Reactive systems

its environment.

Key Issues:parallelism

1 / 24

4 / 24

Characterization of a Reactive System

communication and interaction

The result (if any) does not have to be unique.

Nontermination is good!

Reactive System is a system that computes by reacting to stimuli from

Classical vs. Reactive Computing

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes	no
semantics	$states \hookrightarrow states$	LTS

antics and Verification 2005

prefixing ($\alpha \in Act$)

parallel composition

restriction $(L \subseteq A)$

• $f(\tau) = \tau$ • $f(\overline{a}) = \overline{f(a)}$

process constants ($K \in \mathcal{K}$)

summation (*I* is an arbitrary index set)

relabelling $(f : Act \rightarrow Act)$ such that

 $Nil = 0 = \sum_{i \in \emptyset} P_i$

0	0	round	l-up	of	the	course
---	---	-------	------	----	-----	--------

- information about the exam
- selection of star exercises

Lecture 15 () Semantics and Verification 2005

Calculus of Communicating Systems

CCS Process algebra called "Calculus of Communicating Systems".

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

 P_1 op P_2 \Rightarrow P_1 op P_2

Semantics and Verification 2005

Lecture 15

	Lecture 15 ()	Semantics and Verification 2005
Pro	cess Algebras	
Basi	c Principle	
1	Define a few atomic p behaviour).	rocesses (modelling the simplest process
2	Define compositionally process behaviour from	new operations (building more complex simple ones).
Exar	nple	
1	atomic instruction: ass	ignment (e.g. x:=2 and x:=x+2)
2	new operators:	
	sequential composit parallel composition	
Usua	ally given by abstract s	yntax:
	P, P_1, P_2	$::= x := e P_1; P_2 P_1 P_2$
whee	a v ranges over veriabl	as and a over arithmetical everyosions

where x ranges over variables and e over arithmetical expressions.

Lecture 15 () Semantics and Verification 2005

Lecture 15 ()

Semantics and Verification 2005

5 / 24 Lecture 15 ()

CCS program

2 / 24

Lecture 15 ()

Process expressions:

 $\alpha.P$

 $\begin{array}{c}\sum_{i\in I}P_i\\P_1|P_2\end{array}$

 $P \smallsetminus L$

P[f]

 $P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$

Syntax of CCS

P := K

Semantics and Verification 2005

process constant and P is a process expression.

A collection of **defining equations** of the form $\mathcal{K} \stackrel{\text{def}}{=} \mathcal{P}$ where $\mathcal{K} \in \mathcal{K}$ is a

6 / 24

3 / 24

Semantics of CCS — SOS rules ($\alpha \in Act, a \in \mathcal{L}$)

$$ACT \xrightarrow{\alpha.P} \qquad SUM_{j} \xrightarrow{P_{j} \xrightarrow{\alpha} P_{j}'} j \in I$$

$$COM1 \xrightarrow{P \xrightarrow{\alpha} P'} P'|Q \qquad COM2 \xrightarrow{Q \xrightarrow{\alpha} Q'} P|Q'$$

$$COM3 \xrightarrow{P \xrightarrow{a} P' Q \xrightarrow{\overline{a}} Q'} P|Q \xrightarrow{\overline{a}} P|Q'$$

$$RES \xrightarrow{P \xrightarrow{\alpha} P'} L \xrightarrow{\alpha, \overline{\alpha} \notin L} REL \xrightarrow{P \xrightarrow{\alpha} P'} P[f] \xrightarrow{f(\alpha)} P'[f]$$

$$CON \xrightarrow{P \xrightarrow{\alpha} P'} K \stackrel{def}{=} P$$

Introducing Time Features

Lecture 15 ()

In many applications, we would like to explicitly model **real-time** in our models.

Semantics and Verification 2005

Timed (labelled) transition system Timed LTS is an ordinary LTS where actions are of the form $Act = L \cup \mathbb{R}^{\geq 0}$. • $s \xrightarrow{a} s'$ for $a \in L$ are discrete transitions • $s \xrightarrow{d} s'$ for $d \in \mathbb{R}^{\geq 0}$ are time-elapsing (delay) transitions

• $s \longrightarrow s$ for $a \in \mathbb{R}^{-1}$ are time-elapsing (delay) transitions

Semantics and Verification 2005

Verification Approaches

Let Impl be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

- $Impl \equiv Spec$ Spec is a full specification of the intended behaviour
 Example: $s \sim t$ or $s \approx t$
- Model Checking Approach
 Impl ⊨ Property
 Property is a partial specification of the intended behaviour
 Example: s ⊨ ⟨a⟩([b]f ∧ ⟨a⟩tt)

Lecture 15 ()	Semantics and Verification 2005
Timed and Untimed	l Bisimilarity
Let s and t be two states	s in timed LTS.
Timed Bisimilarity (= 5	Strong Bisimilarity)
We say that s and t are	timed bisimilar iff $s \sim t$.
Remark: all transitions a	re considered as visible transitions.
Untimed Bisimilarity	
5	untimed bisimilar iff $s \sim t$ in a modified
	every transition of the form $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}$ $\stackrel{\epsilon}{\longrightarrow}$ for a new (single) action ϵ .
Remark:	
• \xrightarrow{a} for $a \in L$ are tree	eated as visible transitions, while

• $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ all look the same (action ϵ).

Lecture 15 ()

7 / 24

10 / 24

Lecture 15 ()

Semantics and Verification 2005

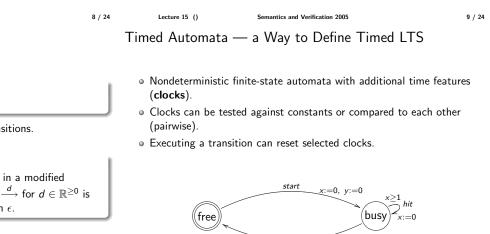
11 / 24

Lecture 15 ()

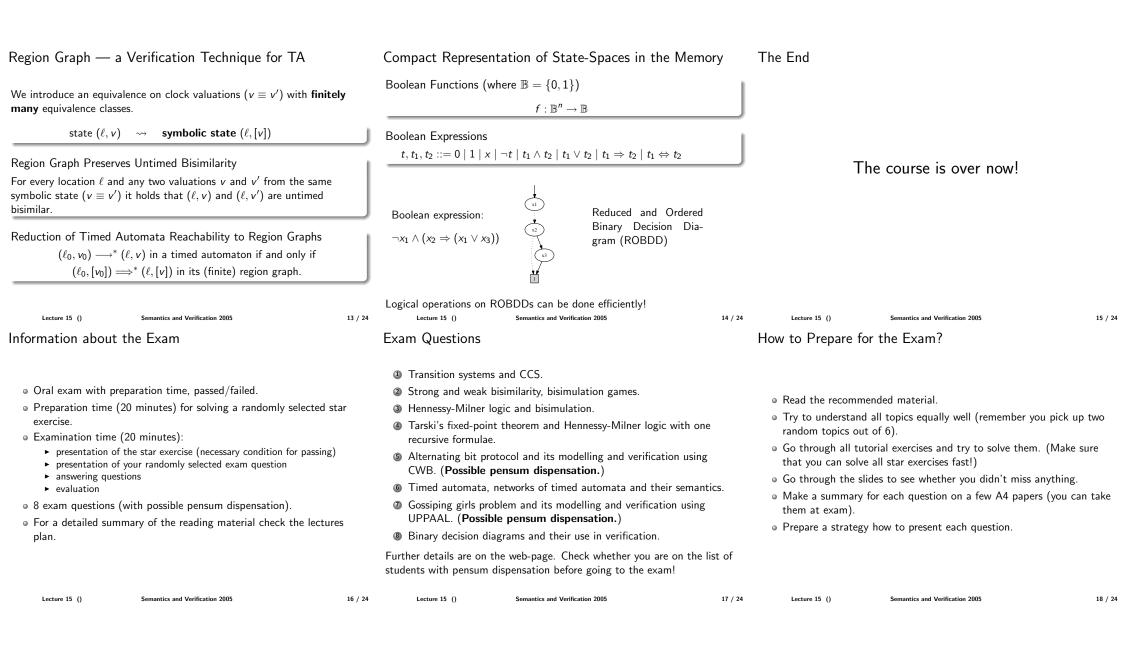
Relationship between Equivalence and Model Checking

- Equivalence checking and model checking are **complementary** approaches.
- They are strongly connected, however.

Theorem (Hennessy-Milner) Let us consider an image-finite LTS. Then


if and only if

for every HM formula F (even with recursion): $(p \models F \iff q \models F)$.


_y≥5

done

mantics and Verification 2005

12 / 24

Further Tips	Examples of Star Exercises — CCS	Examples of Star Exercises — Bisimilarity Determine whether the following two CCS expressions $a.(b.Nil + c.Nil)$ and $a.(b.Nil + \tau.c.Nil)$ are: • strongly bisimilar? • weakly bisimilar?	
 It does not matter if you make a small error in a star exercise (as long as you understand what you are doing). Present a solution to the star exercise quickly (max 5 minutes). Start your presentation by writing a road-map (max 4 items). Plan your presentation to take about 10 minutes: give a good overview do not start with technical details use the blackboard use examples (be creative) say only things that you know are correct be ready to answer supplementary questions tell a story (covering a sufficient part of the exam question) 	 By using SOS rules for CCS prove the existence of the following transition (assume that A ^{def} = a.A): ((A ā.Nil) + A) \ {a} → (A Nil) \ {a} Draw the LTS generated by the following CCS expression: (ā.Nil a.Nil) + b.Nil 		
Lecture 15 () Semantics and Verification 2005 19 / 24 Examples of Star Exercises — HML	Lecture 15 () Semantics and Verification 2005 20 / 24 Examples of Star Exercises — TA	Lecture 15 () Semantics and Verification 2005 21 / 24 Examples of Star Exercises — ROBDD	
$t \xrightarrow{a} t_{3} \xrightarrow{a} t_{4}$ Determine whether $t_{1} \qquad o \ t \models [a](\langle b \rangle tt \lor [a][b]ff)$ $t_{1} \qquad o \ t \models X \text{ where}$ $X \xrightarrow{\max} \langle a \rangle tt \land [Act]X$	Draw a region graph of the following timed automaton: $ \frac{1 < x \le 2}{\ell_0} a_{x:=0}^{a} $	Construct ROBDD for the following boolean expression: $x_1 \wedge (\neg x_2 \lor x_1 \lor x_2) \wedge x_3$ such that $x_1 < x_2 < x_3$.	
Examples of Star Exercises — HML $t \xrightarrow{a} t_3 \xrightarrow{a} t_4$ Determine whether $b \begin{pmatrix} a \\ t_1 \\ c \\ $	Examples of Star Exercises — TA Draw a region graph of the following timed automaton: $\lim_{1 \le x \le 2} a$	Examples of Star Exercises — ROBDD Construct ROBDD for the following boolean expression: $x_1 \wedge (\neg x_2 \lor x_1 \lor x_2) \land x_3$	

Find a distinguishing formulae for the CCS expressions:

a.a.Nil + a.b.Nil and a.(a.Nil + b.Nil).

Lecture 15 ()

Semantics and Verification 2005

22 / 24

Semantic

Lecture 15 ()

Semantics and Verification 2005

23 / 24

Lecture 15 ()

Semantics and Verification 2005

24 / 24