Semantics and Verification 2006

Lecture 6

- Hennessy-Milner logic and temporal properties
- lattice theory, Tarski's fixed point theorem
- computing fixed points on finite lattices

Equivalence Checking vs. Model Checking Weaknesses of Hennessy-Nilner Logic Temporal Properties – Invariance and Possibility Solving Equations

Verifying Correctness of Reactive Systems

Equivalence Checking Approach

 $Impl \equiv Spec$

where \equiv is e.g. strong or weak bisimilarity.

Model Checking Approach

$Impl \models F$

where F is a formula from e.g. Hennessy-Milner logic.

$$F, G ::= tt \mid ff \mid F \land G \mid F \lor G \mid \langle a \rangle F \mid [a]F$$

Theorem (for Image-Finite LTS)

It holds that $p \sim q$ if and only if p and q satisfy exactly the same Hennessy-Milner formulae.

Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

•
$$md(tt) = md(ff) = 0$$

- $md(F \land G) = md(F \lor G) = max\{md(F), md(G)\}$
- $md([a]F) = md(\langle a \rangle F) = md(F) + 1$

Idea: a formula F can "see" only upto depth md(F).

Theorem (let F be a HM formula and k = md(F))

If the defender has a defending strategy in the strong bisimulation game from s and t upto k rounds then $s \models F$ if and only if $t \models F$.

Conclusion

There is no Hennessy-Milner formula F that can detect a deadlock in an arbitrary LTS.

Equivalence Checking vs. Model Checking Weaknesses of Hennessy-Milner Logic **Temporal Properties – Invariance and Possibility** Solving Equations

Temporal Properties not Expressible in HM Logic

 $s \models Inv(F)$ iff all states reachable from s satisfy F $s \models Pos(F)$ iff there is a reachable state which satisfies F

Fact

Properties Inv(F) and Pos(F) are not expressible in HM logic.

Let
$$Act = \{a_1, a_2, \dots, a_n\}$$
 be a finite set of actions. We define
• $\langle Act \rangle F \stackrel{\text{def}}{=} \langle a_1 \rangle F \lor \langle a_2 \rangle F \lor \dots \lor \langle a_n \rangle F$
• $[Act]F \stackrel{\text{def}}{=} [a_1]F \land [a_2]F \land \dots \land [a_n]F$

 $Inv(F) \equiv F \land [Act]F \land [Act][Act]F \land [Act][Act][Act]F \land \dots$ $Pos(F) \equiv F \lor \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle F \lor \langle Act \rangle \langle Act \rangle \langle Act \rangle F \lor \dots$

Equivalence Checking vs. Model Checking Weaknesses of Hennessy-Milner Logic Temporal Properties – Invariance and Possibility Solving Equations

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

- infinite formulae are not allowed in HM logic
- infinite formulae are difficult to handle

Why not to use recursion?

- Inv(F) expressed by $X \stackrel{\text{def}}{=} F \land [Act]X$
- Pos(F) expressed by $X \stackrel{\text{def}}{=} F \lor \langle Act \rangle X$

Question: How to define the semantics of such equations?

Equivalence Checking vs. Model Checking Weaknesses of Hennessy-Milner Logic Temporal Properties – Invariance and Possibility Solving Equations

Solving Equations is Tricky

Equations over Natural Numbers $(n \in \mathbb{N})$

- n = 2 * n one solution n = 0
- n = n + 1 no solution
- n = 1 * n many solutions (every $n \in \mathbb{N}$ is a solution)

Equations over Sets of Integers $(M \in 2^{\mathbb{N}})$

$M = (\{7\} \cap M) \cup \{7\}$	one solution $M = \{7\}$
$M = \mathbb{N} \smallsetminus M$	no solution
$M = \{3\} \cup M$	many solutions (every $M \supseteq \{3\}$ is a solution)

What about Equations over Processes?

 $X \stackrel{\text{def}}{=} [a] \textit{f} f \lor \langle a \rangle X \quad \Rightarrow \quad \text{find } S \subseteq 2^{\textit{Proc}} \text{ s.t. } S = [\cdot a \cdot] \emptyset \cup \langle \cdot a \cdot \rangle S$

Partially Ordered Sets Supremum and Infimum Complete Lattices and Monotonic Functions

General Approach – Lattice Theory

Problem

For a set D and a function $f : D \rightarrow D$, for which elements $x \in D$ we have

x = f(x)?

Such *x*'s are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D, \sqsubseteq) s.t.

- D is a set
- $\sqsubseteq \subseteq D \times D$ is a binary relation on D which is
 - reflexive: $\forall d \in D. \ d \sqsubseteq d$
 - antisymmetric: $\forall d, e \in D. \ d \sqsubseteq e \land e \sqsubseteq d \Rightarrow d = e$
 - transitive: $\forall d, e, f \in D. \ d \sqsubseteq e \land e \sqsubseteq f \Rightarrow d \sqsubseteq f$

Partially Ordered Sets Supremum and Infimum Complete Lattices and Monotonic Functions

Supremum and Infimum

Upper/Lower Bounds (Let $X \subseteq D$)

- $d \in D$ is an upper bound for X (written $X \sqsubseteq d$) iff $x \sqsubseteq d$ for all $x \in X$
- $d \in D$ is a lower bound for X (written $d \sqsubseteq X$) iff $d \sqsubseteq x$ for all $x \in X$

Least Upper Bound and Greatest Lower Bound (Let $X \subseteq D$)

- $d \in D$ is the least upper bound (supremum) for $X (\sqcup X)$ iff
 - $\bigcirc X \sqsubseteq d$
 - $2 \forall d' \in D. \ X \sqsubseteq d' \Rightarrow d \sqsubseteq d'$
- $d \in D$ is the greatest lower bound (infimum) for $X (\Box X)$ iff
 - $d \sqsubseteq X$

Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D, \sqsubseteq) is called complete lattice iff $\sqcup X$ and $\sqcap X$ exist for any $X \subseteq D$.

We define the top and bottom by $\top \stackrel{\text{def}}{=} \sqcup D$ and $\bot \stackrel{\text{def}}{=} \sqcap D$.

Monotonic Function and Fixed Points

A function $f: D \rightarrow D$ is called monotonic iff

$$d \sqsubseteq e \Rightarrow f(d) \sqsubseteq f(e)$$

for all $d, e \in D$.

Element $d \in D$ is called fixed point iff d = f(d).

For General Complete Lattices For Finite Lattices

Tarski's Fixed Point Theorem

Theorem (Tarski)

Let (D, \sqsubseteq) be a complete lattice and let $f : D \rightarrow D$ be a monotonic function.

Then f has a unique largest fixed point z_{max} and a unique least fixed point z_{min} given by:

$$z_{max} \stackrel{\text{def}}{=} \sqcup \{ x \in D \mid x \sqsubseteq f(x) \}$$
$$z_{min} \stackrel{\text{def}}{=} \sqcap \{ x \in D \mid f(x) \sqsubseteq x \}$$

For General Complete Lattices For Finite Lattices

Computing Min and Max Fixed Points on Finite Lattices

Let (D, \sqsubseteq) be a complete lattice and $f : D \to D$ monotonic. Let $f^1(x) \stackrel{\text{def}}{=} f(x)$ and $f^n(x) \stackrel{\text{def}}{=} f(f^{n-1}(x))$ for n > 1, i.e., $f^n(x) = \underbrace{f(f(\ldots f(x) \ldots))}_{n \text{ times}}$.

Theorem

If D is a finite set then there exist integers M, m > 0 such that

•
$$z_{max} = f^M(\top)$$

•
$$z_{min} = f^m(\perp)$$

Idea (for z_{min}): The following sequence stabilizes for any finite D

$$\perp \sqsubseteq f(\perp) \sqsubseteq f(f(\perp)) \sqsubseteq f(f(f(\perp))) \sqsubseteq \cdots$$