
Introduction to Uppaal

Gerd Behrmann

Aalborg University

April 13, 2005

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 1 / 37

Outline

1 A short look at Uppaal

Demo
Architecture

2 Syntax of Uppaal

Declarations
Expressions
Locations and synchronisation
Properties

3 Train Gate Example

4 Verification Options
How Uppaal works
State space reduction techniques
Reusing the state space
State space representation techniques.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 2 / 37

Demo

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 3 / 37

Uppaal’s Architecture

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 4 / 37

Declarations

Clocks
clock x1, x2,...,xn;

Bounded Integer Variables

int[0,5] i1, i2,... in; Default range is -32767;32768.

Constants
const int delay = 5, a = 0;

Arrays

int x[4] = { 1, 4, 7, 2 };

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 5 / 37

Declarations
New in version 3.5

Booleans
bool b;

Records

struct { int a; int b; } a = { 1, 2 };

Type declarations

typedef struct { int a; int b; } A;

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 6 / 37

Expressions

Expression

::= ID

| NAT | ’true’ | ’false’

| Expression ’[’ Expression ’]’

| ’(’ Expression ’)’

| Expression ’++’ | ’++’ Expression

| Expression ’--’ | ’--’ Expression

| Expression AssignOp Expression

| UnaryOp Expression

| Expression BinOp Expression

| Expression ’?’ Expression ’:’ Expression

| ID ’.’ ID

| ID ’(’ [Expression (’,’ Expression)*] ’)’

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 7 / 37

Operators

Unary

’-’ | ’+’ | ’!’ | ’not’

Binary

’<’ | ’<=’ | ’==’ | ’!=’ | ’>=’ | ’>’

’+’ | ’-’ | ’*’ | ’/’ | ’%’ | ’&’

’|’ | ’^’ | ’<<’ | ’>>’ | ’&&’ | ’||’

’and’ | ’or’ | ’imply’

Assignment

’=’ | ’+=’ | ’-=’ | ’*=’ | ’/=’ | ’%=’

’|=’ | ’&=’ | ’^=’ | ’<<=’ | ’>>=’

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 8 / 37

Guards

Any expression satisfying the following conditions is a guard:

It is side effect free, type correct and evaluates to a boolean.

Only clock variables, integer variables and constants are referenced
(or arrays of these types).

Clocks and differences between clocks are only compared to integer
expressions (no inequality).

Guards over clocks are essentially conjunctions (i.e. disjunctions are
only allowed over integer conditions).

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 9 / 37

Assignments

Any expression satisfying the following conditions is an assignment:

It has a side effect and is type correct.

Only clock variables, integer variables and constants are referenced
(or arrays of these types).

Only integers are assigned to clocks.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 10 / 37

Invariants

Any expression satisfying the following conditions is an invariant:

It is side effect free and is type correct.

Only clock variables, integer variables and constants are referenced
(or arrays of these types).

It forms a conjunction of conditions on the form x < e or x <= e,
where x is a clock reference and e evaluates to an integer.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 11 / 37

Functions
New in version 3.5

User defined functions can be declared globally or locally.

An extended subset of C.

Supports while, for, do while, if, return.

Tests on clock variables are not allowed.

Reset of clocks are allowed.

Always evaluated atomically:
I No interleaving with other processes.
I If your function does not return, neither does Uppaal.

Still experimental.

int sum(int a, int b)

{

return a + b;

}

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 12 / 37

Binary Synchronisation

Channels can be declared like:

chan a, b, c[3];

If a is channel, then:

a! is an emission

a? is a reception

Two edges in different processes can synchronise if one is emitting and the
other is receiving on the same channel.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 13 / 37

Broadcast Synchronization

Broadcast channels can be de declared like:

broadcast chan a, b, c[2];

If a is a broadcast channel, then:

a! is an emission of a broadcast

a? is a reception of a broadcast

A set of edges in different processes can synchronise if one is emitting and
the others are receiving on the same broadcast channel. A process can
always emit on a broadcast channel.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 14 / 37

Urgency

Definition (Urgent State)

A state is urgent if either

a process is in an urgent location, or

an action transition on an urgent channel can be taken.

Definition (Semantics)

An urgent state has no delay transitions.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 15 / 37

Urgency

Urgent channels

urgent chan a,b,c[3];

Urgent locations

Right click location and mark it urgent.

Equivalent to having an invariant x ≤ 0 and reseting x before
entering the location.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 16 / 37

Committed Locations

Definition (Committed Process)

A process is committed if it is in a committed location.

Definition (Committed State)

A state is committed if any of the processes is committed.

Definition (Semantics)

A committed state cannot delay.

A committed state only has action transitions involving at least one
committed processes.

Main purpose of committed locations is to create atomic sequences of
transitions. Committed locations reduce the state space considerably by
eliminating interleaving.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 17 / 37

Templates

Templates can be instantiated to form processes.

Templates are parameterised.

Call-by-value is the default (except for arrays).

Call-by-reference is used if identifier is prefixed with &.

Example of parameter declaration of a template A:

process A(int &v, const int min, const int max)

Example of instantiation:

P = A(i, 1, 5);

Q = A(j, 0, 4);

Example of system declaration:

system P, Q;

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 18 / 37

Syntax of Properties

A[] Expression

E<> Expression

A<> Expression

E[] Expression

Expression --> Expression

A[] not deadlock

The expressions must be type safe, side effect free, and evaluate to a
boolean. Only references to integers variables, constants, clocks, and
locations are allowed (and arrays of these).

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 19 / 37

Operators A[] and A<>
For all paths

A[]ϕ

ϕ

ϕ

ϕ

A<>ϕ

ϕ

ϕ ϕ

ϕ

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 20 / 37

Operators E[] and E<>
There is a path

E[]ϕ

ϕ

E<>ϕ

ϕ

ϕ

Remark

¬(A[]ϕ)=E<>(¬ϕ) and ¬(E[]ϕ)=A<>(¬ϕ)

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 21 / 37

Operator -->
Leads to (response)

ϕ --> ψ
def
⇐⇒ A[](ϕ⇒A<>ψ)

ϕ

ϕ

ψ

ψ

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 22 / 37

State Property: deadlock

A deadlock is a state in which no action transition will ever be enabled
again.

In other words (l , u) |= deadlock iff:

∀d ≥ 0, a ∈ Act : (l , u + d) 6
a

→

Checking for absence of deadlocks:

A[] not deadlock

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 23 / 37

Bounded Liveness

Whenever ϕ becomes true, then ψ becomes true within t.

ϕ-->≤tψ

≤ t

≤ t

ϕ

ϕ

ψ

ψ

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 24 / 37

Bounded Liveness
Reduction to unbounded liveness

We can reduce p -->≤t q to an unbounded liveness property:

Add a clock x and reset it whenever p becomes true.

Check p --> (q and x <= t).

p

q

x = 0

Care must be taken that x is not reset several times before q becomes true.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 25 / 37

Bounded Liveness
Reduction to reachability by decoration

We can reduce p -->≤t q to a reachability property:

Add a clock x and reset it whenever p becomes true.

Add a boolean b, set it to true when p starts to hold and to false
when p ceases to hold.

Check A[] (b implies x <= t).

p

q
b = false

b = false

b = true, x = 0

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 26 / 37

Bounded Liveness
Reduction to reachability with test automaton

We can reduce p --><t q to a reachability property:

Add two broadcast channels a and b.

Send on a when p becomes true, on b when q becomes true.

Add a process that goes to an error state when the time between a
signal on a and b reaches t.

Check A[] not Test.bad.

Works even when p becomes true several times before q.

p

q
b!

b!

a!

x <= t

bad

a?
x = 0

b?

x == t

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 27 / 37

The Train Gate Example

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 28 / 37

Verification Options in Uppaal

Breadth-first

Depth-first

State space reduction

Reuse state space

State space representation
I DBM
I Compact
I Under approximation
I Over approximation

Diagnostic trace

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 29 / 37

Reachability analysis in Uppaal

waiting = {(l0,Z0 ∧ I (l0))}
passed = ∅

while waiting 6= ∅ do

(l ,Z) = select state from waiting

waiting = waiting \ {(l ,Z)}
if testProperty(l ,Z) then return true

if ∀(l ,Y) ∈ passed : Z 6⊆ Y then

passed = passed ∪ {(l ,Z)}
∀(l ′,Z ′) : (l ,Z) ⇒ (l ′,Z ′) do

if ∀(l ′,Y ′) ∈ waiting : Z ′ 6⊆ Y ′
then

waiting = waiting ∪ {(l ′,Z ′)}
endif

done

endif

done

return false

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 30 / 37

To store or not to store
State space reduction

For acyclic systems, a passed list is not needed to guarantee
termination.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 31 / 37

To store or not to store
State space reduction

For acyclic systems, a passed list is not needed to guarantee
termination.

However, it is useful for efficiency.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 31 / 37

Loop entry points
State space reduction

Only symbolic states involving loop-entry
points need to be stored in the passed list to
guarantee termination.

Loop entry point

Loop entry point

Options for state space reduction

None Store all states.

Conservative Store all non-committed states.

Aggressive Only store loop entry points.

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 32 / 37

Effect of reduction techniques

117 symbolic states

81 loop entry points.

9 states identified by more extensive analysis.

Less than 10% time overhead.
Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 33 / 37

Reuse state space

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 34 / 37

Over-approximation
Convex Hull

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 35 / 37

Under-approximation
Bit state hashing

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 36 / 37

Under-approximation
Bit state hashing

Gerd Behrmann (Aalborg University) Introduction to Uppaal April 13, 2005 37 / 37

	A short look at Uppaal
	Demo
	Architecture

	Syntax of Uppaal
	Declarations
	Expressions
	Locations and synchronisation
	Properties

	Train Gate Example
	Verification Options
	How Uppaal works
	State space reduction techniques
	Reusing the state space
	State space representation techniques.

