We further demonstrated the usefulness of the framework on two concrete trans-
lations from bounded timed-arc Petri nets to networks of timed automata, giving
us more direct and simpler ways to argue about their correctness. Even though
similar ideas were used in other translations, though without an explicit gener-
alization of the techniques, we see as the strong point of our approach the fact
that we handle the full generality of timed transitions systems that are generated
by many time-dependent models used in nowadays tools like Uppaal. Hence
our framework is close to the tool developers and can facilitate more direct and
simpler arguments about the correctness of the approach by simply defining a
one-by-many correspondence and proving a few properties that are required.
All the tedious technical details about the preservation of TCTL formulae are
now hidden in the proof of the framework correctness and do not have to be
repeated for each single instance of our approach. Moreover, the technique is
independent of the actual underlying formal model and many translations be-
tween other time-dependent models, including e.g. Time Petri Nets of Merlin
and Faber [35, 36], share the same characteristics and for several of them our
technique is directly applicable, including [21, 14, 24, 30, 46].

40

As another contribution of this work, we now have a complete and unified
proof of the translations implemented in the tool TAPAAL, one of them preserv-
ing the whole TCTL for the fully featured TAPAAL models and one preserving
only the safety fragment for models without inhibitor arcs, though in some cases
providing a significantly better performance than the liveness preserving trans-
lation. It is remarkable that even though the translated models are verified
using the Uppaal engine and they are significantly larger than the native Up-
paal models, in several cases we noticed a speedup in the verification times.
This, perhaps a surprising, fact should be better understood and exploited as
a possible pre-processing phase in verification of timed automata models before
they are passed to the verification engine.

Acknowledgments. We would like to thank all current and past TAPAAL de-
velopers and many of our colleagues for their useful feedback. We also thank
the anonymous reviewers for their detailed comments and suggestions.

References

[1] ISO/IEC 13818-1:2000(E). Information technology—generic coding of mov-
ing pictures and associated audio information: Systems, 2000.

[2] P.A. Abdulla, J. Deneux, P. Mahata, and A. Nylén. Forward reachability
analysis of timed Petri nets. In Joint International Conferences on For-
mal Modelling and Analysis of Timed Systems (FORMATS’04) and Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’04), vol-
ume 3253 of LNCS, pages 343–362. Springer-Verlag, 2004.

[3] P.A. Abdulla, J. Deneux, P. Mahata, and A. Nylén. Using forward reacha-
bility analysis for verification of timed Petri nets. Nordic J. of Computing,
14:1–42, 2007.

[4] P.A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proceedings
of the 22nd International Conference on Application and Theory of Petri
Nets (ICATPN’01), volume 2075 of LNCS, pages 53–70. Springer-Verlag,
2001.

[5] R. Alur and D. Dill. Automata for modelling real-time systems. In Proceed-
ings of the 17th International Colloquium on Algorithms, Languages and
Programming (ICALP’90), volume 443 of LNCS, pages 322–335. Springer-
Verlag, 1990.

[6] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[7] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex links. Commun. ACM, 12:260–
261, May 1969.

41

[8] G. Behrmann, A. David, and K.G. Larsen. A tutorial on uppaal. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design
of Real-Time Systems: 4th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems (SFM-
RT’04), number 3185 in LNCS, pages 200–236. Springer-Verlag, 2004.

[9] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O.H. Roux. Comparison
of the expressiveness of timed automata and time Petri nets. In Proc. of
FORMATS’05, volume 3829 of LNCS, pages 211–225. Springer, 2005.

[10] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between timed
automata and bounded time Petri nets. In Proc. of FORMATS’06, volume
4202 of LNCS, pages 82–97. Springer, 2006.

[11] B. Berthomieu, P-O. Ribet, and F. Vernadat. The tool TINA — construc-
tion of abstract state spaces for Petri nets and time Petri nets. International
Journal of Production Research, 42(14):2741–2756, 2004.

[12] T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed LO-
TOS. In Proceedings of the IFIP WG 6.1 Tenth International Symposium
on Protocol Specification, Testing and Verification (Ottawa 1990), pages
1–14. North-Holland, Amsterdam, 1990.

[13] H. Boucheneb, G. Gardey, and O.H. Roux. TCTL model checking of time
Petri nets. Journal of Logic and Computation, 19(6):1509–1540, 2009.

[14] P. Bouyer, S. Haddad, and P.A. Reynier. Timed Petri nets and timed
automata: On the discriminating power of Zeno sequences. Information
and Computation, 206(1):73–107, 2008.

[15] F.D.J. Bowden. Modelling time in Petri nets. In Proceedings of the Second
Australia-Japan Workshop on Stochastic Models, 1996.

[16] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
Kronos: A model-checking tool for real-time systems. In Proceedings of the
10th International Conference on Computer-Aided Verification (CAV’98),
volume 1427 of LNCS, pages 546–550. Springer-Verlag, 1998.

[17] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF toolset. In For-
mal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software
Systems (SFM-RT’04), volume 3185 of LNCS, pages 237–267. Springer-
Verlag, 2004.

[18] J. Byg, K.Y. Jørgensen, and J. Srba. An efficient translation of timed-arc
Petri nets to networks of timed automata. In Proc. of ICFEM’09, volume
5885 of LNCS, pages 698–716. Springer, 2009.

42

[19] J. Byg, K.Y. Jørgensen, and J. Srba. TAPAAL: Editor, simulator and
verifier of timed-arc Petri nets. In Proc. of ATVA’09, volume 5799 of
LNCS, pages 84–89. Springer, 2009.

[20] M.E. Cambronero, A.P. Ravn, and V. Valero. Using UPPAAL to analyze
an MPEG-2 algorithm. In Proc. of VII Workshop Brasileiro de Tempo
Real, pages 73–82, 2005.

[21] F. Cassez and O.H. Roux. Structural translation from time Petri nets to
timed automata. Journal of Systems and Software, 79(10):1456–1468, 2006.

[22] S.C. Christov, G.S. Avrunin, L.A. Clarke, L.J. Osterweil, and E.A. Henne-
man. A benchmark for evaluating the applicability of software engineering
techniques to the improvement of medical processes. In Proceedings of the
2010 ICSE Workshop on Software Engineering in Health Care (SEHC’10),
pages 50–56. ACM Press, 2010.

[23] A. David, L. Jacobsen, M. Jacobsen, K.Y. Jørgensen, M.H. Møller, and
J. Srba. TAPAAL 2.0: Integrated development environment for timed-arc
Petri nets. In Proceedings of the 18th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’12),
volume 7214 of LNCS, pages 492–497. Springer-Verlag, 2012.

[24] J.S. Dong, P. Hao, S. Qin, J. Sun, and W. Yi. Timed Automata Patterns.
IEEE Transactions on Software Engingeering, 34(6):844–859, 2008.

[25] G. Gardey, D. Lime, M. Magnin, and O.H. Roux. Romeo: A tool for
analyzing time Petri nets. In Proc. of CAV’05, volume 3576 of LNCS,
pages 418–423. Springer, 2005.

[26] H.M. Hanisch. Analysis of place/transition nets with timed-arcs and its
application to batch process control. In Proceedings of the 14th Interna-
tional Conference on Application and Theory of Petri Nets (ICATPN’93),
volume 691 of LNCS, pages 282–299, 1993.

[27] F. Heitmann, D. Moldt, K.H. Mortensen, and H. Rölke. Petri
nets tools database quick overview (from Petri net world).
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/,
Accessed: 29.4.2013.

[28] L. Jacobsen, M. Jacobsen, M.H. Møller, and J. Srba. A framework for
relating timed transition systems and preserving TCTL model checking.
In Proceedings of the 7th European Performance Engineering Workshop
(EPEW’10), volume 6342 of LNCS, pages 83–98. Springer-Verlag, 2010.

[29] L. Jacobsen, M. Jacobsen, M.H. Møller, and J. Srba. Verification of timed-
arc Petri nets. In Proceedings of the 37th International Conference on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM’11),
volume 6543 of LNCS, pages 46–72. Springer-Verlag, 2011.

43

[30] A. Janowska, P. Janowski, and D. Wróblewski. Translation of Intermediate
Language to Timed Automata with Discrete Data. Fundamenta Informat-
icae, 85(1-4):235–248, 2008.

[31] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on
Computer Systems, 5(1):1–11, 1987.

[32] F. Laroussinie and K.G. Larsen. CMC: A tool for compositional model-
checking of real-time systems. In Proceedings of the FIP TC6 WG6.1 Joint
International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols (FORTE XI) and Protocol Specifi-
cation, Testing and Verification (PSTV XVIII), pages 439–456. Kluwer,
B.V., 1998.

[33] N. Lynch and N. Shavit. Timing-based mutual exclusion. In Proceedings
of the 13th IEEE Real-Time Systems Symposium, pages 2–11, 1992.

[34] W. C. Lynch. Computer systems: Reliable full-duplex file transmission
over half-duplex telephone line. Commun. ACM, 11:407–410, June 1968.

[35] P.M. Merlin. A Study of the Recoverability of Computing Systems. PhD
thesis, University of California, Irvine, CA, USA, 1974.

[36] P.M. Merlin and D.J. Faber. Recoverability of communication protocols:
Implications of a theoretical study. IEEE Transactions on Communica-
tions, 24(9):1036–1043, 1976.

[37] K.S. Namjoshi. A simple characterization of stuttering bisimulation. In
S. Ramesh and G Sivakumar, editors, Foundations of Software Technology
and Theoretical Computer Science, volume 1346 of LNCS, pages 284–296.
Springer-Verlag, 1997.

[38] F.L. Pelayo, F. Cuartero, V. Valero, H. Macia, and M.L. Pelayo. Applying
timed-arc Petri nets to improve the performance of the MPEG-2 encoding
algorithm. In Proceedings of the 10th International Multimedia Modelling
Conference (MMM’04), pages 49–56. IEEE Computer Society, 2004.

[39] F.L. Pelayo, F. Cuartero, V. Valero, M.L. Pelayo, and M.G. Merayo. How
does the memory work? By timed-arc Petri nets. In Proceedings of the 4th
IEEE International Conference on Cognitive Informatics (ICCI’05), pages
128–135, 2005.

[40] W. Penczek and A. Pólrola. Advances in Verification of Time Petri Nets
and Timed Automata: A Temporal Logic Approach. Springer-Verlag, 2006.

[41] W. Penczek and A. Pólrola. Advances in Verification of Time Petri Nets
and Timed Automata: A Temporal Logic Approach, volume 20 of Studies
in Computational Intelligence. Springer, 2006.

[42] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt, 1962.

44

[43] C. Ramchandani. Performance Evaluation of Asynchronous Concurrent
Systems by Timed Petri Nets. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, 1973.

[44] J. Sifakis. Use of Petri nets for performance evaluation. In Proceedings of
the Third International Symposium IFIP W.G. 7.3., Measuring, Modelling
and Evaluating Computer Systems (Bonn-Bad Godesberg, 1977), pages 75–
93. Elsevier Science Publishers, Amsterdam, 1977.

[45] J. Sifakis and S. Yovine. Compositional specification of timed systems. In
Proc. of STACS’96, volume 1046 of LNCS, pages 347–359. Springer, 1996.

[46] J. Srba. Timed-arc Petri nets vs. networks of timed automata. In Pro-
ceedings of the 26th International Conference on Application and The-
ory of Petri Nets (ICATPN 2005), volume 3536 of LNCS, pages 385–402.
Springer-Verlag, 2005.

[47] J. Srba. Comparing the expressiveness of timed automata and timed ex-
tensions of Petri nets. In Proc. of FORMATS’08, volume 5215 of LNCS,
pages 15–32. Springer, 2008.

[48] V. Valero, F. Cuartero, and D. de Frutos Escrig. On non-decidability of
reachability for timed-arc Petri nets. In Proceedings of the 8th International
Workshop on Petri Net and Performance Models (PNPM’99), pages 188–
196, 1999.

[49] V. Valero, J.J. Pardo, and F. Cuartero. Translating TPAL specifications
into timed-arc Petri nets. In Proceedings of the 23rd International Confer-
ence on Applications and Theory of Petri Nets (ICATPN’02), volume 2360
of LNCS, pages 414–433. Springer-Verlag, 2002.

[50] V. Valero, F.L. Pelayo, F. Cuartero, and D. Cazorla. Specification and
analysis of the MPEG-2 video encoder with timed-arc Petri nets. Electronic
Notes Theoretial Computer Science, 66(2), 2002.

[51] J. Wang. Timed Petri Nets, Theory and Application. Kluwer Academic
Publishers, 1998.

45

