Tutorial 6

Exercise 1*

Draw a graphical representation of the complete lattice ($2^{\{a, b, c\}}, \subseteq$) and compute supremum and infimum of the following sets:

- $\sqcap\{\{a\},\{b\}\}=$?
- $\sqcup\{\{a\},\{b\}\}=$?
- $\sqcap\{\{a\},\{a, b\},\{a, c\}\}=$?
- $\sqcup\{\{a\},\{a, b\},\{a, c\}\}=$?
- $\sqcap\{\{a\},\{b\},\{c\}\}=$?
- $\sqcup\{\{a\},\{b\},\{c\}\}=$?
- $\sqcap\{\{a\},\{a, b\},\{b\}, \emptyset\}=$?
- $\sqcup\{\{a\},\{a, b\},\{b\}, \emptyset\}=$?

Exercise 2

Prove that for any partially ordered set (D, \sqsubseteq) and any $X \subseteq D$, if supremum of $X(\sqcup X)$ and infimum of $X(\sqcap X)$ exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and antisymmetry of \sqsubseteq.)

Exercise 3

Let (D, \sqsubseteq) be a complete lattice. What are $\sqcup \emptyset$ and $\sqcap \emptyset$ equal to?

Exercise 4

Consider the complete lattice $\left(2^{\{a, b, c\}}, \subseteq\right)$. Define a function $f: 2^{\{a, b, c\}} \rightarrow 2^{\{a, b, c\}}$ such that f is monotonic.

- Compute the greatest fixed point by using directly the Tarski's fixed point theorem.
- Compute the least fixed point by using the Tarski's fixed point theorem for finite lattices (i.e. by starting from \perp and by applying repeatedly the function f until the fixed point is reached).

Exercise 5

Consider the following labelled transition system.

Compute for which sets of states $\llbracket X \rrbracket \subseteq\left\{s, s_{1}, s_{2}\right\}$ the following formulae are true.

- $X=\langle a\rangle t t \vee[b] X$
- $X=\langle a\rangle \# \vee([b] X \wedge\langle b\rangle \#)$

Exercise 6 (optional)

Exercise A.6, part 2. on page 91 in A note of Milner's CCS.

