
Semantics and Verification 2005

Lecture 13

boolean expressions and normal forms

binary decision diagrams (BDDs)

algorithms on BDDs

Lecture 13 () Semantics and Verification 2005 1 / 24

Boolean Functions

Let B = {0, 1}. 1 ... true, 0 ... false

Boolean Function of Arity n

f : Bn → B

Boolean functions are often described using truth tables.

x1 x2 x3 f (x1, x2, x3)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Problem: arity n gives truth table of size θ(2n).

Lecture 13 () Semantics and Verification 2005 2 / 24

Boolean Expressions

Let x1, x2, . . . , xn be boolean variables.

Abstract Syntax for Boolean Expressions (x ranges over variables)

t, t1, t2 ::= 0 | 1 | x | ¬t | t1 ∧ t2 | t1 ∨ t2 | t1 ⇒ t2 | t1 ⇔ t2

Truth Assignment

v : {x1, . . . , xn} → B

Function v is often written as [v(x1)/x1, v(x2)/x2, . . . , v(xn)/xn].

Example:

boolean expression: ¬(x1 ∧ x2) ⇒ (¬x1 ∨ x4)

truth assignment: [1/x1, 0/x2, 1/x3, 1/x4]

Lecture 13 () Semantics and Verification 2005 3 / 24

Evaluation of Boolean Expressions

A boolean expression t defines a boolean function f t : Bn → B by the
following (structural) rules:

t ¬t

0 1
1 0

t1 t2 t1 ∧ t2

0 0 0
0 1 0
1 0 0
1 1 1

t1 t2 t1 ∨ t2

0 0 0
0 1 1
1 0 1
1 1 1

t1 t2 t1 ⇒ t2

0 0 1
0 1 1
1 0 0
1 1 1

t1 t2 t1 ⇔ t2

0 0 1
0 1 0
1 0 0
1 1 1

Lecture 13 () Semantics and Verification 2005 4 / 24

Terminology

Equivalent Boolean Expressions

Boolean expressions t1 and t2 are equivalent iff f t1 = f t2 , i.e., they yield
the same truth value for all truth assignments.

Example: ¬(x1 ∧ x2) is equivalent to ¬x1 ∨ ¬x2

Tautology

A boolean expression t is a tautology if it yields true for all truth
assignment.

Satisfiability

A boolean expression t is satisfiable if it yields true for at least one truth
assignment.

Lecture 13 () Semantics and Verification 2005 5 / 24

Conjunctive Normal Form (CNF)

Definitions

Literal is a boolean variable or its negation.

Clause is a disjunction of literals.

A boolean expression if CNF is a conjunction of clauses.

Example: (x1 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3)

Theorem

For any boolean expression there is an equivalent one in CNF.

Cook’s Theorem

Satisfiability of boolean expressions (in CNF) is NP-complete.

Lecture 13 () Semantics and Verification 2005 6 / 24

Combinatorial Circuits

Are these two circuits equivalent?

co-NP-hard problem!

Lecture 13 () Semantics and Verification 2005 7 / 24

Representations of Boolean Functions

Problems over Boolean Expressions are Hard

Many problems related to boolean expressions are hard from the
theoretical point of view (NP-complete or co-NP-complete).

Our Aim

We are looking for

compact representation and

efficient manipulation

with boolean expressions for real-life examples.

We will have a look at Binary Decision Diagrams (BDDs) [Randal E.
Bryant’86].

Lecture 13 () Semantics and Verification 2005 8 / 24

If-Then-Else Operator

Let t, t1 and t2 be boolean expressions.

Syntax

t → t1, t2

Semantics

If-Then-Else operator t → t1, t2 is equivalent to (t ∧ t1) ∨ (¬t ∧ t2).

t t1 t2 t → tl , t2

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Lecture 13 () Semantics and Verification 2005 9 / 24

If-Then-Else Normal Form

Definition

A boolean expression is in If-Then-Else normal form (INF) iff it is given
by the following abstract syntax

t, t1, t2 ::= 0 | 1 | x → t1, t2

where x ranges over boolean variables.

Example: x1 → (x2 → 1, 0), 0 (equivalent to x1 ∧ x2)

Boolean expressions in INF can be drawn as decision trees.

Lecture 13 () Semantics and Verification 2005 10 / 24

Shannon’s Expansion Law

Let t be a boolean expression and x a variable. We define boolean
expressions

t[0/x] where every occurrence of x in t is replaced with 0, and

t[1/x] where every occurrence of x in t is replaced with 1.

Shannon’s Expansion Law

Let x be an arbitrary boolean variable. Any boolean expressions t is
equivalent to

x → t[1/x], t[0/x].

Corollary

For any boolean expression there is an equivalent one in INF.

Lecture 13 () Semantics and Verification 2005 11 / 24

Binary Decision Diagrams

Let the set of boolean variables be {x1, . . . , xn}.

Binary Decision Diagram (BDD)

A BDD is a rooted, directed, acyclic graph (V ,E) such that

0, 1 ∈ V (representing false and true) and the nodes 0 and 1 have no
outgoing edges

every node v ∈ V r {0, 1} has exactly two successors low(v) ∈ V and
high(v) ∈ V

every node v ∈ V r {0, 1} has a label var(v) ∈ {x1, . . . , xn}.

Assume a given total ordering < on boolean variables.

Ordered BDD

A BDD is ordered if on all paths from the root the variables respect the
ordering <.

Lecture 13 () Semantics and Verification 2005 12 / 24

Reduced Ordered BDDs (ROBDDs)

Reduced BDD

A BDD is reduced iff for all nodes u, v ∈ V r {0, 1}:
1 low(u) 6= high(u)

2 low(u) = low(v) and high(u) = high(v) and var(u) = var(v) implies
that u = v .

ROBDD with a root node u describes a boolean expression tu according to
the following (inductive) definition:

t0 def
= 0

t1 def
= 1

tu def
= var(u) → thigh(u), t low(u)

Lecture 13 () Semantics and Verification 2005 13 / 24

Canonicity of ROBDDs

Canonicity Lemma

For any boolean function f : Bn → B and a given ordering of variables
x1 < x2 < · · · < xn there is exactly one ROBDD with root u which
describes the function f , i,e.

tu[v1/x1, . . . , vn/xn] = f (v1, . . . , vn)

for all (v1, . . . , vn) ∈ Bn.

Consequences:

A given ROBDD with root u is tautology iff u = 1.

A given ROBDD with root u is satisfiable iff u 6= 0.

Lecture 13 () Semantics and Verification 2005 14 / 24

Ordering of Variables (Exponential Difference in Size)

(x1 ⇔ x2) ∧ (x3 ⇔ x4) ∧ (x5 ⇔ x6) ∧ (x7 ⇔ x8)

x1

x2 x2

1

x3

x4 x4

x5

x6 x6

x7

x8 x8

x1

x3 x3

1

x5 x5x5 x5

x7 x7x7 x7

x2 x2x2 x2

x4 x4

x6

x8

x6

x8

x4 x4

x6 x6

x2 x2x2 x2

x4 x4x4 x4

x7 x7x7 x7

x2 x2x2 x2x2 x2 x2 x2

x1 < x2 < · · · < x8 x1 < x3 < x5 < x7 < x2 < x4 < x6 < x8

Lecture 13 () Semantics and Verification 2005 15 / 24

Representing ROBDDs in Memory – Array Implementation

Assume x1 < x2 < x3.

GFED@ABCx1

�
�

�
�

�

<<
<<

<<
<<

<6

GFED@ABCx2

�
�
�
�
�
�
�

<<
<<

<<
<<

<4
GFED@ABCx2

�
�

�
�

�

<<
<<

<<
<<

<5

GFED@ABCx3

�
�

�
�

<<
<<

<<
<<
2 GFED@ABCx3

kkkkkkkkkkkkkkkkkkkkkk

�
�

�
�

3

0 1

Table T :
u 7→ (var(u), low(u), high(u))

u var low high

0 4 - -
1 4 - -

2 3 0 1
3 3 1 0
4 2 0 2
5 2 2 3
6 1 4 5

Inverse table H :
(var , low , high) 7→ u.

Example: T (4) = (2, 0, 2), H(1, 4, 5) = 6, and H(3, 0, 2) = undef .

Lecture 13 () Semantics and Verification 2005 16 / 24

Makenode and Reducedness of BDDs

T : u 7→ (var(u), low(u), high(u)) H : (var , low , high) 7→ u

Makenode (var , low , high): Node =
if low = high then

return low
else

u := H(var , low , high)
if u 6= undef then

return u
else

add a new node (row) to T with attributes (var , low , high)
return H(var , low , high)

end if
end if

Lecture 13 () Semantics and Verification 2005 17 / 24

Building an ROBDD from a Boolean Expression

Let t be a boolean expression and x1 < x2 < · · · < xn.

Build(t, 1) builds a corresponding ROBDD and returns its root.

Build(t, i): Node =
if i > n then

if t is true then return 0 else return 1
else

low := Build(t[0/xi], i + 1)
high := Build(t[1/xi], i + 1)
var := i
return Makenode(var , low , high)

end if

Complexity: exponentially many recursive calls!
Is this necessary? Yes, checking if t is a tautology is co-NP-hard!

Lecture 13 () Semantics and Verification 2005 18 / 24

Boolean Operations on ROBDDs

Let us assume that ROBDDs for boolean expressions t1 and t2 are already
constructed.

How to construct ROBDD for

¬t1

t1 ∧ t2

t1 ∨ t2

t1 ⇒ t2

t1 ⇔ t2

with an emphasis on efficiency?

Lecture 13 () Semantics and Verification 2005 19 / 24

Idea (assume x1 < x2 < · · · < xn)

xi = xi

(xi → t1, t2) ∧ (xi → t ′
1, t

′
2)

≡

xi → (t1 ∧ t ′
1), (t2 ∧ t ′

2)

xi < xj

(xi → t1, t2) ∧ (xj → t ′
1, t

′
2)

≡

xi →
(
t1 ∧ (xj → t ′

1, t
′
2)

)
,
(
t2 ∧ (xj → t ′

1, t
′
2)

)
The same equivalences hold also for ∨, ⇒ and ⇔.

Lecture 13 () Semantics and Verification 2005 20 / 24

Apply (for op ∈ {∧,∨,⇒,⇔})
Apply (u1, u2: Node): Node =
if (u1 ∈ {0, 1} and u2 ∈ {0, 1}) then

u := u1 op u2

else if var(u1) = var(u2) then
` := Apply(low(u1),low(u2)); h := Apply(high(u1),high(u2)

)
u := Makenode

(
var(u1), `, h)

else if var(u1) < var(u2) then
` := Apply(low(u1),u2); h := Apply(high(u1),u2

)
u := Makenode

(
var(u1), `, h)

else if var(u1) > var(u2) then
` := Apply(u1,low(u2)); h := Apply(u1,high(u2))
u := Makenode

(
var(u2), `, h)

end if
return u

Problem: Exponentially many recursive calls!

Lecture 13 () Semantics and Verification 2005 21 / 24

Apply with Dynamic Programming in O(|u1| · |u2|)

Two dimensional array G (,) initially empty.

Apply (u1, u2: Node): Node =
if G (u1, u2) 6= empty then

return G (u1, u2)
else if (u1 ∈ {0, 1} and u2 ∈ {0, 1}) then

u := u1 op u2

else if var(u1) = var(u2) then
u := ...

else if var(u1) < var(u2) then
u := ...

else if var(u1) > var(u2) then
u := ...

end if
G (u1, u2) := u
return u

Lecture 13 () Semantics and Verification 2005 22 / 24

Other Operations on ROBDDs

Let t be a boolean expression with its ROBDD representation.

The following operations can be done efficiently:

Restriction t[0/xi] (t[1/xi]): restricts the variable xi to 0 (1)

SatCount(t): returns the number of satisfying assignments

AnySat(t): returns some satisfying assignment

AllSat(t): returns all satisfying assignments

Existential quantification ∃xi .t: equivalent to t[0/xi] ∨ t[1/xi]

Composition t[t ′/xi]: equivalent to t ′ → t[1/xi], t[0/xi]

Lecture 13 () Semantics and Verification 2005 23 / 24

Use of ROBDDs

Combinatorial circuits.

Combinatorial problems.

Verification (equivalence checking, temporal logic model checking).

Program analysis.

...

Lecture 13 () Semantics and Verification 2005 24 / 24

