- Timeout in Alternating Bit protocol

- In CCS timeouts were modelled using nondeterminism
- Enough to prove that the protocol is safe
- Maybe too abstract for certain questions (What is the average time to deliver the message?).

- Many real-life systems depend on timing

- Real-time controllers (production lines, computers in cars, railway crossings).
- Embedded systems (mobile phones, remote controllers, digital watch)
-

Lecture 9 ()
Semantics and Verification 2005

Definition of TA: Clock Constraints

Let $C=\{x, y, \ldots\}$ be a finite set of clocks.

Set $\mathcal{B}(C)$ of clock constraints over C $\mathcal{B}(C)$ is defined by the following abstract syntax

$$
g, g_{1}, g_{2}::=x \sim n|x-y \sim n| g_{1} \wedge g_{2}
$$

where $x, y \in C$ are clocks, $n \in \mathbb{N}$ and $\sim \in\{\leq,<,=,>, \geq\}$

Example: $x \leq 3 \wedge y>0 \wedge y-x=2$

Semantics and Verification 2005
Labelled Transition Systems with Time

Timed (labelled) transition system (TLTS)
TLTS is a triple (Proc, $A c t,\{\xrightarrow{a} \mid a \in A c t\}$) where

- Proc is a set of states (or processes),
- Act $=N \cup \mathbb{R} \geq 0$ is a set of actions (consisting of labels and time-elapsing steps), and
- for every $a \in A c t, \xrightarrow{a} \subseteq$ Proc \times Proc is a binary relation on states called the transition relation.
We write

$$
\begin{aligned}
& \circ s \xrightarrow{a} s^{\prime} \text { if } a \in N \text { and }\left(s, s^{\prime}\right) \in \xrightarrow{a}, \text { and } \\
& \circ s \xrightarrow{d} s^{\prime} \text { if } d \in \mathbb{R}^{\geq 0} \text { and }\left(s, s^{\prime}\right) \in \xrightarrow{d} .
\end{aligned}
$$

Lecture 9 ()

Clock Valuation

Clock valuation
Clock valuation v is a function $v: C \rightarrow \mathbb{R}^{\geq 0}$

Let v be a clock valuation. Then

- $v+d$ is a clock valuation for any $d \in \mathbb{R}^{\geq 0}$ and it is defined by

$$
(v+d)(x)=v(x)+d \text { for all } x \in C
$$

- $v[r]$ is a clock valuation for any $r \subseteq C$ and it is defined by

$$
v[r](x) \begin{cases}0 & \text { if } x \in r \\ v(x) & \text { otherwise }\end{cases}
$$

Evaluation of Clock Constraints

Evaluation of clock constraints $(v \models g)$

$v \models x<n$	iff $v(x)<n$
$v \models x \leq n$	iff $v(x) \leq n$
$v \models x=n$	
	iff $v(x)=n$
$v \models x-y<n$	
	iff $v(x)-v(y)<n$
$v \models x-y \leq n$	iff $v(x)-v(y) \leq n$
$v \models g_{1} \wedge g_{2}$	
	iff $v \models g_{1}$ and $v \models g_{2}$

7/18

Semantics of Timed Automata

Let $A=\left(L, \ell_{0}, E, I\right)$ be a timed automaton.
Timed transition system generated by A
$T(A)=($ Proc, $A c t,\{\xrightarrow{a} \mid a \in A c t\})$ where

- Proc $=L \times\left(C \rightarrow \mathbb{R}^{\geq 0}\right)$, i.e. states are of the form (ℓ, v) where ℓ is a location and v a valuation
- $A c t=N \cup \mathbb{R}^{\geq 0}$
- \longrightarrow is defined as follows:
$(\ell, v) \xrightarrow{a}\left(\ell^{\prime}, v^{\prime}\right)$ if there is $\left(\ell \xrightarrow{g, a, r} \ell^{\prime}\right) \in E$ s.t. $v \neq g$ and $v^{\prime}=v[r]$
$(\ell, v) \xrightarrow{d}(\ell, v+d)$ for all $d \in \mathbb{R}^{\geq 0}$ s.t. $v \models I(\ell)$ and $v+d \models I(\ell)$

Syntax of Timed Automata
Example: Hammer

Definition

A timed automaton over a set of clocks C and a set of labels N is a tuple

$$
\left(L, \ell_{0}, E, I\right)
$$

where

- L is a finite set of locations
- $\ell_{0} \in L$ is the initial location
- $E \subseteq L \times \mathcal{B}(C) \times N \times 2^{C} \times L$ is the set of edges
- I: $L \rightarrow \mathcal{B}(C)$ assigns invariants to locations.

We usually write $\ell \xrightarrow{g, a, r} \ell^{\prime}$ whenever $\left(\ell, g, a, r, \ell^{\prime}\right) \in E$.

$$
\text { Lecture } 90 \quad \text { Semantics and Verification } 2005
$$

Timed Bisimilarity

Let A_{1} and A_{2} be timed automata
Timed Bisimilarity
We say that A_{1} and A_{2} are timed bisimilar iff the transition systems
$T\left(A_{1}\right)$ and $T\left(A_{2}\right)$ generated by A_{1} and A_{2} are strongly bisimilar.

Remark: both

- \xrightarrow{a} for $a \in N$ and
- \xrightarrow{d} for $d \in \mathbb{R}^{\geq 0}$
are considered as normal (visible) transitions.

$$
\text { Lecture } 9 \text { () }
$$

Semantics and Verification 2005

Example of Timed Bisimilar Automata

Example of Timed Non-Bisimilar Automata

Lecture 9 ()

Semantics and Verification 2005
Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans'92]
Timed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Theorem [Larsen, Wang'93]
Untimed bisimilarity for timed automata is decidable in EXPTIME (deterministic exponential time).

Untimed Bisimilarity

Let A_{1} and A_{2} be timed automata. Let ϵ be a new (fresh) action.
Untimed Bisimilarity
We say that A_{1} and A_{2} are untimed bisimilar iff the transition systems $T\left(A_{1}\right)$ and $T\left(A_{2}\right)$ generated by A_{1} and A_{2} where every transition of the form \xrightarrow{d} for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\xrightarrow{\epsilon}$ are strongly bisimilar.

Remark:
$-\xrightarrow{a}$ for $a \in N$ is treated as a visible transition, while
$-\xrightarrow{d}$ for $d \in \mathbb{R} \geq 0$ are all labelled by a single visible action $\xrightarrow{\epsilon}$.

Corollary

Any two timed bisimilar automata are also untimed bisimilar.

13 / 18
Lecture 9 ()
Semantics and Verification 2005
14 / 18
Timed Traces

Let $A=\left(L, \ell_{0}, E, I\right)$ be a timed automaton over a set of clocks C and a set of labels N.

Timed Traces
A sequence $\left(t_{1}, a_{1}\right)\left(t_{2}, a_{2}\right)\left(t_{3}, a_{3}\right) \ldots$ where $t_{i} \in \mathbb{R} \geq 0$ and $a_{i} \in N$ is called a timed trace of A iff there is a transition sequence

$$
\left(\ell_{0}, v_{0}\right) \xrightarrow{d_{1}} \cdot \xrightarrow{a_{1}} \cdot \xrightarrow{d_{2}} \cdot \xrightarrow{a_{2}} \cdot \xrightarrow{d_{3}} \cdot \xrightarrow{a_{3}} \ldots
$$

in A such that $v_{0}(x)=0$ for all $x \in C$ and

$$
t_{i}=t_{i-1}+d_{i} \quad \text { where } t_{0}=0
$$

Intuition: t_{i} is the absolute time (time-stamp) when a_{i} happened since the start of the automaton A.

Timed Non-Bisimilar but Untimed Bisimilar Automata

$$
\text { Lecture } 90
$$

Semantics and Verification 2005
Timed and Untimed Language Equivalence

The set of all timed traces of an automaton A is denoted by $L(A)$ and called the timed language of A

Theorem [Alur, Courcoubetis, Dill, Henzinger'94]
Timed language equivalence (the problem whether $L\left(A_{1}\right)=L\left(A_{2}\right)$ for given timed automata A_{1} and A_{2}) is undecidable.

We say that $a_{1} a_{2} a_{3} \ldots$ is an untimed trace of A iff there exist
$t_{1}, t_{2}, t_{3}, \ldots \in \mathbb{R}^{\geq 0}$ such that $\left(t_{1}, a_{1}\right)\left(t_{2}, a_{2}\right)\left(t_{3}, a_{3}\right) \ldots$ is a timed trace of A.

Theorem [Alur, Dill'94]
Untimed language equivalence for timed automata is decidable

