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Value Passing CCS

Main Idea

Handshake synchronization is extended with the possibility to exchange
integer values.

pay(6).Nil | pay(x).save(x/2).Nil | Bank(100)

↓ τ

Nil | save(3).Nil | Bank(100)

↓ τ

Nil | Nil | Bank(103)

Parametrized Process Constants

For example: Bank(total)
def
= save(x).Bank(total + x).
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Translation of Value Passing CCS to Standard CCS

Value Passing CCS

C
def
= in(x).C ′(x)

C ′(x)
def
= out(x).C

−→

Standard CCS
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CCS Has Full Turing Power

Fact

CCS can simulate a computation of any Turing machine.

Remark

Hence CCS is as expressive as any other programming language but its use
is to rather describe the behaviour of reactive systems than to perform
specific calculations.
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Behavioural Equivalence

Implementation

CM
def
= coin.coffee.CM

CS
def
= pub.coin.coffee.CS

Uni
def
= (CM |CS) r {coin, coffee}

Specification

Spec
def
= pub.Spec

Question

Are the processes Uni and Spec behaviorally equivalent?

Uni ≡ Spec
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Goals

What should a reasonable behavioural equivalence satisfy?

abstract from states (consider only the behaviour – actions)

abstract from nondeterminism

abstract from internal behaviour

What else should a reasonable behavioural equivalence satisfy?

reflexivity P ≡ P for any process P

transitivity Spec0 ≡ Spec1 ≡ Spec2 ≡ · · · ≡ Impl gives that
Spec0 ≡ Impl

symmetry P ≡ Q iff Q ≡ P
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Congruence

P

C

Q

C

C (P) C (Q)

Congruence Property

P ≡ Q implies that C (P) ≡ C (Q)
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Trace Equivalence

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

Trace Set for s ∈ Proc

Traces(s) = {w ∈ Act∗ | ∃s ′ ∈ Proc . s
w−→ s ′}

Let s ∈ Proc and t ∈ Proc .

Trace Equivalence

We say that s and t are trace equivalent (s ≡t t) if and only if
Traces(s) = Traces(t)
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Black-Box Experiments

Experiment in A Experiment in B Experiment in B

coin tea coffee coin tea coffee coin tea coffee

press coin press coin press coin

coin tea coffee coin tea coffee coin tea coffee

Main Idea

Two processes are behaviorally equivalent if and only if an external
observer cannot tell them apart.
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Strong Bisimilarity

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff whenever
(s, t) ∈ R then for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that (s ′, t ′) ∈ R

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Strong Bisimilarity

Two processes p1, p2 ∈ Proc are strongly bisimilar (p1 ∼ p2) if and only
if there exists a strong bisimulation R such that (p1, p2) ∈ R.

∼ = ∪{R | R is a strong bisimulation}

Lecture 3 () Semantics and Verification 2005 10 / 17

Basic Properties of Strong Bisimilarity

Theorem

∼ is an equivalence (reflexive, symmetric and transitive)

Theorem

∼ is the largest strong bisimulation

Theorem

s ∼ t if and only if for each a ∈ Act:

if s
a−→ s ′ then t

a−→ t ′ for some t ′ such that s ′ ∼ t ′

if t
a−→ t ′ then s

a−→ s ′ for some s ′ such that s ′ ∼ t ′.
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How to Show Nonbisimilarity?
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To prove that s 6∼ t:

Enumerate all binary relations and show that none of them at the
same time contains (s, t) and is a strong bisimulation. (Expensive:
2|Proc|2 relations.)

Make certain observations which will enable to disqualify many
bisimulation candidates in one step.

Use game characterization of strong bisimilarity.
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Strong Bisimulation Game

Let (Proc ,Act, { a−→| a ∈ Act}) be an LTS and s, t ∈ Proc .

We define a two-player game of an ‘attacker’ and a ‘defender’ starting
from s and t.

The game is played in rounds and configurations of the game are
pairs of states from Proc × Proc .

In every round exactly one configuration is called current. Initially
the configuration (s, t) is the current one.

Intuition

The defender wants the show that s and t are strongly bisimilar while the
attacker aims to prove the opposite.
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Rules of the Bisimulation Games

Game Rules

In each round the players change the current configuration as follows:

1 the attacker chooses one of the processes in the current configuration
and makes an

a−→-move for some a ∈ Act, and

2 the defender must respond by making an
a−→-move in the other

process under the same action a.

The newly reached pair of processes becomes the current configuration.
The game then continues by another round.

Result of the Game

If one player cannot move, the other player wins.

If the game is infinite, the defender wins.
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Game Characterization of Strong Bisimilarity

Theorem

States s and t are strongly bisimilar if and only if the defender has a
universal winning strategy starting from the configuration (s, t).

States s and t are not strongly bisimilar if and only if the attacker has
a universal winning strategy starting from the configuration (s, t).

Remark

Bisimulation game can be used to prove both bisimilarity and
nonbisimilarity of two processes. It very often provides elegant arguments
for the negative case.
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Strong Bisimilarity is a Congruence for CCS Operations

Theorem

Let P and Q be CCS processes such that P ∼ Q. Then

α.P ∼ α.Q for each action α ∈ Act

P + R ∼ Q + R and R + P ∼ R + Q for each CCS process R

P | R ∼ Q | R and R | P ∼ R | Q for each CCS process R

P[f ] ∼ Q[f ] for each relabelling function f

P \ L ∼ Q \ L for each set of labels L.
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Other Properties of Strong Bisimilarity

Following Properties Hold for any CCS Processes P , Q and R

P + Q ∼ Q + P

P |Q ∼ Q |P
P + Nil ∼ P

P |Nil ∼ P

(P + Q) + R ∼ P + (Q + R)

(P |Q) |R ∼ P | (Q |R)
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