Timed Transition Systems Timed Automata Equivalence Checking Problems	Timed Transition Systems Timed Automata Definition Equivalence Checking Problems How to Describe Timed Transition Systems	Timed Transition Systems Motivation Timed Automata Definition Equivalence Checking Problems How to Describe Timed Transition Systems
	Need for Introducing Time Features	Labelled Transition Systems with Time
Semantics and Verification 2005	• Timeout in Alternating Bit protocol:	Timed (labelled) transition system (TLTS)
Lecture 9	 In CCS timeouts were modelled using nondeterminism. Enough to prove that the protocol is safe. Maybe too abstract for certain questions (What is the average time to deliver the message?). 	 TLTS is a triple (<i>Proc</i>, <i>Act</i>, {→ <i>a</i> ∈ <i>Act</i>}) where <i>Proc</i> is a set of states (or processes), <i>Act</i> = N ∪ ℝ^{≥0} is a set of actions (consisting of labels and time-elapsing steps), and
 labelled transition systems with time timed automata timed and untimed bisimilarity timed and untimed language equivalence 	 Many real-life systems depend on timing: Real-time controllers (production lines, computers in cars, railway crossings). Embedded systems (mobile phones, remote controllers, digital watch). 	 for every a ∈ Act, a ⊆ Proc × Proc is a binary relation on states called the transition relation. We write s a s' if a ∈ N and (s, s') ∈ a, and s d s' if d ∈ ℝ^{≥0} and (s, s') ∈ d.

Lecture 9 Timed Transition Systems Timed Automata Equivalence Checking Problems	Semantics and Verification 2005 Motivation Definition How to Describe Timed Transition Systems	Lecture 9 Timed Transition Systems Timed Automata Equivalence Checking Problems	Semantics and Verification 2005 Clock Constraints and Valuation Definition of Timed Automata Semantics of Timed Automata	Lecture 9 Timed Transition Systems Timed Automata Equivalence Checking Problems	Semantics and Verification 2005 Clock Constraints and Valuation Definition of Timed Automata Semantics of Timed Automata
How to Describe Timed Transition Systems?		Definition of TA: Clock Cons	straints	Clock Valuation	
SyntaxSemanticsunknown entityHown entityCCSLabelled Transition Systems??Timed Transition Systems??Timed Transition SystemsTimed Automata [Alur, Dill'90]Toite-state automata equipped with clocks.		Let $C = \{x, y,\}$ be a finite set of clocks. Set $\mathcal{B}(C)$ of clock constraints over C $\mathcal{B}(C)$ is defined by the following abstract syntax $g, g_1, g_2 ::= x \sim n \mid x - y \sim n \mid g_1 \land g_2$ where $x, y \in C$ are clocks, $n \in \mathbb{N}$ and $\sim \in \{\leq, <, =, >, \geq\}$.		r any $d\in \mathbb{R}^{\geq 0}$ and it is defined by	
		Example: $x \le 3 \land y > 0 \land y = 0$		• $v[r]$ is a clock valuation for any $r \subseteq C$ and it is defined by $v[r](x) \begin{cases} 0 & \text{if } x \in r \\ v(x) & \text{otherwise.} \end{cases}$	

Timed Automata Definition of Timed Automata Equivalence Checking Problems Semantics of Timed Automata	Timed Automata Equivalence Checking Problems Semantics of Timed Automata	Timed Automata Definition of Timed Automata Equivalence Checking Problems Semantics of Timed Automata
Evaluation of Clock Constraints	Syntax of Timed Automata	Example: Hammer
Evaluation of clock constraints ($v \models g$) $v \models x < n$ iff $v(x) < n$ $v \models x \leq n$ iff $v(x) \leq n$ $v \models x = n$ iff $v(x) = n$:: $v \models x - y < n$ iff $v(x) - v(y) < n$ $v \models x - y \leq n$ iff $v(x) - v(y) \leq n$:: $v \models g_1 \land g_2$ iff $v \models g_1$ and $v \models g_2$	Definition A timed automaton over a set of clocks <i>C</i> and a set of labels <i>N</i> is a tuple (L, ℓ_0, E, I) where • <i>L</i> is a finite set of locations • $\ell_0 \in L$ is the initial location • $E \subseteq L \times \mathcal{B}(C) \times N \times 2^C \times L$ is the set of edges • $I : L \to \mathcal{B}(C)$ assigns invariants to locations. We usually write $\ell \stackrel{g,a,r}{\longrightarrow} \ell'$ whenever $(\ell, g, a, r, \ell') \in E$.	$\underbrace{free}_{done} \underbrace{x:=0, y:=0}_{y \ge 5} \underbrace{x\ge 1}_{kit}_{x:=0}$

Timed Transition Systems Clock Constraints and Valuation Timed Transition Systems Clock Constraints and Valuation

Lecture 9 Semantics and Verification 2005 Timed Transition Systems Clock Constraints and Valuation Timed Automata Delinition of Timed Automata Equivalence Checking Problems Semantics of Timed Automata	Lecture 9 Semantics and Verification 2005 Timed Transition Systems Timed Bisimilarity Timed Automata Untimed Bisimilarity Equivalence Checking Problems Timed and Untimed Language Equivalence	Lecture 9 Semantics and Verification 2005 Timed Transition Systems Timed Bisimilarity Timed Automata Untimed Bisimilarity Equivalence Checking Problems Timed and Untimed Language Equivalence
Semantics of Timed Automata	Timed Bisimilarity	Example of Timed Bisimilar Automata
Let $A = (L, \ell_0, E, I)$ be a timed automaton. Timed transition system generated by A $T(A) = (Proc, Act, \{\stackrel{a}{\longrightarrow} a \in Act\})$ where • $Proc = L \times (C \to \mathbb{R}^{\geq 0})$, i.e. states are of the form (ℓ, \mathbf{v}) where ℓ is a location and \mathbf{v} a valuation • $Act = N \cup \mathbb{R}^{\geq 0}$ • \longrightarrow is defined as follows: $(\ell, \mathbf{v}) \stackrel{a}{\longrightarrow} (\ell', \mathbf{v}')$ if there is $(\ell \stackrel{g,a,r}{\longrightarrow} \ell') \in E$ s.t. $\mathbf{v} \models g$ and $\mathbf{v}' = \mathbf{v}[r]$ $(\ell, \mathbf{v}) \stackrel{d}{\longrightarrow} (\ell, \mathbf{v} + d)$ for all $d \in \mathbb{R}^{\geq 0}$ s.t. $\mathbf{v} \models I(\ell)$ and $\mathbf{v} + d \models I(\ell)$	Let A_1 and A_2 be timed automata. Timed Bisimilarity We say that A_1 and A_2 are timed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 are strongly bisimilar. Remark: both • $\stackrel{a}{\longrightarrow}$ for $a \in N$ and • $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ are considered as normal (visible) transitions.	$ \begin{array}{c} (A) \\ x=1 \\ a \\ y \\ x=0 \\ C \end{array} \qquad \qquad$

Timed Transition Systems Timed Automata Equivalence Checking Problems Example of Timed Non-Bisimilar Automata	Timed Transition Systems Timed Automata Equivalence Checking Problems Untimed Bisimilarity Timed and Untimed Language Equivalence	Timed Transition Systems Timed Automata Equivalence Checking Problems Timed Alutimed Language Equivalence Timed Non-Bisimilar but Untimed Bisimilar Automata
(A) (X = 1)	Let A_1 and A_2 be timed automata. Let ϵ be a new (fresh) action. Durined Bisimilarity We say that A_1 and A_2 are untimed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 where every transition of the form $\stackrel{d}{\rightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\stackrel{e}{\rightarrow}$ are strongly bisimilar. Demark: $\stackrel{a}{\rightarrow}$ for $a \in N$ is treated as a visible transition, while $\stackrel{a}{\rightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ are all labelled by a single visible action $\stackrel{e}{\rightarrow}$. Demark: Any two timed bisimilar automata are also untimed bisimilar.	$ \begin{array}{c} (A) \\ x \leq 1 \\ a \\ x = 0 \\ B \\ x = 0 \\ C \end{array} \qquad \qquad$
Timed Transition Systems Timed Automata Equivalence Checking Problems Decidability of Timed and Untimed Bisimilarity Timed and Untimed Language Equivalence	Timed Transition Systems Timed Automata Equivalence Checking Problems Timed and Untimed Language Equivalence	Timed Transition Systems Timed Automata Equivalence Checking Problems Timed and Untimed Language Equivalence
Theorem [Cerans'92] Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time). Theorem [Larsen, Wang'93]	Let $A = (L, \ell_0, E, I)$ be a timed automaton over a set of clocks C and a set of labels N . Timed Traces A sequence $(t_1, a_1)(t_2, a_2)(t_3, a_3) \dots$ where $t_i \in \mathbb{R}^{\geq 0}$ and $a_i \in N$ is called a timed trace of A iff there is a transition sequence $(\ell_0, v_0) \xrightarrow{d_1} \dots \xrightarrow{a_1} \dots \xrightarrow{d_2} \dots \xrightarrow{a_2} \dots \xrightarrow{a_3} \dots$	The set of all timed traces of an automaton A is denoted by $L(A)$ and called the timed language of A. Theorem [Alur, Courcoubetis, Dill, Henzinger'94] Timed language equivalence (the problem whether $L(A_1) = L(A_2)$ for given timed automata A_1 and A_2) is undecidable. We say that $a_1a_2a_3$ is an untimed trace of A iff there exist
Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).	in A such that $v_0(x) = 0$ for all $x \in C$ and $t_i = t_{i-1} + d_i$ where $t_0 = 0$.	$t_1, t_2, t_3, \ldots \in \mathbb{R}^{\geq 0}$ such that $(t_1, a_1)(t_2, a_2)(t_3, a_3) \ldots$ is a timed trace of A . Theorem [Alur, Dill'94]

Theorem [Alur, Dill'94]

Untimed language equivalence for timed automata is decidable.

Intuition: t_i is the absolute time (time-stamp) when a_i happened

since the start of the automaton A.