
Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Semantics and Verification 2005

Lecture 13

boolean expressions and normal forms

binary decision diagrams (BDDs)

algorithms on BDDs

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

Boolean Functions

Let B = {0, 1}. 1 ... true, 0 ... false

Boolean Function of Arity n

f : Bn → B

Boolean functions are often described using truth tables.

x1 x2 x3 f (x1, x2, x3)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Problem: arity n gives truth table of size θ(2n).
Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

Boolean Expressions

Let x1, x2, . . . , xn be boolean variables.

Abstract Syntax for Boolean Expressions (x ranges over variables)

t, t1, t2 ::= 0 | 1 | x | ¬t | t1 ∧ t2 | t1 ∨ t2 | t1 ⇒ t2 | t1 ⇔ t2

Truth Assignment

v : {x1, . . . , xn} → B

Function v is often written as [v(x1)/x1, v(x2)/x2, . . . , v(xn)/xn].

Example:

boolean expression: ¬(x1 ∧ x2) ⇒ (¬x1 ∨ x4)

truth assignment: [1/x1, 0/x2, 1/x3, 1/x4]

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

Evaluation of Boolean Expressions

A boolean expression t defines a boolean function f t : Bn → B by
the following (structural) rules:

t ¬t

0 1
1 0

t1 t2 t1 ∧ t2

0 0 0
0 1 0
1 0 0
1 1 1

t1 t2 t1 ∨ t2

0 0 0
0 1 1
1 0 1
1 1 1

t1 t2 t1 ⇒ t2

0 0 1
0 1 1
1 0 0
1 1 1

t1 t2 t1 ⇔ t2

0 0 1
0 1 0
1 0 0
1 1 1

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

Terminology

Equivalent Boolean Expressions

Boolean expressions t1 and t2 are equivalent iff f t1 = f t2 , i.e., they
yield the same truth value for all truth assignments.

Example: ¬(x1 ∧ x2) is equivalent to ¬x1 ∨ ¬x2

Tautology

A boolean expression t is a tautology if it yields true for all truth
assignment.

Satisfiability

A boolean expression t is satisfiable if it yields true for at least one
truth assignment.

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

Conjunctive Normal Form (CNF)

Definitions

Literal is a boolean variable or its negation.

Clause is a disjunction of literals.

A boolean expression if CNF is a conjunction of clauses.

Example: (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3)

Theorem

For any boolean expression there is an equivalent one in CNF.

Cook’s Theorem

Satisfiability of boolean expressions (in CNF) is NP-complete.

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

Combinatorial Circuits

Are these two circuits equivalent?

co-NP-hard problem!

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

Representations of Boolean Functions

Problems over Boolean Expressions are Hard

Many problems related to boolean expressions are hard from the
theoretical point of view (NP-complete or co-NP-complete).

Our Aim

We are looking for

compact representation and

efficient manipulation

with boolean expressions for real-life examples.

We will have a look at Binary Decision Diagrams (BDDs) [Randal
E. Bryant’86].

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

If-Then-Else Operator

Let t, t1 and t2 be boolean expressions.

Syntax

t → t1, t2

Semantics

If-Then-Else operator t → t1, t2 is equivalent to (t ∧ t1)∨ (¬t ∧ t2).

t t1 t2 t → tl , t2

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Boolean Functions
Boolean Expressions
Normal Forms

If-Then-Else Normal Form

Definition

A boolean expression is in If-Then-Else normal form (INF) iff it is
given by the following abstract syntax

t, t1, t2 ::= 0 | 1 | x → t1, t2

where x ranges over boolean variables.

Example: x1 → (x2 → 1, 0), 0 (equivalent to x1 ∧ x2)

Boolean expressions in INF can be drawn as decision trees.

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Shannon’s Expansion Law
Definition
Canonicity of ROBDDs

Shannon’s Expansion Law

Let t be a boolean expression and x a variable. We define boolean
expressions

t[0/x] where every occurrence of x in t is replaced with 0, and

t[1/x] where every occurrence of x in t is replaced with 1.

Shannon’s Expansion Law

Let x be an arbitrary boolean variable. Any boolean expressions t
is equivalent to

x → t[1/x], t[0/x].

Corollary

For any boolean expression there is an equivalent one in INF.

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Shannon’s Expansion Law
Definition
Canonicity of ROBDDs

Binary Decision Diagrams

Let the set of boolean variables be {x1, . . . , xn}.

Binary Decision Diagram (BDD)

A BDD is a rooted, directed, acyclic graph (V ,E) such that

0, 1 ∈ V (representing false and true) and the nodes 0 and 1
have no outgoing edges

every node v ∈ V r {0, 1} has exactly two successors
low(v) ∈ V and high(v) ∈ V

every node v ∈ V r {0, 1} has a label var(v) ∈ {x1, . . . , xn}.

Assume a given total ordering < on boolean variables.

Ordered BDD

A BDD is ordered if on all paths from the root the variables
respect the ordering <.

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Shannon’s Expansion Law
Definition
Canonicity of ROBDDs

Reduced Ordered BDDs (ROBDDs)

Reduced BDD

A BDD is reduced iff for all nodes u, v ∈ V r {0, 1}:
1 low(u) 6= high(u)

2 low(u) = low(v) and high(u) = high(v) and var(u) = var(v)
implies that u = v .

ROBDD with a root node u describes a boolean expression tu

according to the following (inductive) definition:

t0 def
= 0

t1 def
= 1

tu def
= var(u) → thigh(u), t low(u)

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Shannon’s Expansion Law
Definition
Canonicity of ROBDDs

Canonicity of ROBDDs

Canonicity Lemma

For any boolean function f : Bn → B and a given ordering of
variables x1 < x2 < · · · < xn there is exactly one ROBDD with root
u which describes the function f , i,e.

tu[v1/x1, . . . , vn/xn] = f (v1, . . . , vn)

for all (v1, . . . , vn) ∈ Bn.

Consequences:

A given ROBDD with root u is tautology iff u = 1.

A given ROBDD with root u is satisfiable iff u 6= 0.

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Shannon’s Expansion Law
Definition
Canonicity of ROBDDs

Ordering of Variables (Exponential Difference in Size)

(x1 ⇔ x2) ∧ (x3 ⇔ x4) ∧ (x5 ⇔ x6) ∧ (x7 ⇔ x8)

x1

x2 x2

1

x3

x4 x4

x5

x6 x6

x7

x8 x8

x1

x3 x3

1

x5 x5x5 x5

x7 x7x7 x7

x2 x2x2 x2

x4 x4

x6

x8

x6

x8

x4 x4

x6 x6

x2 x2x2 x2

x4 x4x4 x4

x7 x7x7 x7

x2 x2x2 x2x2 x2 x2 x2

x1 < x2 < · · · < x8 x1 < x3 < x5 < x7 < x2 < x4 < x6 < x8

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Representing ROBDDs in Memory – Array Implementation

Assume x1 < x2 < x3.

GFED@ABCx1

�
�

�
�

�

<<
<<

<<
<<

<6

GFED@ABCx2

�
�
�
�
�
�
�

<<
<<

<<
<<

<4
GFED@ABCx2

�
�

�
�

�

<<
<<

<<
<<

<5

GFED@ABCx3

�
�

�
�

<<
<<

<<
<<
2 GFED@ABCx3

kkkkkkkkkkkkkkkkkkkkkk

�
�

�
�

3

0 1

Table T :
u 7→ (var(u), low(u), high(u))

u var low high

0 4 - -
1 4 - -

2 3 0 1
3 3 1 0
4 2 0 2
5 2 2 3
6 1 4 5

Inverse table H :
(var , low , high) 7→ u.

Example: T (4) = (2, 0, 2), H(1, 4, 5) = 6, and H(3, 0, 2) = undef .

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Makenode and Reducedness of BDDs

T : u 7→ (var(u), low(u), high(u)) H : (var , low , high) 7→ u

Makenode (var , low , high): Node =
if low = high then

return low
else

u := H(var , low , high)
if u 6= undef then

return u
else

add a new node (row) to T with attributes (var , low , high)
return H(var , low , high)

end if
end if

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Building an ROBDD from a Boolean Expression

Let t be a boolean expression and x1 < x2 < · · · < xn.

Build(t, 1) builds a corresponding ROBDD and returns its root.

Build(t, i): Node =
if i > n then

if t is true then return 0 else return 1
else

low := Build(t[0/xi], i + 1)
high := Build(t[1/xi], i + 1)
var := i
return Makenode(var , low , high)

end if

Complexity: exponentially many recursive calls!
Is this necessary? Yes, checking if t is a tautology is co-NP-hard!

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Boolean Operations on ROBDDs

Let us assume that ROBDDs for boolean expressions t1 and t2 are
already constructed.

How to construct ROBDD for

¬t1

t1 ∧ t2

t1 ∨ t2

t1 ⇒ t2

t1 ⇔ t2

with an emphasis on efficiency?

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Idea (assume x1 < x2 < · · · < xn)

xi = xi

(xi → t1, t2) ∧ (xi → t ′
1, t

′
2)

≡

xi → (t1 ∧ t ′
1), (t2 ∧ t ′

2)

xi < xj

(xi → t1, t2) ∧ (xj → t ′
1, t

′
2)

≡

xi →
(
t1 ∧ (xj → t ′

1, t
′
2)

)
,
(
t2 ∧ (xj → t ′

1, t
′
2)

)
The same equivalences hold also for ∨, ⇒ and ⇔.

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Apply (for op ∈ {∧,∨,⇒,⇔})
Apply (u1, u2: Node): Node =
if (u1 ∈ {0, 1} and u2 ∈ {0, 1}) then

u := u1 op u2

else if var(u1) = var(u2) then
` := Apply(low(u1),low(u2)); h := Apply(high(u1),high(u2)

)
u := Makenode

(
var(u1), `, h)

else if var(u1) < var(u2) then
` := Apply(low(u1),u2); h := Apply(high(u1),u2

)
u := Makenode

(
var(u1), `, h)

else if var(u1) > var(u2) then
` := Apply(u1,low(u2)); h := Apply(u1,high(u2))
u := Makenode

(
var(u2), `, h)

end if
return u

Problem: Exponentially many recursive calls!

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Apply with Dynamic Programming in O(|u1| · |u2|)

Two dimensional array G (,) initially empty.

Apply (u1, u2: Node): Node =
if G (u1, u2) 6= empty then

return G (u1, u2)
else if (u1 ∈ {0, 1} and u2 ∈ {0, 1}) then

u := u1 op u2

else if var(u1) = var(u2) then
u := ...

else if var(u1) < var(u2) then
u := ...

else if var(u1) > var(u2) then
u := ...

end if
G (u1, u2) := u
return u

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Other Operations on ROBDDs

Let t be a boolean expression with its ROBDD representation.

The following operations can be done efficiently:

Restriction t[0/xi] (t[1/xi]): restricts the variable xi to 0 (1)

SatCount(t): returns the number of satisfying assignments

AnySat(t): returns some satisfying assignment

AllSat(t): returns all satisfying assignments

Existential quantification ∃xi .t: equivalent to t[0/xi] ∨ t[1/xi]

Composition t[t ′/xi]: equivalent to t ′ → t[1/xi], t[0/xi]

Lecture 13 Semantics and Verification 2005

Boolean Logic
Binary Decision Diagrams

Algorithms on ROBDDs

Representation of ROBDDs in Memory
Building ROBDDs
Operations on ROBDDs

Use of ROBDDs

Combinatorial circuits.

Combinatorial problems.

Verification (equivalence checking, temporal logic model
checking).

Program analysis.

...

Lecture 13 Semantics and Verification 2005

	Boolean Logic
	Boolean Functions
	Boolean Expressions
	Normal Forms

	Binary Decision Diagrams
	Shannon's Expansion Law
	Definition
	Canonicity of ROBDDs

	Algorithms on ROBDDs
	Representation of ROBDDs in Memory
	Building ROBDDs
	Operations on ROBDDs

