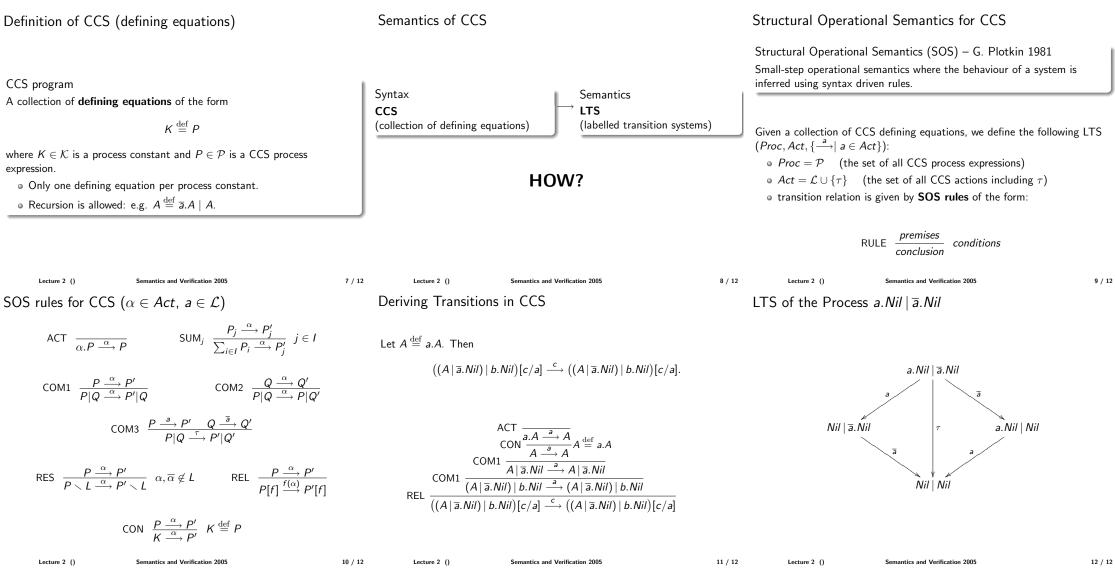
	CCS Basics (Sequential Fragment)	CCS Basics (Parallelism and Renaming)
Semantics and Verification 2005 Lecture 2	 Nil (or 0) process (the only atomic process) action prefixing (a.P) names and recursive definitions (^{def}=) nondeterministic choice (+) 	 parallel composition () (synchronous communication between two components = handshake synchronization) restriction (P \ L)
 informal introduction to CCS syntax of CCS semantics of CCS 	This is Enough to Describe Sequential Processes Any finite LTS can be (up to isomorphism) described by using the operations above.	• relabelling (<i>P</i> [<i>f</i>])
Lecture 2 () Semantics and Verification 2005 1 / 12 Definition of CCS (channels, actions, process names)	Lecture 2 () Semantics and Verification 2005 2 / 1 Definition of CCS (expressions)	2 Lecture 2 () Semantics and Verification 2005 3 / 12 Precedence
 Let A be a set of channel names (e.g. <i>tea</i>, <i>coffee</i> are channel names) L = A ∪ A be a set of labels where A = {ā a ∈ A} (A are called names and A are called co-names) by convention ā = a 	$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Precedence restriction and relabelling (tightest binding) action prefixing parallel composition summation
 Act = L ∪ {τ} is the set of actions where τ is the internal or silent action (e.g. τ, tea, coffee are actions) K is a set of process names (constants) (e.g. CM). 	The set of all terms generated by the abstract syntax is called CCS process expressions (and denoted by \mathcal{P}). Notation $P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$ $Nil = 0 = \sum_{i \in \emptyset} P_i$	Example: $R + a.P b.Q \smallsetminus L$ means $R + ((a.P) (b.(Q \smallsetminus L)))$.

Lecture 2 () Semantics and Verification 2005 4 / 12

Lecture 2 ()

Semantics and Verification 2005


5 / 12

Lecture 2 ()

Semantics and Verification 2005

6 / 12

3 / 12

