Tutorial 13

Exercise 1

Show that all the usual boolean operations ($\neg t, t_{1} \wedge t_{2}, t_{1} \vee t_{2}, t_{1} \Rightarrow t_{2}$ and $t_{1} \Leftrightarrow t_{2}$) can be expressed using only the if-then-else construct.

Exercise 2*

- Use Shannon's expansion law to translate the following boolean expression

$$
\left(\neg x_{1} \vee x_{2}\right) \wedge \neg\left(x_{3} \vee x_{1}\right) \wedge \neg x_{3}
$$

into if-then-else normal form (assume the ordering $x_{1}<x_{2}<x_{3}$).

- Draw the resulting if-then-else expression as a decision graph and apply the reduction rules in order to achieve ROBDD.

Exercise 3

Construct the ROBDD for $\neg x_{1} \wedge\left(x_{2} \Leftrightarrow \neg x_{3}\right)$ with ordering $x_{1}<x_{2}<x_{3}$ using the function Build and show its internal representation as an array (table T).

Exercise 4

Construct two ROBDDs for x_{1} and $x_{1} \Rightarrow x_{2}$ with ordering $x_{1}<x_{2}$ and compute their conjunction using the function Apply.

Exercise 5 (optional)

Recall the notion of conjunctive/disjunctive normal form as defined e.g. in "An introduction to Binary Decision Diagrams" on page 7 .

- Describe a polynomial time algorithm for determining whether a formula in DNF is satisfiable.
- Describe a polynomial time algorithm for determining whether a formula in CNF is a tautology.

