Semantics and Verification 2005

o boolean expressions and normal forms

o binary decision diagrams (BDDs)

o algorithms on BDDs

Lecture 13 ()

Evaluation of Boolean Expressions

A boolean expression t defines a boolean function f*: B” — B by the
following (structural) rules:

Lecture 13

Semantics and Verification 2005

(a]e]ahia]

‘tl ‘ tr H t1 Vbt

t | ot
0] 1
10

0

0
1
1

0

1
0
1

0

0
0
1

0

0
1
1

0

1
0
1

0

1
1
1

ale]a=4]

(a6]a=n]

0

0
1
1

0

1
0
1

1

1
0
1

0

0
1
1

0

1
0
1

1

0
0
1

Lecture 13 ()

Semantics and Verification 2005

Boolean Functions
Let B = {0,1}. 1 ... true, 0 ... false
Boolean Function of Arity n J

f:B"—B

Boolean functions are often described using truth tables.

‘ X1 ‘ X2 ‘ X3 H f(x1, %2, x3) ‘

0|0 |0 1
0|0 |1 0
0o |1 |0 0
0|1 |1 1
11010 1
110 |1 1
1]1]0 0
1|1 |1 1

Problem: arity n gives truth table of size 6(2").

Lecture 13 () Semantics and Verification 2005 2/24

Terminology

Equivalent Boolean Expressions

Boolean expressions t; and t; are equivalent iff f't = f2 i.e., they yield
the same truth value for all truth assignments.

Example: —=(x1 A x2) is equivalent to —x; V —x2

Tautology
A boolean expression t is a tautology if it yields true for all truth
assignment.

Satisfiability
A boolean expression t is satisfiable if it yields true for at least one truth

assignment.

Lecture 13 () Semantics and Verification 2005 5/24

Boolean Expressions

Let x1, X, ..., X, be boolean variables.

Abstract Syntax for Boolean Expressions (x ranges over variables)
t,t, =01 |x|-t|ttAb|taVh | h=>h|th S b

Truth Assignment

vi{x,....,xs} = B

Function v is often written as [v(x1)/x1, v(x2)/x2, . . .

V(%) /Xa].

Example:
o boolean expression: —(x1 A x2) = (—x1 V xa)

o truth assignment: [1/x1,0/x2,1/x3,1/x4]

Lecture 13 () Semantics and Verification 2005

Conjunctive Normal Form (CNF)

Definitions
o Literal is a boolean variable or its negation.

o Clause is a disjunction of literals.

o A boolean expression if CNF is a conjunction of clauses.

3/24

Example: (x1 V —x3) A (mx1 VX2 V x3) A (x2 V —ix3)

Theorem

For any boolean expression there is an equivalent one in CNF.

Cook's Theorem

Satisfiability of boolean expressions (in CNF) is NP-complete.

Lecture 13 () Semantics and Verification 2005

6/24

Combinatorial Circuits

el —

Are these two circuits equivalent?

co-NP-hard problem!

Lecture 13 () Semantics and Verification 2005 7/24

[f-Then-Else Normal Form

Definition
A boolean expression is in If-Then-Else normal form (INF) iff it is given
by the following abstract syntax

t,ti,tp =01 x— t1, b

where x ranges over boolean variables.

Example: x; — (x2 — 1,0),0 (equivalent to x; A x2)

Boolean expressions in INF can be drawn as decision trees.
Semantics and Verification 2005

Lecture 13 () 10/24

Representations of Boolean Functions

Problems over Boolean Expressions are Hard

Many problems related to boolean expressions are hard from the
theoretical point of view (NP-complete or co-NP-complete).

Our Aim
We are looking for
o compact representation and

o efficient manipulation

with boolean expressions for real-life examples.

We will have a look at Binary Decision Diagrams (BDDs) [Randal E.
Bryant’86].

Lecture 13 () Semantics and Verification 2005 8/2

Shannon’s Expansion Law

Let t be a boolean expression and x a variable. We define boolean
expressions

o t[0/x] where every occurrence of x in t is replaced with 0, and
o t[1/x] where every occurrence of x in t is replaced with 1.

Shannon’s Expansion Law

Let x be an arbitrary boolean variable. Any boolean expressions t is
equivalent to
x — t[1/x], t[0/x].

Corollary

For any boolean expression there is an equivalent one in INF.

Lecture 13 () Semantics and Verification 2005 11/ 24

If-Then-Else Operator

Let t, t; and t» be boolean expressions.

Syntax
t—t1, b J
Semantics
If-Then-Else operator t — t1, t is equivalent to (t A t1) V (-t A to). J
lalalions]

00 |0 0

00 |1 1

o110 0

01 |1 1

1/0 10 0

110 |1 0

1110 1

1)1 1 1

Lecture 13 () Semantics and Verification 2005 9/24

Binary Decision Diagrams

Let the set of boolean variables be {x1,...,xp}.

Binary Decision Diagram (BDD)
A BDD is a rooted, directed, acyclic graph (V/, E) such that

0 0,1 € V (representing false and true) and the nodes 0 and 1 have no
outgoing edges

o every node v € V ~\ {0,1} has exactly two successors low(v) € V and
high(v) e V

o every node v € V \ {0,1} has a label var(v) € {x,...

aXn}-

Assume a given total ordering < on boolean variables.

Ordered BDD

A BDD is ordered if on all paths from the root the variables respect the
ordering <.

Lecture 13 () Semantics and Verification 2005 12 /24

Reduced Ordered BDDs (ROBDDs)

Reduced BDD
A BDD is reduced iff for all nodes u,v € V ~ {0,1}:
@ low(u) # high(u)
@ low(u) = low(v) and high(u) = high(v) and var(u) = var(v) implies
that u=v.

ROBDD with a root node u describes a boolean expression t“ according to
the following (inductive) definition:

) todéfO
o tldéfl

o tH d;f var(u) N thigh(u), tlow(u)

Lecture 13 () Semantics and Verification 2005 13 /24

Representing ROBDDs in Memory — Array Implementation

Table T :

Assume x1 < X < X3. u v (var(u), low(u), high(u))

‘u‘var‘low‘high‘
0| 4 - -
1| 4 - -
21 3 0 1
313 1 0
41 2 0 2
5| 2 2 3
6| 1 4 5

Inverse table H :
(var, low, high) — u.

Example: T(4) =(2,0,2), H(1,4,5) =6, and H(3,0,2) = undef.

Lecture 13 () Semantics and Verification 2005 16 / 24

Canonicity of ROBDDs

Canonicity Lemma

For any boolean function f : B” — B and a given ordering of variables
x; < xp < -+ < X there is exactly one ROBDD with root u which

describes the function f, i,e.

t'vi/x1, s Vo /xa] = F(v1, ..., Vi)

for all (vi,...,v,) € B".

Consequences:
o A given ROBDD with root v is tautology iff u = 1.
o A given ROBDD with root v is satisfiable iff u # 0.

Lecture 13 () Semantics and Verification 2005

Makenode and Reducedness of BDDs

T :uw (var(u), low(u), high(u)) H : (var, low, high) — u
Makenode (var, low, high): Node =
if low = high then
return fow
else
u := H(var, low, high)
if u # undef then
return u
else
add a new node (row) to T with attributes (var, low, high)
return H(var, low, high)
end if
end if

Lecture 13 () Semantics and Verification 2005

14 / 24

17 /24

Ordering of Variables (Exponential Difference in Size)

(X1 =4 X2) A (X3 =2 X4) A (X5 =2 X5) A (X7 =4 Xg)

OO@‘

X1 < Xp <---<Xg X1 <Xx3< X5 < X7 <Xp<Xxq4<Xg<Xg

Lecture 13 () Semantics and Verification 2005 15/ 24

Building an ROBDD from a Boolean Expression

Let t be a boolean expression and x; < xp < - -+ < Xp.
Build(t, 1) builds a corresponding ROBDD and returns its root.

Build(t, /): Node =
if / > n then

if t is true then return 0 else return 1
else

low := Build(t[0/x;],7 + 1)

high := Build(t[1/x;],i + 1)

var == i
return Makenode(var, low, high)
end if

Complexity: exponentially many recursive calls!
Is this necessary? Yes, checking if t is a tautology is co-NP-hard!
Lecture 13 ()

Semantics and Verification 2005 18 /24

Boolean Operations on ROBDDs

Let us assume that ROBDDs for boolean expressions t; and t are already
constructed.
How to construct ROBDD for
o 1ty
o i Aty
o t1 Vi
ot = b
ot &ty
with an emphasis on efficiency?

Lecture 13 () Semantics and Verification 2005 19 /24
Apply with Dynamic Programming in O(|u1] - |u2])
Two dimensional array G(_, _) initially empty.
Apply (u1, up: Node): Node =
if G(u1,u2) # empty then
return G(u, uo)
else if (u1 € {0,1} and w2 € {0,1}) then
u = uipop up
else if var(u;) = var(up) then
U= ..
else if var(u;) < var(up) then
U= ..
else if var(ui) > var(u2) then
U= ..
end if
G(ur,) == u
return u
Lecture 13 () Semantics and Verification 2005 22 /24

Idea (assume x; < xp < -+ < Xp)

O Xj = Xj
(i — t1,) A (X — t1, th)

xi— (tL A t]), (ta A t))

0 Xj < Xj
(i = t1,) A (x5 — t1, 1)

xi = (1A (g = 11, 8)), (A (g — 1, 1))

The same equivalences hold also for V, = and <.

Lecture 13 () Semantics and Verification 2005 20 /24
Other Operations on ROBDDs
Let t be a boolean expression with its ROBDD representation.
The following operations can be done efficiently:
o Restriction t[0/x;] (t[1/xi]): restricts the variable x; to 0 (1)
o SatCount(t): returns the number of satisfying assignments
o AnySat(t): returns some satisfying assignment
o AlISat(t): returns all satisfying assignments
o Existential quantification 3x;.t: equivalent to t[0/x;] V t[1/xi]
o Composition t[t'/x;]: equivalent to t' — t[1/x;], t[0/x;]
Lecture 13 () Semantics and Verification 2005 23 /24

Apply (for op € {A,V, =, <1})

Apply (u1, ux: Node): Node =

if (u1 € {0,1} and up € {0,1}) then
U= ujop up

else if var(u;) = var(u2) then
€ := Apply(low(uy),low(u2)); h = Apply(high(u1),high(uz))
u := Makenode(var(u1), £, h)

else if var(ui) < var(u2) then
€ = Apply(low(u1),u2); h := Apply(high(u1),u,)
u := Makenode(var(u1), £, h)

else if var(ui) > var(u2) then
£ := Apply(u1,low(wr)); h = Apply(u1,high(uz))
u := Makenode(var(uy), £, h)

end if

return u

Problem: Exponentially many recursive calls!)

Lecture 13 () Semantics and Verification 2005

Use of ROBDDs

21/ 24

o Combinatorial circuits.

o Combinatorial problems.

o Verification (equivalence checking, temporal logic model checking).
o Program analysis.

Qo ...

Lecture 13 () Semantics and Verification 2005 24 /24

