Semantics and Verification 2006

Lecture 6

- Hennessy-Milner logic and temporal properties
- lattice theory, Tarski's fixed point theorem
- computing fixed points on finite lattices

Verifying Correctness of Reactive Systems

Equivalence Checking Approach

$$
I m p I \equiv S p e c
$$

where \equiv is e.g. strong or weak bisimilarity.

Model Checking Approach

$$
\text { Impl } \models F
$$

where F is a formula from e.g. Hennessy-Milner logic.

$$
F, G::=t t|f f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

Theorem (for Image-Finite LTS)

It holds that $p \sim q$ if and only if p and q satisfy exactly the same Hennessy-Milner formulae.

Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

- $m d(t t)=m d(f f)=0$
- $m d(F \wedge G)=m d(F \vee G)=\max \{m d(F), m d(G)\}$
- $m d([a] F)=m d(\langle a\rangle F)=m d(F)+1$

Idea: a formula F can "see" only upto depth $m d(F)$.
Theorem (let F be a HM formula and $k=m d(F)$)
If the defender has a defending strategy in the strong bisimulation game from s and t upto k rounds then $s \models F$ if and only if $t \models F$.

Conclusion

There is no Hennessy-Milner formula F that can detect a deadlock in an arbitrary LTS.

Temporal Properties not Expressible in HM Logic

$s \models \operatorname{lnv}(F)$ iff all states reachable from s satisfy F
$s \models \operatorname{Pos}(F)$ iff there is a reachable state which satisfies F

Fact

Properties $\operatorname{Inv}(F)$ and $\operatorname{Pos}(F)$ are not expressible in HM logic.

Let Act $=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set of actions. We define

- $\langle A c t\rangle F \stackrel{\text { def }}{=}\left\langle a_{1}\right\rangle F \vee\left\langle a_{2}\right\rangle F \vee \ldots \vee\left\langle a_{n}\right\rangle F$
- $[A c t] F \stackrel{\text { def }}{=}\left[a_{1}\right] F \wedge\left[a_{2}\right] F \wedge \ldots \wedge\left[a_{n}\right] F$
$\operatorname{lnv}(F) \equiv F \wedge[A c t] F \wedge[A c t][A c t] F \wedge[A c t][A c t][A c t] F \wedge \ldots$
$\operatorname{Pos}(F) \equiv F \vee\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle\langle A c t\rangle F \vee \ldots$

Equivalence Checking vs. Model Checking

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

- infinite formulae are not allowed in HM logic
- infinite formulae are difficult to handle

Why not to use recursion?

- $\ln v(F)$ expressed by $X \stackrel{\text { def }}{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F)$ expressed by $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$

Question: How to define the semantics of such equations?

Solving Equations is Tricky

Equations over Natural Numbers $(n \in \mathbb{N})$
$n=2 * n \quad$ one solution $n=0$
$n=n+1 \quad$ no solution
$n=1 * n \quad$ many solutions (every $n \in \mathbb{N}$ is a solution)

Equations over Sets of Integers $\left(M \in 2^{\mathbb{N}}\right)$

$$
\begin{array}{ll}
M=(\{7\} \cap M) \cup\{7\} & \\
\text { one solution } M=\{7\} \\
M=\mathbb{N} \backslash M & \\
M=\{3\} \cup M & \\
\text { no solution } \\
M & \text { many solutions (every } M \supseteq\{3\} \text { is a solution) }
\end{array}
$$

What about Equations over Processes?

$$
X \stackrel{\text { def }}{=}[a] f f \vee\langle a\rangle X \Rightarrow \text { find } S \subseteq 2^{\text {Proc }} \text { s.t. } S=[\cdot a \cdot] \emptyset \cup\langle\cdot a \cdot\rangle S
$$

General Approach - Lattice Theory

Problem

For a set D and a function $f: D \rightarrow D$, for which elements $x \in D$ we have

$$
x=f(x) ?
$$

Such x 's are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D, \sqsubseteq) s.t.

- D is a set
- $\sqsubseteq \subseteq D \times D$ is a binary relation on D which is
- reflexive: $\forall d \in D . d \sqsubseteq d$
- antisymmetric: $\forall d, e \in D . d \sqsubseteq e \wedge e \sqsubseteq d \Rightarrow d=e$
- transitive: $\forall d, e, f \in D . d \sqsubseteq e \wedge e \sqsubseteq f \Rightarrow d \sqsubseteq f$

Supremum and Infimum

Upper/Lower Bounds (Let $X \subseteq D$)

- $d \in D$ is an upper bound for X (written $X \sqsubseteq d$) iff $x \sqsubseteq d$ for all $x \in X$
- $d \in D$ is a lower bound for X (written $d \sqsubseteq X$) iff $d \sqsubseteq x$ for all $x \in X$

Least Upper Bound and Greatest Lower Bound (Let $X \subseteq D$)

- $d \in D$ is the least upper bound (supremum) for $X(\sqcup X)$ iff
(1) $X \sqsubseteq d$
(2) $\forall d^{\prime} \in D . X \sqsubseteq d^{\prime} \Rightarrow d \sqsubseteq d^{\prime}$
- $d \in D$ is the greatest lower bound (infimum) for $X(\sqcap X)$ iff
(1) $d \sqsubseteq X$
(2) $\forall d^{\prime} \in D . d^{\prime} \sqsubseteq X \Rightarrow d^{\prime} \sqsubseteq d$

Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D, \sqsubseteq) is called complete lattice iff $\sqcup X$ and $\sqcap X$ exist for any $X \subseteq D$.

We define the top and bottom by $T \stackrel{\text { def }}{=} \sqcup D$ and $\perp \stackrel{\text { def }}{=} \sqcap D$.
Monotonic Function and Fixed Points
A function $f: D \rightarrow D$ is called monotonic iff

$$
d \sqsubseteq e \Rightarrow f(d) \sqsubseteq f(e)
$$

for all $d, e \in D$.
Element $d \in D$ is called fixed point iff $d=f(d)$.

Tarski's Fixed Point Theorem

Theorem (Tarski)

Let (D, \sqsubseteq) be a complete lattice and let $f: D \rightarrow D$ be a monotonic function.

Then f has a unique largest fixed point $z_{\max }$ and a unique least fixed point $z_{\text {min }}$ given by:

$$
\begin{aligned}
& z_{\text {max }} \stackrel{\text { def }}{=} \sqcup\{x \in D \mid x \sqsubseteq f(x)\} \\
& z_{\text {min }} \stackrel{\text { def }}{=} \sqcap\{x \in D \mid f(x) \sqsubseteq x\}
\end{aligned}
$$

Computing Min and Max Fixed Points on Finite Lattices

Let (D, \sqsubseteq) be a complete lattice and $f: D \rightarrow D$ monotonic.
Let $f^{1}(x) \stackrel{\text { def }}{=} f(x)$ and $f^{n}(x) \stackrel{\text { def }}{=} f\left(f^{n-1}(x)\right)$ for $n>1$, i.e.,

$$
f^{n}(x)=\underbrace{f(f(\ldots f}_{n \text { times }}(x) \ldots)) .
$$

Theorem

If D is a finite set then there exist integers $M, m>0$ such that

- $z_{\text {max }}=f^{M}(T)$
- $z_{\text {min }}=f^{m}(\perp)$

Idea (for $z_{\text {min }}$): The following sequence stabilizes for any finite D

$$
\perp \sqsubseteq f(\perp) \sqsubseteq f(f(\perp)) \sqsubseteq f(f(f(\perp))) \sqsubseteq \cdots
$$

