Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Temporal Properties	Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Definition of Strong Bisimulation Fixed Point Definition of Strong Bisimilarity	Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Temporal Properties
Semantics and Verification 2005	Tarski's Fixed Point Theorem – Summary Let (D, \sqsubseteq) be a complete lattice and let $f : D \rightarrow D$ be a monotonic function.	Definition of Strong Bisimulation Let (<i>Proc</i> , Act, $\{\stackrel{a}{\rightarrow} a \in Act\}$) be an LTS.
Lecture 7	Tarski's Fixed Point Theorem Then f has a unique largest fixed point z_{max} and a unique least fixed point z_{min} given by:	Strong Bisimulation A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$:
	$egin{aligned} & z_{max} \stackrel{ ext{def}}{=} \sqcup \{x \in D \mid x \sqsubseteq f(x)\} \ & z_{min} \stackrel{ ext{def}}{=} \sqcap \{x \in D \mid f(x) \sqsubseteq x\} \end{aligned}$	• if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in R$ • if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$. Two processes $p, q \in Proc$ are strongly bisimilar $(p \sim q)$ iff there
 bisimulation as a fixed point Hennessy-Milner logic with recursively defined variables game semantics and temporal properties of reactive systems characteristic property 	Computing Fixed Points in Finite Lattices If D is a finite set then there exist integers $M, m > 0$ such that • $z_{max} = f^M(\top)$ • $z_{min} = f^m(\bot)$	exists a strong bisimulation R such that $(p, q) \in R$. $\sim = \bigcup \{R \mid R \text{ is a strong bisimulation} \}$
Lecture 7 Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Temporal Properties Fixed Point Definition of Strong Bisimulation Fixed Point Definition of Strong Bisimularity	Lecture 7 Semantics and Verification 2005 Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Properties Game Characterization	Lecture 7 Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Temporal Properties Selection of Temporal Properties
rong Bisimulation as a Greatest Fixed Point	HML with One Recursively Defined Variable	Definition of $O_F : 2^{Proc} \to 2^{Proc}$ (let $S \subseteq 2^{Proc}$)
Function $\mathcal{F} : 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$ Let $S \subseteq Proc \times Proc$. Then we define $\mathcal{F}(S)$ as follows: $(s,t) \in \mathcal{F}(S)$ if and only if for each $a \in Act$: • if $s \xrightarrow{a} s'$ then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in S$ • if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in S$. Observations • $(2^{(Proc \times Proc)}, \subseteq)$ is a complete lattice and \mathcal{F} is monotonic	Syntax of Formulae Formulae are given by the following abstract syntax $F ::= X tt ff F_1 \land F_2 F_1 \lor F_2 \langle a \rangle F [a]F$ where $a \in Act$ and X is a distinguished variable with a definition • $X \stackrel{\min}{=} F_X$, or $X \stackrel{\max}{=} F_X$ such that F_X is a formula of the logic (can contain X).	$\begin{array}{rcl} O_X(S) &=& S\\ O_{tt}(S) &=& Proc\\ O_{ff}(S) &=& \emptyset\\ O_{F_1 \wedge F_2}(S) &=& O_{F_1}(S) \cap O_{F_2}(S)\\ O_{F_1 \vee F_2}(S) &=& O_{F_1}(S) \cup O_{F_2}(S)\\ O_{\langle a \rangle F}(S) &=& \langle \cdot a \cdot \rangle O_F(S)\\ O_{[a]F}(S) &=& [\cdot a \cdot] O_F(S) \end{array}$
• S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$ Strong Bisimilarity is the Greatest Fixed Point of \mathcal{F}	How to Define Semantics? For every formula F we define a function $O_F : 2^{Proc} \rightarrow 2^{Proc}$ s.t. • if S is the set of processes that satisfy X then	O_F is monotonic for every formula F $S_1 \subseteq S_2 \Rightarrow O_F(S_1) \subseteq O_F(S_2)$
$\sim = \bigcup \{ S \in 2^{(Proc \times Proc)} \mid S \subseteq \mathcal{F}(S) \}$		

Bisimulation as a Fixed Point Syntax Hennessy-Millner Logic with One Recursive Definition Semantics Selection of Temporal Properties Game Characterization	Bisimulation as a Fixed Point Syntax Hennessy-Milner Logic with One Recursive Definition Semantics Selection of Temporal Properties Game Characterization	Bisimulation as a Fixed Point Syntax. Hennessy-Milner Logic with One Recursive Definition Semantics Selection of Temporal Properties Game Characterization
Semantics	Game Characterization	Who is the Winner?
ObservationWe know that $(2^{Proc}, \subseteq)$ is a complete lattice and O_F is monotonic, so O_F has a unique greatest and least fixed point.Semantics of the Variable X• If $X \stackrel{\text{max}}{=} F_X$ then $[X] = \bigcup \{S \subseteq Proc \mid S \subseteq O_{F_X}(S)\}.$ • If $X \stackrel{\text{min}}{=} F_X$ then $[X] = \bigcap \{S \subseteq Proc \mid O_{F_X}(S) \subseteq S\}.$	Intuition: the attacker claims $s \not\models F$, the defender claims $s \models F$. Configurations of the game are of the form (s, F) • (s, tt) and (s, ff) have no successors • (s, X) has one successor (s, F_X) • $(s, F_1 \land F_2)$ has two successors (s, F_1) and (s, F_2) (selected by the attacker) • $(s, F_1 \lor F_2)$ has two successors (s, F_1) and (s, F_2) (selected by the defender) • $(s, [a]F)$ has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$ (selected by the attacker) • $(s, \langle a \rangle F)$ has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$ (selected by the defender)	 Play is a maximal sequence of configurations formed according to the rules given on the previous slide. Finite Play The attacker is the winner of a finite play if the defender gets stuck or the players reach a configuration (s, ff). The defender is the winner of a finite play if the attacker gets stuck or the players reach a configuration (s, ft). Infinite Play The attacker is the winner of an infinite play if X is defined as X ^{min} ₌ F_X.
Lecture 7 Semantics and Verification 2005 Bisimulation as a Fixed Point Syntax Hennessy-Milner Logic with One Recursive Definition Selection of Temporal Properties Semantics Generation	Lecture 7 Semantics and Verification 2005 Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Temporal Properties	Lecture 7 Semantics and Verification 2005 Bisimulation as a Fixed Point Hennessy-Milner Logic with One Recursive Definition Selection of Temporal Properties Inv. Pos, Safe, Even and Until Nested and Mutually Recursive Formulae
Game Characterization	Selection of Temporal Properties	Examples of More Advanced Recursive Formulae
	• $Inv(F)$: $X \stackrel{\text{max}}{=} F \land [Act]X$ • $Pos(F)$: $X \stackrel{\text{min}}{=} F \lor \langle Act \rangle X$	Nested Definitions of Recursive Variables $X \stackrel{\min}{=} Y \lor \langle Act \rangle X \qquad Y \stackrel{\max}{=} \langle a \rangle tt \land \langle Act \rangle Y$
 Theorem s ⊨ F if and only if the defender has a universal winning strategy from (s, F) 	• Safe(F): $X \stackrel{\text{max}}{=} F \land ([Act]ff \lor \langle Act \rangle X)$ • Even(F): $X \stackrel{\text{min}}{=} F \lor (\langle Act \rangle tt \land [Act]X)$	Solution: compute first [[Y]] and then [[X]]. Mutually Recursive Definitions
• $s \not\models F$ if and only if the attacker has a universal winning strategy from (s, F)	• $F \mathcal{U}^w G$: $X \stackrel{\max}{=} G \lor (F \land [Act]X)$ • $F \mathcal{U}^s G$: $X \stackrel{\min}{=} G \lor (F \land \langle Act \rangle tt \land [Act]X)$	$\begin{array}{ccc} X \stackrel{\max}{=} [a] Y & Y \stackrel{\max}{=} \langle a \rangle X \\ \hline \text{Solution: consider a complete lattice } (2^{Proc} \times 2^{Proc}, \sqsubseteq) \text{ where } \\ (S_1, S_2) \sqsubseteq (S'_1, S'_2) \text{ iff } S_1 \subseteq S'_1 \text{ and } S_2 \subseteq S'_2. \end{array}$
	Using until we can express e.g. $Inv(F)$ and $Even(F)$: $Inv(F) \equiv F \ U^w \ ff \qquad Even(F) \equiv tt \ U^s \ F$	Theorem (Characteristic Property for Finite-State Processes) Let <i>s</i> be a process with finitely many reachable states. There exists a property X_s s.t. for all processes <i>t</i> : $s \sim t$ if and only if $t \in [X_s]$.
Lecture 7 Semantics and Verification 2005	Lecture 7 Semantics and Verification 2005	Lecture 7 Semantics and Verification 2005