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Abstract. Unfolding colored Petri nets into place/transition (P/T) nets
is a standard approach for model-checking, leveraging established tools
and techniques for basic Petri nets. However, the unfolding process often
leads to a combinatorial explosion in the number of places and tran-
sitions, creating a significant bottleneck in analyzing complex colored
Petri nets. We introduce a new verification engine for Petri nets with
finite color domains that bypasses the costly unfolding process. Our en-
gine employs an explicit, on-the-fly state-space exploration, utilizing an
optimized binding generator and linear programming-based approxima-
tion techniques to enhance performance. Integrated into the open-source
TAPAAL model checker, our engine is evaluated on an extensive bench-
mark from the Model Checking Contest (MCC) 2024. It demonstrates
superior performance over the state-of-the-art unfolding approaches.

1 Introduction

Distributed systems are inherently complex, posing significant challenges to cor-
rect design and analysis. Petri nets (PNs) [24] have emerged as a powerful formal-
ism for modeling complex distributed behaviors. To enhance their expressiveness
and applicability, various extensions have been proposed. Among these, colored
Petri nets (CPNs), suggested by Kurt Jensen [15] , introduce token colors, en-
abling more compact and flexible modeling of complex systems.

Colored Petri Nets (CPNs) are susceptible to the state-space explosion prob-
lem, particularly when large color types are used. Any CPN with finite color
types is expressively equivalent to an ordinary Petri Net (PN), meaning it can
be unfolded [22] into its PN counterpart. Unfolding is advantageous because it
enables the direct application of existing PN optimization techniques and a large
selection of tools. However, unfolding introduces a significant overhead, and the
resulting PN may become so large that it exceeds time and memory constraints.
On-the-fly (or explicit) verification techniques enable gradual exploration of the
state space, allowing the identification of reachable markings with specific prop-
erties without requiring to complete the unfolding process.

We present a novel explicit verification engine for colored Petri nets that
enables efficient reachability analysis on large nets without requiring their un-
folding. We outline the design choices and implementation details that make our
engine both efficient and competitive with state-of-the-art unfolding approaches.
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Specifically, we detail the critical code components for successor marking gener-
ation and describe over-approximation techniques based on linear programming,
which often enable fast resolution of negative reachability queries. Addition-
ally, we present a method for handling fireability queries (checking transition
enabledness) which are typically more challenging than pure cardinality queries.

We experimentally evaluate the performance of our explicit verification en-
gine on a benchmark of colored Petri nets and queries from the annual Model
Checking Contest (MCC) [1]. We compare its performance with the unfolding ap-
proach implemented in TAPAAL [9,14,4], the winner in the reachability category
at MCC’24 [19] and MCC’25 [20]. Our results demonstrate a 9% improvement in
the number of queries answered by our explicit engine compared to unfolding.

Related Work. The state-of-the-art CPN model checkers that competed in the
model checking contest during the past years, including ITS-Tools [25], Lola [27]
and TAPAAL [14] are solely based on the unfolding approach [1]. Additionally,
it has been shown that TAPAAL unfolding implementation for the reachability
analysis is currently the most efficient unfolding approach [4], compared to the
MCC unfolder [8] (used also by TINA [2] and LoLA [27]), ITSTools unfolder [25]
and Spike unfolder [7] (also used by MARCIE [12] and Snoopy [11]).

CPN-Tools [16] is a popular tool for modelling, simulation and state-space
exploration of CPNs with complex color data structures and guards defined
in standard ML, however, it does not require finiteness of the color types and
reachability analysis is in general undecidable. While the state-space analysis
is via unfolding, the tool ASAP [26] aimed at providing an explict exploration
engine, however, neither the binary nor the source code of ASAP is accessi-
ble/maintained anymore and hence we cannot compare with its performance.

2 Colored Petri Nets

In our verification engine as well as in the MCC competition [1], we consider
colored Petri nets over a finite set Colors of all possible colors and finitely many
color types, each associated with a subset of Colors. More precisely, we support
color types with integer ranges as well as finite enumeration color types with an
ordering relation on their colors and cyclic successor and predecessor operations
++ and −−, respectively. Products of color types are supported as well and
each color type can have a number of associated variables. By arc expressions
AEτ we understand the set of all multisets over colors and variables in the
color type τ ∈ CT . If we e.g. have a color type with two colors a and b then
(2′a + 3′b) − 1′(a++) is a notation for an arc expression that represents the
multiset {a, a, b, b}. Let AE = ∪τ∈CTAEτ . By G we denote the set of guard
expressions, i.e. Boolean combinations of atomic predicates comparing colors
and variables using the standard comparison operators <, ≤, =, ̸=, ≥, >.

Definition 1. A CPN is a tuple N = (P, T,CT ,V, C,A, I, G,M0) where

– P and T are finite sets of places and transitions s.t. P ∩ T = ∅,
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Fig. 1: Token ring [21] CPN example

– CT is a finite set of color types and V is a finite set of variables,
– C : P → CT is a function assigning color types to places,
– A : (T × P )∪ (P × T ) ↪→ AE is a partial function assigning arc expressions

to arcs connecting places and transitions and respecting the color type of the
connected place, i.e. A(t, p) ∈ AEC(p) and A(p, t) ∈ AEC(p) for all p ∈ P
and t ∈ T where the functions are defined,

– I : P × T → N∞ is an inhibitor arc weight function,
– G : T → G is a function assigning guard expressions to transitions, and
– M0 is the initial marking where a marking M : P → B(Colors) is a func-

tion assigning multisets of colors to places while satisfying that M(p) only
contains colors from the color type C(p) for every p ∈ P .

Figure 1 depicts a CPN example in TAPAAL GUI [9], modelling a token
ring [21]. The color type Process is an enumeration of six elements (process0 to
process5) and Couple is a product color type containing pairs of processes. There
are three variables x, y and i of the color type Process. The place ‘state’ contains
six tokens in the initial marking and there are two transitions in the net. The
transition ‘otherprocess’ is the only one that can fire in the initial marking M0.
In order for it to fire, we need to bind the variables to the concrete colors while
satisfying the transition guard and at the same time the resulting multiset of
colors on the connected arc expressions must be a subset of the colors present in
the place ‘state’1. For example, if we assume the binding b(i) = process1, b(x) =
process1 and b(y) = process0, we obtain a valid binding that satisfies the guard
i ̸= process0 and x ̸= y. We can fire the transition ‘otherprocess’ in this binding,
which removes two tokens (process1,process1) and (process0,process0) from the
place ‘state’ and adds the tokens (process1, process0) and (process0,process0).
We denote such a transition firing by M0

t,b−→M where M is the marking after
removing and adding the two tokens.
1 Our example has no inhibitor arcs; should an inhibitor arc (p, t) be connected to a

transition t then in order to fire t we additionally require that M0(p) < I(p, t).
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A P/T net is a colored Petri net with one color type called dot and a single
color •, no variables and all guards being true. The classical verification method
for CPNs with finite color types is by unfolding [22] the colored net into an
equivalent P/T net. Here for every place in the CPN we create a copy for every
possible color from its color type. Similarly, for every transition and valid binding,
we create a new transition and connect them by arcs accordingly. In our token
ring example from Figure 1, the unfolding contains 36 places, 156 transitions
and 624 arcs. Hence unfolding nets with large number of colors, in particular
product colors, can result in very large P/T nets and the unfolding process itself
can exceed the time and memory limits. We instead avoid the unfolding step
and implement a direct (explicit) model checking engine.

We are interested in reachability analysis, asking whether there exists a mark-
ing M reachable from the initial marking M0, such that M satisfies a given
cardinality γc or fireability γf formula defined by the following abstract syntax

γc ::= p ▷◁ n | true | false | γc ∧ γc | γc ∨ γc | ¬γc

γf ::= t | true | false | γf ∧ γf | γf ∨ γf | ¬γf

where p ∈ P , n ∈ N, ▷◁ ∈ {<,≤,≥, >,=, ̸=} and t ∈ T . To evaluate a formula
on a marking M , we replace p with |M(p)| (number of tokens in p) and t with
true/false, depending on whether t is enabled in M or not.

3 Optimizations Implemented in the Verification Engine

We shall now outline three most-impactful techniques implemented in our tool.

Successor generator. The most critical part of the engine is the generation of
marking successors as this operation is constantly repeated during the state-
space search. We implement several improvements to the basic idea of iterating
over all transitions and all possible bindings in order to identify the successor
markings. The main components are summarized in Algorithm 1.

As the number of valid bindings for a transition can be large, we generate
the successor markings one by one while storing the information about the last
binding used on a given transition. We assume that both for transitions T and
a set of bindings B̄(M, t) in a marking M for a transition t, there is a function
first that returns the first element of these sets (in some implicit order) and
a function next that returns the next element or ⊤ if no further element exist.

Each call to NextSuccessor(M) at line 2 recovers from the global map the
pair (t, b) of a transition and a binding to be explored next. As long as t ̸= ⊤,
we perform at line 4 an inexpensive optimization by testing whether some of
the inhibitor arcs disables t or whether the number of tokens (irrelevant of the
color) in some place is strictly smaller than the lowest possible cardinality of the
corresponding arc after substituting variables with colors (this is precomputed
and cached). If the test succeeds, we know that t cannot be enabled under any
binding and we jump to line 15 where we consider the next possible transition
together with its first binding. Otherwise, we cycle through the possible bindings
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Algorithm 1: NextSuccessor(M) - successor generator
/* store is a globally available map linking a marking M with

transition-binding pair, initially (first(T), first(B̄(M,first(T )))) */
1

Input : A marking M
Output : A successor marking M ′ of M or ⊤ if no further successor exists

2 (t, b)← store[M ] ;
3 while t ̸= ⊤ do
4 if |M(p)| > I(p, t) ∨ |M(p)| < min-cardinality(A(p, t)) for some p ∈ P

then
5 go to line 15; /* t cannot become enabled in M */
6 end
7 while b ̸= ⊤ do
8 if M

t,b−→M ′ for some M ′ then
9 b← next(b, B̄(M, t));

10 store[M ]← (t, b);
11 return M ′;
12 end
13 b← next(b, B̄(M, t));
14 end
15 (t, b)← (next(t,T ), first(B̄(M, t)));
16 end
17 store[M ]← (t, b);
18 return ⊤ ;

for the transition t in order to discover possible successors. A major performance
gain is achieved by constructing B̄(M, t) (used at line 9) using an interval analysis
of possible colors that each variable can be bound to in order to enable the
transition t in the marking M , instead of naively iterating through all possible
colors of variables. Each time a new successor is discovered, we save the next
possible candidate in the global map (to be used in the next call to the successor
generator) and return the discovered successor marking M ′ at line 11.

Our optimized successor generator guarantees that the sequence of markings
obtained by successive calls to SuccessorGenerator(M) eventually contains the
value ⊤ and enumerates all successor markings of M .

Overapproximation by color removal. The idea of removing information about
the concrete colors in markings and hence overapproximating the CPN behavior
was presented in [18], however, without correctly dealing with arc expressions
containing subtraction. We improve the technique to also work for expressions
of the form 2′a−1′x where 2′a stands for two tokens with color a from which the
color that the variable x binds to is subtracted—depending on the binding of x,
this arc expression evaluates to either one (if x binds to a) or two (if x binds to a
different color) tokens of color a. In general, for any arc expression ae present in
the CPN, we precompute the interval [min-cardinality(ae),max-cardinality(ae)]
such that the number of tokens required by ae is within this interval for any
possible binding. Our tool then constructs the color ignorant P/T net where
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each transition is replaced by a number of new transitions for each possi-
ble permutation of cardinalities for incoming and outgoing arcs. Let t ∈ T
and let permt : ({t} × P ) ∪ (P × {t}) → N0 be a function that takes a
place-transition pair and returns the cardinality for the appropriate arc s.t.
min-cardinality(A(t, p)) ≤ permt(t, p) ≤ max-cardinality(A(t, p)) and similarly
min-cardinality(A(p, t)) ≤ permt(p, t) ≤ max-cardinality(A(p, t)). The set of all
valid permutations for a transition t ∈ T is denoted by Permutationst.

For a given colored Petri net (CPN) N = (P, T,CT,V, C,A, I, G,M0), our
tool constructs the color ignorant P/T net N i = (P i, T i,Ai, Ii,M i

0) where

– P i = P and T i = {tpermt
| t ∈ T, permt ∈ Permutationst},

– Ai(tpermt
, p) = permt(t, p)

′• and Ai(p, tpermt
) = permt(p, t)

′•,
– Ii(p, tpermt

) = I(p, t), and
– M i

0(p) = |M0(p)|′•.

The construction forgets the concrete colors of tokens and accounts for all
combinations of how the number of tokens can change. Hence the method pre-
serves that for every marking M reachable in the CPN N there is a marking M ′

reachable in the color ignorant net N i s.t. |M(p)| = |M ′(p)| for all p ∈ P .
This implies that if a cardinality formula is not reachable in the color ignorant

net (we use here the fast state equation check using linear programming [10,23])
then it is not reachable in the original colored net either. In many cases this
allows us to conclude on negative reachability queries in a fraction of time that
is otherwise required by the explicit state-space exploration.

Simplification of fireability propositions. When evaluating fireability formu-
lae that contain the enabledness check of a transition t in N , we can re-
place t with

∨
permt∈Permutationst tpermt

when exploring the color ignorant net.
For performance reasons, our tool replaces t with a single transition tmin ∈
{tpermt

| permt ∈ Permutationst} that minimizes permt(p, t) and permt(t, p)
for all p ∈ P and t ∈ T . Clearly, tmin is enabled in a marking if and only if∨

permt∈Permutationst tpermt
evaluates to true.

A fireability predicate in a P/T net can be encoded as a cardinality one
(as a conjunction of the minimum number of required tokens in places that
enable a given transition) and we can therefore apply the overapproximation
technique to quickly establish that a transition cannot be enabled. However,
this technique cannot be used to determine that a transition is enabled in some
reachable marking of a CPN as this requires information on the specific colors.
In our tool, we evaluate subexpressions of the fireability formula and use the
color ignorant net for efficient reachability checks by using the state equations
and linear programming before we perform a state-space exploration of the color
ignorant net (which is cheaper than exploring the original CPN).

Let Ψ be a function, defined in Figure 2, that for a given fireability formula
returns either the value ⊤ (reachable), ⊥ (unreachable) or ? (inconclusive). We
can see that if Ψ(γf ) = ⊤ then γf is reachable in the original CPN and if Ψ(γf ) =
⊥ then γf is not reachable in the original CPN. In case of an inconclusive answer,
the explicit state-space exploration is executed.
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Ψ(t) =

{
⊥ if M ̸|= tmin for all reachable markings M in N i

? otherwise

Ψ(true) = ⊤ Ψ(false) = ⊥

Ψ(γf
1 ∧ γf

2 ) =


⊤ if Ψ(γf

1 ) = ⊤ and Ψ(γf
2 ) = ⊤

⊥ if Ψ(γf
1 ) = ⊥ or Ψ(γf

2 ) = ⊥
? otherwise

Ψ(¬γf ) =


⊤ if Ψ(γf ) = ⊥
⊥ if Ψ(γf ) = ⊤
? if Ψ(γf ) = ?

Fig. 2: Definition of fireability query simplification function Ψ

4 Implementation and Experiments

The explicit verification engine is implemented in C++ as part of the open source
project verifypn [14]. The engine supports four search strategies BFS, DFS,
random DFS and a heuristic search, using the successor generator described in
Section 3 as well as its variant that evenly cycles through all transitions in the
net. Our benchmarking showed that the latter one together with random DFS
is the best performing variant and is therefore used in our experiments.

As input, our engine accepts CPN descriptions in the standard Petri Net
Markup Language (PNML) [5] and formula queries in XML syntax as used in
MCC [1]. The reachability search algorithm compresses the passed list of already
visited markings using the PTrie data structure [17].

The tool can return traces that certify the reachability of a marking satisfying
a given formula; in order to save memory the bindings in the trace are stored in
a compressed format. TAPAAL GUI allows us to visualize the returned traces.
The engine also implements a simulation mode with a communication protocol,
allowing the user to simulate the behaviour of CPNs without unfolding the net.
The source code of our explicit verification engine is available on GitHub [13].

Experiments. We benchmark the performance of our engine on all of the col-
ored models from the Model Checking Contest (MCC) [19] 2024. There are 272
CPN models in the dataset, each with 16 cardinality and 16 fireability reach-
ability queries, giving a total of 8 704 queries in each category. Each query is
run on a single core of an AMD EPYC 9334 processor with clock speed 2.7
GHz, restricted to 16 GB of memory and a five minute timeout. We compare
the performance against the unfolding approach implemented in TAPAAL, the
MCC 2024 winner in the reachability category and currently the leading un-
folding tool [3], using the best (default) parameters of the unfolding engine.
Reproducibility package is available at [6].

Figure 3a depicts the total number of answers that the unfolding and ex-
plicit engines solve within the time and memory constraints, including details
about the cardinality and fireability subcategories and the distribution of pos-
itive queries (where a trace exists) and negative ones. Our explicit engine im-
proves the number of answers in all columns. A more detailed insight is provided
in the cactus plot in Figure 3b where the query instances (on the x-axis) are
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Engine
Total answers Cardinality Fireability

All + − All + − All + −

Unfolding 6697 3557 3140 3745 1192 2553 2952 2365 587

Explicit 7291 4055 3236 4040 1418 2622 3251 2637 614

(a) Number of answered queries (+ for positive and − for negative answers)
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Fig. 3: Comparison of the explicit and unfolding approach

independently sorted by their running times (on y-axis). This shows large im-
provements in the running time—almost three times as many queries are solved
within one second using the explicit approach compared to the unfolding. The
sudden slope change in the unfolding curve is caused by a 5 second timeout of
the color partitioning [4] technique in the unfolding approach. Similarly, Fig-
ure 3c offers query by query comparison of the performance, showing that on a
large majority of queries, the explicit approach achieves several order of magni-
tude improvements. Similar conclusions can be drawn from Figures 3d and 3e
regarding the peak memory consumption.

Finally, Table 1 depicts the comparison in the MCC setup (run locally on
our cluster computer) with the 2024 competition script (running for 60 minutes)
and its variant where we added 120 seconds of explicit state-space exploration
using our engine before the unfolding approach (still finishing within 1 hour). It
shows that we increased the number of solved queries from 82% to 91% and the
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MCC Script Answers Cardinality Fireability
MCC’24 competition script (without explicit) 7088 (82%) 4051 (93%) 3037 (70%)
With explicit engine running for 120 seconds 7862 (91%) 4267 (98%) 3595 (83%)

Table 1: Answered queries and the total percentage in the MCC setup

improvement is particularly pronounced in the fireability category (increment
by 13 percentage points). These additional answers were an important factor for
TAPAAL defending its first place also in MCC’25 [20].

Acknowledgments. We thank to Peter Gjøl Jensen his technical coding assistance.
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