Need for Introducing Time Features

• Timeout in Alternating Bit protocol:

deliver the message?).

crossings).

▶ ...

Enough to prove that the protocol is safe.

• Many real-life systems depend on timing:

► In CCS timeouts were modelled using nondeterminism.

Maybe too abstract for certain questions (What is the average time to

► Real-time controllers (production lines, computers in cars, railway

Embedded systems (mobile phones, remote controllers, digital watch).

Labelled Transition Systems with Time

Timed (labelled) transition system (TLTS)

TLTS is a triple (*Proc*, *Act*, $\{\stackrel{a}{\longrightarrow} | a \in Act\}$) where

- Proc is a set of states (or processes),
- $Act = N \cup \mathbb{R}^{\geq 0}$ is a set of **actions** (consisting of **labels** and time-elapsing steps), and
- for every $a \in Act$, $\xrightarrow{a} \subset Proc \times Proc$ is a binary relation on states called the transition relation.

We write

• $s \xrightarrow{a} s'$ if $a \in N$ and $(s, s') \in \xrightarrow{a}$, and

2 / 18	Lecture 9 ()	Semantics and Verification 2005	3 / 1		
	Clock Valuation				
	Clock valuation Clock valuation v is a function $v : C \to \mathbb{R}^{\geq 0}$.				
1	Let v be a clock value	ation. Then			

```
• v + d is a clock valuation for any d \in \mathbb{R}^{\geq 0} and it is defined by
```

$$(v+d)(x) = v(x) + d$$
 for all $x \in C$

• v[r] is a clock valuation for any $r \subseteq C$ and it is defined by

 $v[r](x) \begin{cases} 0 & \text{if } x \in r \\ v(x) & \text{otherwise.} \end{cases}$

•
$$s \stackrel{d}{\longrightarrow} s'$$
 if $d \in \mathbb{R}^{\geq 0}$ and $(s, s') \in \stackrel{d}{\longrightarrow}$.

Let $C = \{x, y, \ldots\}$ be a finite set of clocks.

Set $\mathcal{B}(C)$ of clock constraints over C $\mathcal{B}(C)$ is defined by the following abstract syntax

 $g, g_1, g_2 ::= x \sim n \mid x - y \sim n \mid g_1 \wedge g_2$

where $x, y \in C$ are clocks, $n \in \mathbb{N}$ and $\sim \in \{\leq, <, =, >, \geq\}$.

Example: $x \leq 3 \land v > 0 \land v - x = 2$

Lecture 9 ()

???

inite-state automata equipped with clocks.

imed Automata [Alur, Dill'90]

Semantics and Verification 2005

Semantics and Verification 2005

Lecture 9

nantics and Verification 2005

Semantics

known entity

Labelled Transition Systems

Timed Transition Systems

labelled transition systems with time

• timed and untimed language equivalence

How to Describe Timed Transition Systems?

• timed and untimed bisimilarity

• timed automata

Lecture 9 ()

Syntax unknown entity

CCS

4 / 18

Lecture 9 ()

Semantics and Verification 2005

5 / 18

Lecture 9 ()

Semantics and Verification 2005

6 / 18

Evaluation of Clock Constraints

Evaluation of clo	ock constraints ($v \models g$)
$v \models x < n$	iff $v(x) < n$
$v \models x \le n$	iff $v(x) \leq n$
$v \models x = n$	iff $v(x) = n$
:	
$v \models x - y < n$	$\inf v(x) - v(y) < n$
$v \models x - y \le n$	iff $v(x) - v(y) \leq n$
:	
$v\models g_1\wedge g_2$	$iff \ v \models g_1 \ and \ v \models g_2$

Syntax of Timed Automata

Definition A **timed automaton** over a set of clocks C and a set of labels N is a tuple

 (L, ℓ_0, E, I)

where

• L is a finite set of **locations** • $\ell_0 \in L$ is the initial location • $E \subseteq L \times \mathcal{B}(C) \times N \times 2^C \times L$ is the set of **edges** • $I: L \to \mathcal{B}(C)$ assigns **invariants** to locations.

We usually write $\ell \xrightarrow{g,a,r} \ell'$ whenever $(\ell, g, a, r, \ell') \in E$.

Example: Hammer

Lecture 9 () antics and Verification 2005 7 / 18 Lecture 9 () 8 / 18 cs and Verification 200 Lecture 9 () ntics and Verification 2005 Timed Bisimilarity Example of Timed Bisimilar Automata Semantics of Timed Automata Let $A = (L, \ell_0, E, I)$ be a timed automaton. Let A_1 and A_2 be timed automata. Timed transition system generated by ATimed Bisimilarity $T(A) = (Proc, Act, \{ \xrightarrow{a} | a \in Act \})$ where x=1x=1We say that A_1 and A_2 are **timed bisimilar** iff the transition systems • $Proc = L \times (C \to \mathbb{R}^{\geq 0})$, i.e. states are of the form (ℓ, v) where ℓ is a $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 are strongly bisimilar. location and v a valuation x = 0• $Act = N \cup \mathbb{R}^{\geq 0}$ В B' ____2 Remark: both $\bullet \longrightarrow$ is defined as follows: $x \le 1$ • \xrightarrow{a} for $a \in N$ and

$$(\ell, v) \xrightarrow{d} (\ell', v') \text{ if there is } (\ell \xrightarrow{d \to i} \ell') \in E \text{ s.t. } v \models g \text{ and } v' = v[r]$$
$$(\ell, v) \xrightarrow{d} (\ell, v + d) \text{ for all } d \in \mathbb{R}^{\geq 0} \text{ s.t. } v \models I(\ell) \text{ and } v + d \models I(\ell)$$

Semantics and Verification 2005

• \xrightarrow{d} for $d \in \mathbb{R}^{\geq 0}$ are considered as normal (visible) transitions.

Lecture	9	0		

10 / 18

Lecture 9 ()

Semantics and Verification 2005

11 / 18

Lecture 9 () mantics and Verification 200 12 / 18

9 / 18

Example of Timed Non-Bisimilar Automata

Semantics and Verification 2005

Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans'92] Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time)

Theorem [Larsen, Wang'93] Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Untimed Bisimilarity

Let A_1 and A_2 be timed automata. Let ϵ be a new (fresh) action.

Untimed Bisimilarity

We say that A_1 and A_2 are **untimed bisimilar** iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 where every transition of the form \xrightarrow{d} for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\xrightarrow{\epsilon}$ are strongly bisimilar.

Remark:

• \xrightarrow{a} for $a \in N$ is treated as a visible transition, while • \xrightarrow{d} for $d \in \mathbb{R}^{\geq 0}$ are all labelled by a single visible action $\xrightarrow{\epsilon}$.

Corollary

Any two timed bisimilar automata are also untimed bisimilar.

13 / 18 Lecture 9 () 14 / 18 15 / 18 ics and Verification 200 Lecture 9 () ntics and Verification 2005 Timed Traces Timed and Untimed Language Equivalence Let $A = (L, \ell_0, E, I)$ be a timed automaton over a set of clocks C and a set of labels N. Timed Traces A sequence $(t_1, a_1)(t_2, a_2)(t_3, a_3) \dots$ where $t_i \in \mathbb{R}^{\geq 0}$ and $a_i \in N$ is called a **timed trace of** A iff there is a transition sequence $(\ell_0, v_0) \xrightarrow{d_1} \cdot \xrightarrow{a_1} \cdot \xrightarrow{d_2} \cdot \xrightarrow{a_2} \cdot \xrightarrow{d_3} \cdot \xrightarrow{a_3} \cdots$ in A such that $v_0(x) = 0$ for all $x \in C$ and $t_i = t_{i-1} + d_i$ where $t_0 = 0$.

Intuition: t_i is the absolute time (time-stamp) when a_i happened since the start of the automaton A.

Timed Non-Bisimilar but Untimed Bisimilar Automata

The set of all timed called the timed lan	traces of an automaton A is denoted by $L(A)$ and guage of A .
Theorem [Alur, Cou	urcoubetis, Dill, Henzinger'94]
Timed language equi	ivalence (the problem whether $L(A_1) = L(A_2)$ for
given timed automat	a A_1 and A_2) is undecidable.
given timed automat We say that $a_1a_2a_3$. $t_1, t_2, t_3, \ldots \in \mathbb{R}^{\geq 0}$ s A.	(a A_1 and A_2) is undecidable. is an untimed trace of A iff there exist uch that $(t_1, a_1)(t_2, a_2)(t_3, a_3)$ is a timed trace of
given timed automat We say that $a_1a_2a_3$. $t_1, t_2, t_3, \ldots \in \mathbb{R}^{\geq 0}$ s A. Theorem [Alur, Dill	(a A_1 and A_2) is undecidable. is an untimed trace of A iff there exist uch that $(t_1, a_1)(t_2, a_2)(t_3, a_3)$ is a timed trace of ['94]

Lecture 9 ()

Lecture 9 ()

Semantics and Verification 2005

16 / 18

Lecture 9 ()

Semantics and Verification 2005

17 / 18