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Tarski’s Fixed Point Theorem – Summary

Let (D,v) be a complete lattice and let f : D → D be a
monotonic function.

Tarski’s Fixed Point Theorem

Then f has a unique largest fixed point zmax and a unique least
fixed point zmin given by:

zmax
def
= t{x ∈ D | x v f (x)}

zmin
def
= u{x ∈ D | f (x) v x}

Computing Fixed Points in Finite Lattices

If D is a finite set then there exist integers M,m > 0 such that

zmax = f M(>)

zmin = f m(⊥)
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Definition of Strong Bisimulation

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff
whenever (s, t) ∈ R then for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ R

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Two processes p, q ∈ Proc are strongly bisimilar (p ∼ q) iff there
exists a strong bisimulation R such that (p, q) ∈ R.

∼ =
⋃
{R | R is a strong bisimulation}
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Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc×Proc) → 2(Proc×Proc)

Let S ⊆ Proc × Proc . Then we define F(S) as follows:

(s, t) ∈ F(S) if and only if for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ S

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ S .

Observations

(2(Proc×Proc),⊆) is a complete lattice and F is monotonic

S is a strong bisimulation if and only if S ⊆ F(S)

Strong Bisimilarity is the Greatest Fixed Point of F

∼=
⋃
{S ∈ 2(Proc×Proc) | S ⊆ F(S)}
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Syntax of Formulae

Formulae are given by the following abstract syntax

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where a ∈ Act and X is a distinguished variable with a definition

X
min
= FX , or X

max
= FX

such that FX is a formula of the logic (can contain X ).

How to Define Semantics?

For every formula F we define a function OF : 2Proc → 2Proc s.t.

if S is the set of processes that satisfy X then

OF (S) is the set of processes that satisfy F .
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Definition of OF : 2Proc → 2Proc (let S ⊆ Proc)

OX (S) = S

Ott(S) = Proc

Off (S) = ∅
OF1∧F2(S) = OF1(S) ∩ OF2(S)

OF1∨F2(S) = OF1(S) ∪ OF2(S)

O〈a〉F (S) = 〈·a·〉OF (S)

O[a]F (S) = [·a·]OF (S)

OF is monotonic for every formula F

S1 ⊆ S2 ⇒ OF (S1) ⊆ OF (S2)

Proof: easy (structural induction on the structure of F ).
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Semantics

Observation

We know that (2Proc ,⊆) is a complete lattice and OF is
monotonic, so OF has a unique greatest and least fixed point.

Semantics of the Variable X

If X
max
= FX then

[[X ]] =
⋃
{S ⊆ Proc | S ⊆ OFX

(S)}.

If X
min
= FX then

[[X ]] =
⋂
{S ⊆ Proc | OFX

(S) ⊆ S}.
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Game Characterization

Intuition: the attacker claims s 6|= F , the defender claims s |= F .

Configurations of the game are of the form (s,F )

(s, tt) and (s, ff ) have no successors

(s,X ) has one successor (s,FX )

(s,F1 ∧ F2) has two successors (s,F1) and (s,F2)
(selected by the attacker)

(s,F1 ∨ F2) has two successors (s,F1) and (s,F2)
(selected by the defender)

(s, [a]F ) has successors (s ′,F ) for every s ′ s.t. s
a−→ s ′

(selected by the attacker)

(s, 〈a〉F ) has successors (s ′,F ) for every s ′ s.t. s
a−→ s ′

(selected by the defender)
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Who is the Winner?

Play is a maximal sequence of configurations formed according to
the rules given on the previous slide.

Finite Play

The attacker is the winner of a finite play if the defender gets
stuck or the players reach a configuration (s, ff ).

The defender is the winner of a finite play if the attacker gets
stuck or the players reach a configuration (s, tt).

Infinite Play

The attacker is the winner of an infinite play if X is defined as

X
min
= FX .

The defender is the winner of an infinite play if X is defined
as X

max
= FX .
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Game Characterization

Theorem

s |= F if and only if the defender has a universal winning
strategy from (s,F )

s 6|= F if and only if the attacker has a universal winning
strategy from (s,F )
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Selection of Temporal Properties

Inv(F ): X
max
= F ∧ [Act]X

Pos(F ): X
min
= F ∨ 〈Act〉X

Safe(F ): X
max
= F ∧ ([Act]ff ∨ 〈Act〉X )

Even(F ): X
min
= F ∨ (〈Act〉tt ∧ [Act]X )

F Uw G : X
max
= G ∨ (F ∧ [Act]X )

F U s G : X
min
= G ∨ (F ∧ 〈Act〉tt ∧ [Act]X )

Using until we can express e.g. Inv(F ) and Even(F ):

Inv(F ) ≡ F Uw ff Even(F ) ≡ tt U s F
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Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

X
min
= Y ∨ 〈Act〉X Y

max
= 〈a〉tt ∧ 〈Act〉Y

Solution: compute first [[Y ]] and then [[X ]].

Mutually Recursive Definitions

X
max
= [a]Y Y

max
= 〈a〉X

Solution: consider a complete lattice (2Proc × 2Proc ,v) where
(S1,S2) v (S ′

1,S
′
2) iff S1 ⊆ S ′

1 and S2 ⊆ S ′
2.

Theorem (Characteristic Property for Finite-State Processes)

Let s be a process with finitely many reachable states. There exists
a property Xs s.t. for all processes t: s ∼ t if and only if t ∈ [[Xs ]].

Lecture 7 Semantics and Verification 2006


