Binay Decisoon Digagract

Semantics and Verification 2005

Lecture 13

- boolean expressions and normal forms
- binary decision diagrams (BDDs)
- algorithms on BDD

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Boolean Log Binary Decision Diagran

Boolean Expressions

Let $x_{1}, x_{2}, \ldots, x_{n}$ be boolean variables

Abstract Syntax for Boolean Expressions (x ranges over variables)

$$
t, t_{1}, t_{2}::=0|1| x|\neg t| t_{1} \wedge t_{2}\left|t_{1} \vee t_{2}\right| t_{1} \Rightarrow t_{2} \mid t_{1} \Leftrightarrow t_{2}
$$

Truth Assignment

$$
v:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{B}
$$

Function v is often written as $\left[v\left(x_{1}\right) / x_{1}, v\left(x_{2}\right) / x_{2}, \ldots, v\left(x_{n}\right) / x_{n}\right]$.
Example:

- boolean expression: $\neg\left(x_{1} \wedge x_{2}\right) \Rightarrow\left(\neg x_{1} \vee x_{4}\right)$
truth assignment: [$\left.1 / x_{1}, 0 / x_{2}, 1 / x_{3}, 1 / x_{4}\right]$
Problem: arity n gives truth table of size $\theta\left(2^{n}\right)$.

Lecture 13 Boolean LLegic Binary Decisison Diagrams Algorithms on ROBDDs	Semantics and Verification 2005 Boolean Functions Boolean Expressions Normal Forms		Lecture 13 Boolen Logic Binary Decison Diagrams Algorithms on ROBDDs	Semantics and Verification 2005 Boolean Functions Boolean Expressions Normal Forms	Lecture 13 Boolean Logic Binary Decision Diagrams Algorithms on ROBDDs	Semantics and Verification 2005 Boolean Functions Normal Forms
Evaluation of Boolean Expre	ions	Terminology			Conjunctive Normal Form (CNF)	

A boolean expression t defines a boolean function $f^{t}: \mathbb{B}^{n} \rightarrow \mathbb{B}$ by the following (structural) rules:

Equivalent Boolean Expressions

Boolean expressions t_{1} and t_{2} are equivalent iff $f^{t_{1}}=f^{t_{2}}$, i.e., they yield the same truth value for all truth assignments.

Example: $\neg\left(x_{1} \wedge x_{2}\right)$ is equivalent to $\neg x_{1} \vee \neg x_{2}$

Tautology

A boolean expression t is a tautology if it yields true for all truth assignment.

Satisfiability

A boolean expression t is satisfiable if it yields true for at least one truth assignment.

Definitions

- Literal is a boolean variable or its negation.
- Clause is a disjunction of literals.
- A boolean expression if CNF is a conjunction of clauses.

Example: $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$

Theorem

or any boolean expression there is an equivalent one in CNF

Cook's Theorem

Satisfiability of boolean expressions (in CNF) is NP-complete

Reduced BDD

A BDD is reduced iff for all nodes $u, v \in V \backslash\{0,1\}$:
(1) $\operatorname{low}(u) \neq \operatorname{high}(u)$
(2) $\operatorname{low}(u)=\operatorname{low}(v)$ and $\operatorname{high}(u)=\operatorname{high}(v)$ and $\operatorname{var}(u)=\operatorname{var}(v)$ implies that $u=v$.

ROBDD with a root node u describes a boolean expression t^{u} according to the following (inductive) definition:

- $t^{0} \stackrel{\text { def }}{=} 0$
- $t^{1} \stackrel{\text { def }}{=} 1$
- $t^{u} \stackrel{\text { def }}{=} \operatorname{var}(u) \rightarrow t^{\operatorname{high}(u)}, t^{\operatorname{low}(u)}$

Binary Decision Diang Legit

Shannon's Expansion L
Deanimition or
Cenonicty of ROBDDs
anonicity of ROBDDs

Binary Decisisonean Lograt

Shanom st Expansion
Deanition
Canonicity of ROBD

Canonicity of ROBDDs

$\left(x_{1} \Leftrightarrow x_{2}\right) \wedge\left(x_{3} \Leftrightarrow x_{4}\right) \wedge\left(x_{5} \Leftrightarrow x_{6}\right) \wedge\left(x_{7} \Leftrightarrow x_{8}\right)$

$x_{1}<x_{2}<\cdots<x_{8} \quad x_{1}<x_{3}<x_{5}<x_{7}<x_{2}<x_{4}<x_{6}<x_{8}$

Canonicity Lemma

For any boolean function $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$ and a given ordering of variables $x_{1}<x_{2}<\cdots<x_{n}$ there is exactly one ROBDD with root u which describes the function f, i,e.

$$
t^{u}\left[v_{1} / x_{1}, \ldots, v_{n} / x_{n}\right]=f\left(v_{1}, \ldots, v_{n}\right)
$$

for all $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{B}^{n}$

Consequences

- A given ROBDD with root u is tautology iff $u=1$.
- A given ROBDD with root u is satisfiable iff $u \neq 0$

Lecture $13 \quad$ Semantics and Verification 2005

Building an ROBDD from a Boolean Expression

Let t be a boolean expression and $x_{1}<x_{2}<\cdots<x_{n}$.
Build $(t, 1)$ builds a corresponding ROBDD and returns its root

Build (t, i) : Node $=$

if $i>n$ then
if t is true then return 0 else return 1
else
low := $\operatorname{Build}\left(t\left[0 / x_{i}\right], i+1\right)$
high $:=\operatorname{Build}\left(t\left[1 / x_{i}\right], i+1\right)$
var :=i
return Makenode(var, low, high) end if

Complexity: exponentially many recursive calls!
s this necessary? Yes, checking if t is a tautology is co-NP-hard!

Boolean Operations on ROBDDs

Let us assume that ROBDDs for boolean expressions t_{1} and t_{2} are already constructed.

How to construct ROBDD for

- $\neg t_{1}$
- $t_{1} \wedge t_{2}$
- $t_{1} \vee t_{2}$
- $t_{1} \Rightarrow t_{2}$
- $t_{1} \Leftrightarrow t_{2}$
with an emphasis on efficiency?

$\begin{array}{c}\text { Lecture } 13 \\ \text { Boolean Lovic }\end{array}$	$\begin{array}{c}\text { Semantics and Verification } 2005 \\ \text { Representation of ROBDDs in Memory }\end{array}$
Binary	

Apply with Dynamic Programming in $O\left(\left|u_{1}\right| \cdot\left|u_{2}\right|\right)$

Two dimensional array $\left.G(-,)_{-}\right)$initially empty.

Apply (u_{1}, u_{2} : Node): Node $=$
if $G\left(u_{1}, u_{2}\right) \neq$ empty then
return $G\left(u_{1}, u_{2}\right)$
else if ($u_{1} \in\{0,1\}$ and $u_{2} \in\{0,1\}$) then
$u:=u_{1} o p u_{2}$
else if $\operatorname{var}\left(u_{1}\right)=\operatorname{var}\left(u_{2}\right)$ then $u:=$.
else if $\operatorname{var}\left(u_{1}\right)<\operatorname{var}\left(u_{2}\right)$ then $u:=\ldots$
else if $\operatorname{var}\left(u_{1}\right)>\operatorname{var}\left(u_{2}\right)$ then $u:=$..
end if
$G\left(u_{1}, u_{2}\right):=u$
return u

Let t be a boolean expression with its ROBDD representation.
The following operations can be done efficiently

- Restriction $t\left[0 / x_{i}\right]\left(t\left[1 / x_{i}\right]\right):$ restricts the variable x_{i} to $0(1)$
- SatCount(t): returns the number of satisfying assignments
- AnySat(t$)$: returns some satisfying assignment
- AllSat(t): returns all satisfying assignments
- Existential quantification $\exists x_{i} \cdot t$: equivalent to $t\left[0 / x_{i}\right] \vee t\left[1 / x_{i}\right]$
- Composition $t\left[t^{\prime} / x_{i}\right]:$ equivalent to $t^{\prime} \rightarrow t\left[1 / x_{i}\right], t\left[0 / x_{i}\right]$
- Combinatorial circuits.
- Combinatorial problems.
- Verification (equivalence checking, temporal logic model checking).
- Program analysis.
- ...

