
Semantics and Verification 2005

Lecture 3

value passing CCS

behavioural equivalences

strong bisimilarity and bisimulation games

properties of strong bisimilarity

Lecture 3 () Semantics and Verification 2005 1 / 17

Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to exchange
integer values.

pay(6).Nil | pay(x).save(x/2).Nil | Bank(100)

↓ τ

Nil | save(3).Nil | Bank(100)

↓ τ

Nil | Nil | Bank(103)

Parametrized Process Constants

For example: Bank(total)
def
= save(x).Bank(total + x).

Lecture 3 () Semantics and Verification 2005 2 / 17

Translation of Value Passing CCS to Standard CCS

Value Passing CCS

C
def
= in(x).C ′(x)

C ′(x)
def
= out(x).C

−→

Standard CCS

C
def
=

∑
i∈N

in(i).C ′
i

C ′
i

def
= out(i).C

· · ·
C

in(x)

C ′(x)

out(x)

JJ C ′
i

out(i)
**
C

in(1)

in(2)
**

in(i)

jj C ′
2

out(2)

jj

C ′
1

out(1)

JJ

symbolic LTS infinite LTS

Lecture 3 () Semantics and Verification 2005 3 / 17

CCS Has Full Turing Power

Fact

CCS can simulate a computation of any Turing machine.

Remark

Hence CCS is as expressive as any other programming language but its use
is to rather describe the behaviour of reactive systems than to perform
specific calculations.

Lecture 3 () Semantics and Verification 2005 4 / 17

Behavioural Equivalence

Implementation

CM
def
= coin.coffee.CM

CS
def
= pub.coin.coffee.CS

Uni
def
= (CM |CS) r {coin, coffee}

Specification

Spec
def
= pub.Spec

Question

Are the processes Uni and Spec behaviorally equivalent?

Uni ≡ Spec

Lecture 3 () Semantics and Verification 2005 5 / 17

Goals

What should a reasonable behavioural equivalence satisfy?

abstract from states (consider only the behaviour – actions)

abstract from nondeterminism

abstract from internal behaviour

What else should a reasonable behavioural equivalence satisfy?

reflexivity P ≡ P for any process P

transitivity Spec0 ≡ Spec1 ≡ Spec2 ≡ · · · ≡ Impl gives that
Spec0 ≡ Impl

symmetry P ≡ Q iff Q ≡ P

Lecture 3 () Semantics and Verification 2005 6 / 17

Congruence

P

C

Q

C

C (P) C (Q)

Congruence Property

P ≡ Q implies that C (P) ≡ C (Q)

Lecture 3 () Semantics and Verification 2005 7 / 17

Trace Equivalence

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

Trace Set for s ∈ Proc

Traces(s) = {w ∈ Act∗ | ∃s ′ ∈ Proc . s
w−→ s ′}

Let s ∈ Proc and t ∈ Proc .

Trace Equivalence

We say that s and t are trace equivalent (s ≡t t) if and only if
Traces(s) = Traces(t)

Lecture 3 () Semantics and Verification 2005 8 / 17

Black-Box Experiments

Experiment in A Experiment in B Experiment in B

coin tea coffee coin tea coffee coin tea coffee

press coin press coin press coin

coin tea coffee coin tea coffee coin tea coffee

Main Idea

Two processes are behaviorally equivalent if and only if an external
observer cannot tell them apart.

Lecture 3 () Semantics and Verification 2005 9 / 17

Strong Bisimilarity

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff whenever
(s, t) ∈ R then for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ R

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Strong Bisimilarity

Two processes p1, p2 ∈ Proc are strongly bisimilar (p1 ∼ p2) if and only
if there exists a strong bisimulation R such that (p1, p2) ∈ R.

∼ = ∪{R | R is a strong bisimulation}

Lecture 3 () Semantics and Verification 2005 10 / 17

Basic Properties of Strong Bisimilarity

Theorem

∼ is an equivalence (reflexive, symmetric and transitive)

Theorem

∼ is the largest strong bisimulation

Theorem

s ∼ t if and only if for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that s ′ ∼ t ′

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that s ′ ∼ t ′.

Lecture 3 () Semantics and Verification 2005 11 / 17

How to Show Nonbisimilarity?

s
a��

t
a

{{www
ww

w a

##GG
GG

GG

s1
b

{{wwwww c

##GGGGG t1
b ��

t2
c��

s2 s3 t3 t4

To prove that s 6∼ t:

Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation. (Expensive:
2|Proc|2 relations.)

Make certain observations which will enable to disqualify many
bisimulation candidates in one step.

Use game characterization of strong bisimilarity.

Lecture 3 () Semantics and Verification 2005 12 / 17

Strong Bisimulation Game

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS and s, t ∈ Proc .

We define a two-player game of an ‘attacker’ and a ‘defender’ starting
from s and t.

The game is played in rounds and configurations of the game are
pairs of states from Proc × Proc .

In every round exactly one configuration is called current. Initially
the configuration (s, t) is the current one.

Intuition

The defender wants the show that s and t are strongly bisimilar while the
attacker aims to prove the opposite.

Lecture 3 () Semantics and Verification 2005 13 / 17

Rules of the Bisimulation Games

Game Rules

In each round the players change the current configuration as follows:

1 the attacker chooses one of the processes in the current configuration
and makes an

a−→-move for some a ∈ Act, and

2 the defender must respond by making an
a−→-move in the other

process under the same action a.

The newly reached pair of processes becomes the current configuration.
The game then continues by another round.

Result of the Game

If one player cannot move, the other player wins.

If the game is infinite, the defender wins.

Lecture 3 () Semantics and Verification 2005 14 / 17

Game Characterization of Strong Bisimilarity

Theorem

States s and t are strongly bisimilar if and only if the defender has a
universal winning strategy starting from the configuration (s, t).

States s and t are not strongly bisimilar if and only if the attacker has
a universal winning strategy starting from the configuration (s, t).

Remark

Bisimulation game can be used to prove both bisimilarity and
nonbisimilarity of two processes. It very often provides elegant arguments
for the negative case.

Lecture 3 () Semantics and Verification 2005 15 / 17

Strong Bisimilarity is a Congruence for CCS Operations

Theorem

Let P and Q be CCS processes such that P ∼ Q. Then

α.P ∼ α.Q for each action α ∈ Act

P + R ∼ Q + R and R + P ∼ R + Q for each CCS process R

P | R ∼ Q | R and R | P ∼ R | Q for each CCS process R

P[f] ∼ Q[f] for each relabelling function f

P \ L ∼ Q \ L for each set of labels L.

Lecture 3 () Semantics and Verification 2005 16 / 17

Other Properties of Strong Bisimilarity

Following Properties Hold for any CCS Processes P , Q and R

P + Q ∼ Q + P

P |Q ∼ Q |P
P + Nil ∼ P

P |Nil ∼ P

(P + Q) + R ∼ P + (Q + R)

(P |Q) |R ∼ P | (Q |R)

Lecture 3 () Semantics and Verification 2005 17 / 17

