# Semantics and Verification 2005

### Lecture 9

- labelled transition systems with time
- timed automata
- timed and untimed bisimilarity
- timed and untimed language equivalence

Motivation Definition How to Describe Timed Transition Systems

## Need for Introducing Time Features

#### • Timeout in Alternating Bit protocol:

- In CCS timeouts were modelled using nondeterminism.
- Enough to prove that the protocol is safe.
- Maybe too abstract for certain questions (What is the average time to deliver the message?).
- Many real-life systems depend on timing:
  - Real-time controllers (production lines, computers in cars, railway crossings).
  - Embedded systems (mobile phones, remote controllers, digital watch).

• ...

Motivation Definition How to Describe Timed Transition Systems

## Labelled Transition Systems with Time

### Timed (labelled) transition system (TLTS)

TLTS is a triple (*Proc*, *Act*,  $\{ \xrightarrow{a} | a \in Act \}$ ) where

- Proc is a set of states (or processes),
- Act = N ∪ ℝ<sup>≥0</sup> is a set of actions (consisting of labels and time-elapsing steps), and
- for every a ∈ Act, → ⊆ Proc × Proc is a binary relation on states called the transition relation.

We write

• 
$$s \stackrel{a}{\longrightarrow} s'$$
 if  $a \in N$  and  $(s,s') \in \stackrel{a}{\longrightarrow}$ , and

• 
$$s \stackrel{d}{\longrightarrow} s'$$
 if  $d \in \mathbb{R}^{\geq 0}$  and  $(s, s') \in \stackrel{d}{\longrightarrow}$ .

Motivation Definition How to Describe Timed Transition Systems

## How to Describe Timed Transition Systems?



Timed Automata [Alur, Dill'90]

Finite-state automata equipped with clocks.

**Clock Constraints and Valuation** Definition of Timed Automata Semantics of Timed Automata

## Definition of TA: Clock Constraints

Let  $C = \{x, y, \ldots\}$  be a finite set of clocks.

Set  $\mathcal{B}(C)$  of clock constraints over C

 $\mathcal{B}(C)$  is defined by the following abstract syntax

$$g, g_1, g_2 ::= x \sim n \mid x - y \sim n \mid g_1 \wedge g_2$$

where  $x, y \in C$  are clocks,  $n \in \mathbb{N}$  and  $\sim \in \{\leq, <, =, >, \geq\}$ .

Example:  $x \le 3 \land y > 0 \land y - x = 2$ 

**Clock Constraints and Valuation** Definition of Timed Automata Semantics of Timed Automata

# **Clock Valuation**

#### Clock valuation

Clock valuation v is a function  $v : C \to \mathbb{R}^{\geq 0}$ .

Let v be a clock valuation. Then

• v + d is a clock valuation for any  $d \in \mathbb{R}^{\geq 0}$  and it is defined by (v + d)(x) = v(x) + d for all  $x \in C$ 

• v[r] is a clock valuation for any  $r \subseteq C$  and it is defined by

$$v[r](x) \begin{cases} 0 & \text{if } x \in r \\ v(x) & \text{otherwise.} \end{cases}$$

**Clock Constraints and Valuation** Definition of Timed Automata Semantics of Timed Automata

## Evaluation of Clock Constraints

| Evaluation of clock constraints ( $v \models g$ ) |                                                |  |
|---------------------------------------------------|------------------------------------------------|--|
| $v \models x < n$                                 | iff $v(x) < n$                                 |  |
| $v \models x \le n$                               | iff $v(x) \leq n$                              |  |
| $v \models x = n$                                 | iff $v(x) = n$                                 |  |
| ÷                                                 |                                                |  |
| $v \models x - y < n$                             | $\inf v(x) - v(y) < n$                         |  |
| $v \models x - y \le n$                           | $\text{iff } v(x) - v(y) \leq n$               |  |
| :                                                 |                                                |  |
| $v\models g_1\wedge g_2$                          | $iff \ v \models g_1 \ and \ v \models g_2 \\$ |  |

Clock Constraints and Valuation Definition of Timed Automata Semantics of Timed Automata

# Syntax of Timed Automata

#### Definition

A timed automaton over a set of clocks C and a set of labels N is a tuple

$$(L,\ell_0,E,I)$$

where

- L is a finite set of locations
- $\ell_0 \in L$  is the initial location
- $E \subseteq L \times \mathcal{B}(C) \times N \times 2^C \times L$  is the set of edges
- $I: L \to \mathcal{B}(C)$  assigns invariants to locations.

We usually write  $\ell \xrightarrow{g,a,r} \ell'$  whenever  $(\ell, g, a, r, \ell') \in E$ .

Clock Constraints and Valuation Definition of Timed Automata Semantics of Timed Automata

### Example: Hammer



Clock Constraints and Valuation Definition of Timed Automata Semantics of Timed Automata

## Semantics of Timed Automata

Let  $A = (L, \ell_0, E, I)$  be a timed automaton.

#### Timed transition system generated by A

$$T(A) = (Proc, Act, \{ \xrightarrow{a} | a \in Act \})$$
 where

- $Proc = L \times (C \to \mathbb{R}^{\geq 0})$ , i.e. states are of the form  $(\ell, \nu)$  where  $\ell$  is a location and  $\nu$  a valuation
- $Act = \mathbf{N} \cup \mathbb{R}^{\geq 0}$
- $\longrightarrow$  is defined as follows:

$$(\ell, v) \stackrel{a}{\longrightarrow} (\ell', v')$$
 if there is  $(\ell \stackrel{g,a,r}{\longrightarrow} \ell') \in E$  s.t.  $v \models g$  and  $v' = v[r]$   
 $(\ell, v) \stackrel{d}{\longrightarrow} (\ell, v + d)$  for all  $d \in \mathbb{R}^{\geq 0}$  s.t.  $v \models I(\ell)$  and  $v + d \models I(\ell)$ 

**Timed Bisimilarity** Untimed Bisimilarity Timed and Untimed Language Equivalence

## Timed Bisimilarity

Let  $A_1$  and  $A_2$  be timed automata.

#### Timed Bisimilarity

We say that  $A_1$  and  $A_2$  are timed bisimilar iff the transition systems  $T(A_1)$  and  $T(A_2)$  generated by  $A_1$  and  $A_2$  are strongly bisimilar.

#### Remark: both

• 
$$\xrightarrow{a}$$
 for  $a \in N$  and  
•  $\xrightarrow{d}$  for  $d \in \mathbb{R}^{\geq 0}$ 

are considered as normal (visible) transitions.

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

### Example of Timed Bisimilar Automata



Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

### Example of Timed Non-Bisimilar Automata



## Untimed Bisimilarity

Let  $A_1$  and  $A_2$  be timed automata. Let  $\epsilon$  be a new (fresh) action.

#### Untimed Bisimilarity

We say that  $A_1$  and  $A_2$  are untimed bisimilar iff the transition systems  $T(A_1)$  and  $T(A_2)$  generated by  $A_1$  and  $A_2$  where every transition of the form  $\stackrel{d}{\longrightarrow}$  for  $d \in \mathbb{R}^{\geq 0}$  is replaced with  $\stackrel{\epsilon}{\longrightarrow}$  are strongly bisimilar.

Remark:

- $\xrightarrow{a}$  for  $a \in N$  is treated as a visible transition, while
- $\stackrel{d}{\longrightarrow}$  for  $d \in \mathbb{R}^{\geq 0}$  are all labelled by a single visible action  $\stackrel{\epsilon}{\longrightarrow}$ .

### Corollary

Any two timed bisimilar automata are also untimed bisimilar.

Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

Timed Non-Bisimilar but Untimed Bisimilar Automata



Timed Bisimilarity Untimed Bisimilarity Timed and Untimed Language Equivalence

## Decidability of Timed and Untimed Bisimilarity

#### Theorem [Cerans'92]

Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

#### Theorem [Larsen, Wang'93]

Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

## **Timed Traces**

Let  $A = (L, \ell_0, E, I)$  be a timed automaton over a set of clocks C and a set of labels N.

#### Timed Traces

A sequence  $(t_1, a_1)(t_2, a_2)(t_3, a_3) \dots$  where  $t_i \in \mathbb{R}^{\geq 0}$  and  $a_i \in N$  is called a timed trace of A iff there is a transition sequence

$$(\ell_0, v_0) \xrightarrow{d_1} \cdot \xrightarrow{a_1} \cdot \xrightarrow{d_2} \cdot \xrightarrow{a_2} \cdot \xrightarrow{d_3} \cdot \xrightarrow{a_3} \cdots$$

in A such that  $v_0(x) = 0$  for all  $x \in C$  and

 $t_i = t_{i-1} + d_i$  where  $t_0 = 0$ .

Intuition:  $t_i$  is the absolute time (time-stamp) when  $a_i$  happened since the start of the automaton A.

## Timed and Untimed Language Equivalence

The set of all timed traces of an automaton A is denoted by L(A) and called the timed language of A.

### Theorem [Alur, Courcoubetis, Dill, Henzinger'94]

Timed language equivalence (the problem whether  $L(A_1) = L(A_2)$  for given timed automata  $A_1$  and  $A_2$ ) is undecidable.

We say that  $a_1a_2a_3...$  is an untimed trace of A iff there exist  $t_1, t_2, t_3, ... \in \mathbb{R}^{\geq 0}$  such that  $(t_1, a_1)(t_2, a_2)(t_3, a_3)...$  is a timed trace of A.

#### Theorem [Alur, Dill'94]

Untimed language equivalence for timed automata is decidable.