Semantics and Verification 2005

Lecture 13

- boolean expressions and normal forms
- binary decision diagrams (BDDs)
- algorithms on BDDs
Lecture 13 () Semantics and Verification 2005

Evaluation of Boolean Expressions

A boolean expression t defines a boolean function $f^{t}: \mathbb{B}^{n} \rightarrow \mathbb{B}$ by the following (structural) rules

t	$\neg t$					
0	1					
1	0	\quad	t_{1}	t_{2}	$t_{1} \wedge t_{2}$	
:---:	:---:	:---:				
0	0	0				
0	1	0				
1	0	0				
1	1	1	\quad	t_{1}	t_{2}	$t_{1} \vee t_{2}$
:---:	:---:	:---:				
0	0	0				
0	1	1				
1	0	1				
1	1	1				

t_{1}	t_{2}	$t_{1} \Rightarrow t_{2}$				
0	0	1				
0	1	1				
1	0	0				
1	1	1	\quad	t_{1}	t_{2}	$t_{1} \Leftrightarrow t_{2}$
:---:	:---:	:---:				
0	0	1				
0	1	0				
1	0	0				
1	1	1				

Boolean Functions

Let $\mathbb{B}=\{0,1\}$. $\quad 1 \ldots$ true, $0 \ldots$ false
Boolean Function of Arity n

$$
f: \mathbb{B}^{n} \rightarrow \mathbb{B}
$$

Boolean functions are often described using truth tables

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Problem: arity n gives truth table of size $\theta\left(2^{n}\right)$.
$1 / 24$
Lecture 13 ()
Semantics and Verification 2005
Terminology

Equivalent Boolean Expressions
Boolean expressions t_{1} and t_{2} are equivalent iff $f^{t_{1}}=f^{t_{2}}$, i.e., they yield the same truth value for all truth assignments.

Example: $\neg\left(x_{1} \wedge x_{2}\right)$ is equivalent to $\neg x_{1} \vee \neg x_{2}$
Tautology
A boolean expression t is a tautology if it yields true for all truth assignment.

Satisfiability

A boolean expression t is satisfiable if it yields true for at least one truth assignment

Boolean Expressions

Let $x_{1}, x_{2}, \ldots, x_{n}$ be boolean variables.
Abstract Syntax for Boolean Expressions (x ranges over variables)

$$
t, t_{1}, t_{2}::=0|1| x|\neg t| t_{1} \wedge t_{2}\left|t_{1} \vee t_{2}\right| t_{1} \Rightarrow t_{2} \mid t_{1} \Leftrightarrow t_{2}
$$

Truth Assignment

$$
v:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow \mathbb{B}
$$

Function v is often written as $\left[v\left(x_{1}\right) / x_{1}, v\left(x_{2}\right) / x_{2}, \ldots, v\left(x_{n}\right) / x_{n}\right]$

Example:

- boolean expression: $\neg\left(x_{1} \wedge x_{2}\right) \Rightarrow\left(\neg x_{1} \vee x_{4}\right)$
- truth assignment: $\left[1 / x_{1}, 0 / x_{2}, 1 / x_{3}, 1 / x_{4}\right]$

Semantics and Verification 2005
Conjunctive Normal Form (CNF)

Definitions

- Literal is a boolean variable or its negation
- Clause is a disjunction of literals
- A boolean expression if CNF is a conjunction of clauses.

Example: $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right)$

Theorem
For any boolean expression there is an equivalent one in CNF.

Cook's Theorem

Satisfiability of boolean expressions (in CNF) is NP-complete.

Combinatorial Circuits

Are these two circuits equivalent?

co-NP-hard problem!

Lecture 13 ()

Semantics and Verification 2005
7 / 24
If-Then-Else Normal Form

Definition

A boolean expression is in If-Then-Else normal form (INF) iff it is given by the following abstract syntax

$$
t, t_{1}, t_{2}::=0|1| x \rightarrow t_{1}, t_{2}
$$

where x ranges over boolean variables.

Example: $x_{1} \rightarrow\left(x_{2} \rightarrow 1,0\right), 0 \quad$ (equivalent to $x_{1} \wedge x_{2}$)
Boolean expressions in INF can be drawn as decision trees.

Representations of Boolean Functions

Problems over Boolean Expressions are Hard
Many problems related to boolean expressions are hard from the theoretical point of view (NP-complete or co-NP-complete).

Our Aim

We are looking for

- compact representation and
- efficient manipulation
with boolean expressions for real-life examples.

We will have a look at Binary Decision Diagrams (BDDs) [Randal E. Bryant'86].

$$
\text { Lecture } 13 \text { () }
$$

Semantics and Verification 2005

$8 / 24$
Shannon's Expansion Law
Let t be a boolean expression and x a variable. We define boolean expressions

- $t[0 / x]$ where every occurrence of x in t is replaced with 0 , and
- $t[1 / x]$ where every occurrence of x in t is replaced with 1 .

Shannon's Expansion Law

Let x be an arbitrary boolean variable. Any boolean expressions t is equivalent to

$$
x \rightarrow t[1 / x], t[0 / x] .
$$

Corollary

For any boolean expression there is an equivalent one in INF.

If-Then-Else Operator
Let t, t_{1} and t_{2} be boolean expressions.
Syntax
$t \rightarrow t_{1}, t_{2}$
Semantics
If-Then-Else operator $t \rightarrow t_{1}, t_{2}$ is equivalent to $\left(t \wedge t_{1}\right) \vee\left(\neg t \wedge t_{2}\right)$.

t	t_{1}	t_{2}	$t \rightarrow t_{1}, t_{2}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Lecture 13 ()

Semantics and Verification 2005

Binary Decision Diagrams

Let the set of boolean variables be $\left\{x_{1}, \ldots, x_{n}\right\}$.
Binary Decision Diagram (BDD)
A BDD is a rooted, directed, acyclic graph (V, E) such that

- $0,1 \in V$ (representing false and true) and the nodes 0 and 1 have no outgoing edges
- every node $v \in V \backslash\{0,1\}$ has exactly two successors $\operatorname{low}(v) \in V$ and $\operatorname{high}(v) \in V$
- every node $v \in V \backslash\{0,1\}$ has a label $\operatorname{var}(v) \in\left\{x_{1}, \ldots, x_{n}\right\}$.

Assume a given total ordering $<$ on boolean variables.
Ordered BDD
A BDD is ordered if on all paths from the root the variables respect the ordering $<$.

Reduced Ordered BDDs (ROBDDs)

Reduced BDD

A BDD is reduced iff for all nodes $u, v \in V \backslash\{0,1\}$
(1) $\operatorname{low}(u) \neq \operatorname{high}(u)$
(2) $\operatorname{low}(u)=\operatorname{low}(v)$ and $\operatorname{high}(u)=\operatorname{high}(v)$ and $\operatorname{var}(u)=\operatorname{var}(v)$ implies that $u=v$.

ROBDD with a root node u describes a boolean expression t^{u} according to the following (inductive) definition:

$$
\begin{aligned}
& \text { - } t^{0} \stackrel{\text { def }}{=} 0 \\
& \text { - } t^{1} \stackrel{\text { def }}{=} 1 \\
& -t^{u} \stackrel{\text { def }}{=} \operatorname{var}(u) \rightarrow t^{\operatorname{high}(u)}, t^{\operatorname{low}(u)}
\end{aligned}
$$

Lecture 13 ()

Semantics and Verification 2005
Representing ROBDDs in Memory - Array Implementation

Table T :
$u \mapsto(\operatorname{var}(u), \operatorname{low}(u), \operatorname{high}(u))$

u	var	low	high
0	4	-	-
1	4	-	-
2	3	0	1
3	3	1	0
4	2	0	2
5	2	2	3
6	1	4	5

Inverse table H :
(var, low, high) $\mapsto u$.
Example: $T(4)=(2,0,2), H(1,4,5)=6$, and $H(3,0,2)=$ undef.

Canonicity of ROBDDs

Canonicity Lemma

For any boolean function $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$ and a given ordering of variables $x_{1}<x_{2}<\cdots<x_{n}$ there is exactly one ROBDD with root u which describes the function f, i,e.

$$
t^{u}\left[v_{1} / x_{1}, \ldots, v_{n} / x_{n}\right]=f\left(v_{1}, \ldots, v_{n}\right)
$$

for all $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{B}^{n}$.

Consequences:

- A given ROBDD with root u is tautology iff $u=1$.
- A given ROBDD with root u is satisfiable iff $u \neq 0$.

Makenode and Reducedness of BDDs

$T: u \mapsto(\operatorname{var}(u), \operatorname{low}(u), \operatorname{high}(u))$
$H:($ var, low, high $) \mapsto u$

Makenode (var, low, high): Node $=$
if low = high then
return low
else
$u:=H($ var, low, high $)$
if $u \neq$ undef then

return u

else
add a new node (row) to T with attributes (var, low, high) return H (var, low, high)
end if
end if

Ordering of Variables (Exponential Difference in Size)

$$
\left(x_{1} \Leftrightarrow x_{2}\right) \wedge\left(x_{3} \Leftrightarrow x_{4}\right) \wedge\left(x_{5} \Leftrightarrow x_{6}\right) \wedge\left(x_{7} \Leftrightarrow x_{8}\right)
$$

(3)
$x_{1}<x_{2}<\cdots<x_{8} \quad x_{1}<x_{3}<x_{5}<x_{7}<x_{2}<x_{4}<x_{6}<x_{8}$

14 / 24
Lecture 13 ()
Semantics and Verification 2005
Building an ROBDD from a Boolean Expression
Let t be a boolean expression and $x_{1}<x_{2}<\cdots<x_{n}$.
Build $(t, 1)$ builds a corresponding ROBDD and returns its root.

$\operatorname{Build}(t, i):$ Node $=$

if $i>n$ then
if t is true then return 0 else return 1
else
low $:=\operatorname{Build}\left(t\left[0 / x_{i}\right], i+1\right)$
high $:=\operatorname{Build}\left(t\left[1 / x_{i}\right], i+1\right)$
var $:=i$
return Makenode(var, low, high)
end if
Complexity: exponentially many recursive calls
Is this necessary? Yes, checking if t is a tautology is co-NP-hard!

Boolean Operations on ROBDDs

Let us assume that ROBDDs for boolean expressions t_{1} and t_{2} are already constructed.

How to construct ROBDD for

- $\neg t_{1}$
- $t_{1} \wedge t_{2}$
- $t_{1} \vee t_{2}$
- $t_{1} \Rightarrow t_{2}$
- $t_{1} \Leftrightarrow t_{2}$
with an emphasis on efficiency?

Lecture 130
Apply with Dynamic Programming in $O\left(\left|u_{1}\right| \cdot\left|u_{2}\right|\right)$
Two dimensional array $G(-,-)$ initially empty.
Apply (u_{1}, u_{2} : Node): Node $=$
if $G\left(u_{1}, u_{2}\right) \neq$ empty then
return $G\left(u_{1}, u_{2}\right)$
else if $\left(u_{1} \in\{0,1\}\right.$ and $\left.u_{2} \in\{0,1\}\right)$ then
$u:=u_{1}$ op u_{2}
else if $\operatorname{var}\left(u_{1}\right)=\operatorname{var}\left(u_{2}\right)$ then
$u:=$..
else if $\operatorname{var}\left(u_{1}\right)<\operatorname{var}\left(u_{2}\right)$ then
$u:=\ldots$
else if $\operatorname{var}\left(u_{1}\right)>\operatorname{var}\left(u_{2}\right)$ then
$u:=$.
end if
$G\left(u_{1}, u_{2}\right):=u$
return u

Idea (assume $x_{1}<x_{2}<\cdots<x_{n}$)

$$
\left.\begin{array}{rl}
\circ x_{i}=x_{i} & \left(x_{i} \rightarrow t_{1}, t_{2}\right) \\
& \wedge\left(x_{i} \rightarrow t_{1}^{\prime}, t_{2}^{\prime}\right) \\
& \equiv \\
x_{i} & \rightarrow\left(t_{1} \wedge\right.
\end{array} t_{1}^{\prime}\right),\left(t_{2} \wedge t_{2}^{\prime}\right) .
$$

The same equivalences hold also for \vee, \Rightarrow and \Leftrightarrow.

Let t be a boolean expression with its ROBDD representation.
The following operations can be done efficiently:

- Restriction $t\left[0 / x_{i}\right]\left(t\left[1 / x_{i}\right]\right):$ restricts the variable x_{i} to $0(1)$
- SatCount(t): returns the number of satisfying assignments
- AnySat(t): returns some satisfying assignment
- AllSat(t): returns all satisfying assignments
- Existential quantification $\exists x_{i} . t$: equivalent to $t\left[0 / x_{i}\right] \vee t\left[1 / x_{i}\right]$
- Composition $t\left[t^{\prime} / x_{i}\right]$: equivalent to $t^{\prime} \rightarrow t\left[1 / x_{i}\right], t\left[0 / x_{i}\right]$

Apply (for op $\in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$)
Apply (u_{1}, u_{2} : Node): Node $=$
if $\left(u_{1} \in\{0,1\}\right.$ and $\left.u_{2} \in\{0,1\}\right)$ then $u:=u_{1}$ op u_{2}
else if $\operatorname{var}\left(u_{1}\right)=\operatorname{var}\left(u_{2}\right)$ then
$\ell:=\operatorname{Apply}\left(\operatorname{low}\left(u_{1}\right), \operatorname{low}\left(u_{2}\right)\right) ; h:=\operatorname{Apply}\left(\operatorname{high}\left(u_{1}\right), \operatorname{high}\left(u_{2}\right)\right)$
$u:=$ Makenode $\left(\operatorname{var}\left(u_{1}\right), \ell, h\right)$
else if $\operatorname{var}\left(u_{1}\right)<\operatorname{var}\left(u_{2}\right)$ then
$\ell:=\operatorname{Apply}\left(\operatorname{low}\left(u_{1}\right), u_{2}\right) ; h:=\operatorname{Apply}\left(h i g h\left(u_{1}\right), u_{2}\right)$
$u:=$ Makenode $\left(\operatorname{var}\left(u_{1}\right), \ell, h\right)$
else if $\operatorname{var}\left(u_{1}\right)>\operatorname{var}\left(u_{2}\right)$ then
$\ell:=\operatorname{Apply}\left(u_{1}, \operatorname{low}\left(u_{2}\right)\right) ; h:=\operatorname{Apply}\left(u_{1}, \operatorname{high}\left(u_{2}\right)\right)$
$u:=$ Makenode $\left(\operatorname{var}\left(u_{2}\right), \ell, h\right)$

end if

return u
Problem: Exponentially many recursive calls!

- Combinatorial circuits.
- Combinatorial problems.
- Verification (equivalence checking, temporal logic model checking)
- Program analysis.
- ...

