Automatic Verification of Timed Automata

Fact
Even very simple timed automata generate timed transition systems with infinitely (even uncountably) many reachable states.

Lecture 10

- region graph and the reachability problem
- networks of timed automat
- model checking of timed automata

Question

Is any automatic verification approach (like bisimilarity checking, model checking or reachability analysis) possible at all?

Answer

Yes, using region graph techniques.
Key idea: infinitely many clock valuations can be categorized int finitely many equivalence classes.

Lecture 10 Regions Regiog Networks of Tined Antiomatata	Semantics and Verification 2005 Motivation Intuition Clock Equivalence
Clock (Region) Equivalence	

Preliminaries

Let $d \in \mathbb{R} \geq 0$. Then

- let $\lfloor d\rfloor$ be the integer part of d, and
- let $f r a c(d)$ be the fractional part of d.

Any $d \in \mathbb{R}^{\geq 0}$ can be now written as $d=\lfloor d\rfloor+f r a c(d)$
Example: $\lfloor 2.345 \mid=2$ and $\operatorname{frac}(2.345)=0.345$.

Let A be a timed automaton and $x \in C$ be a clock. We define

$$
c_{x} \in \mathbb{N}
$$

as the largest constant with which the clock x is ever compared either in the guards or in the invariants present in A.

Lecture 10 Semantics and Verification 2005 Networks of Timed Automat $\begin{gathered}\text { Requan }\end{gathered}$

Regions

Let v be a clock valuation. The \equiv-equivalence class represented by v is denoted by $[v]$ and defined by $[v]=\left\{v^{\prime} \mid v^{\prime} \equiv v\right\}$.

Definition of a Region

An \equiv-equivalence class [v] represented by some clock valuation v is called a region.

Theorem

For every location ℓ and any two valuations v and v^{\prime} from the same region ($v \equiv v^{\prime}$) it holds that

$$
(\ell, v) \sim\left(\ell, v^{\prime}\right)
$$

where \sim stands for untimed bisimilarity

$\begin{array}{c}\text { Regions } \\ \text { Networks of Timed Aut Gramph }\end{array}$	$\begin{array}{l}\text { Definition } \\ \text { Applictions } \\ \text { Zones and Zone Graphs }\end{array}$

Symbolic States and Region Graph
state $(\ell, v) \rightsquigarrow$ symbolic state $(\ell,[v])$
Note: $v \equiv v^{\prime}$ implies that $(\ell,[v])=\left(\ell,\left[v^{\prime}\right]\right)$.
Region Graph
Region graph of a timed automaton A is an unlabelled (and untimed) transition system where

- states are symbolic states
$\bullet \Longrightarrow$ on symbolic states is defined as follows:
$(\ell,[v]) \Longrightarrow\left(\ell^{\prime},\left[v^{\prime}\right]\right)$ iff $(\ell, v) \xrightarrow{a}\left(\ell^{\prime}, v^{\prime}\right)$ for some label a

$$
(\ell,[v]) \Longrightarrow\left(\ell,\left[v^{\prime}\right]\right) \quad \text { iff } \quad(\ell, v) \xrightarrow{d}\left(\ell, v^{\prime}\right) \text { for some } d \in \mathbb{R}^{\geq 0}
$$

Fact
A region graph of any timed automaton is finite.

	$\begin{aligned} & \text { Semantics and Verification } 2005 \\ & \text { Definition } \\ & \text { Applications } \\ & \text { Zones and Zone Graphs } \end{aligned}$
Zones and Zone Graphs	

Zones provide a more efficient representation of symbolic state spaces. A number of regions can be described by one zone.

Zone
 A zone is described by a clock constraint $g \in \mathcal{B}(C)$.

$$
[g]=\{v \mid v \vDash g\}
$$

Region Graphs

symbolic state: $(\ell,[v])$
where v is a clock valuation

Zone Graphs

symbolic state: ($\ell,[g]$)
where g is a clock constraint
stored in the memory) as
A zone is usually represented (and stored in the

Application of Region Graphs to Reachability

We write $(\ell, v) \longrightarrow\left(\ell^{\prime}, v^{\prime}\right)$ whenever

- $(\ell, v) \xrightarrow{a}\left(\ell^{\prime}, v^{\prime}\right)$ for some label a, or
- $(\ell, v) \xrightarrow{d}\left(\ell^{\prime}, v^{\prime}\right)$ for some $d \in \mathbb{R} \geq 0$.

Reachability Problem for Timed Automata
Instance (input): Automaton $A=\left(L, \ell_{0}, E, I\right)$ and a state (ℓ, v).
Question: Is it true that $\left(\ell_{0}, v_{0}\right) \longrightarrow^{*}(\ell, v)$?
Networks of Timesion Automatata
Derinition
Applications
Zones and Zone Graphs

Applicability of Region Graphs

(where $v_{0}(x)=0$ for all $x \in C$)

Reduction of Timed Automata Reachability to Region Graphs

Reachability for timed automata is decidable because
$\left(\ell_{0}, v_{0}\right) \longrightarrow^{*}(\ell, v)$ in a timed automaton if and only if

$$
\left(\ell_{0},\left[v_{0}\right]\right) \Longrightarrow^{*}(\ell,[v]) \text { in its (finite) region graph. }
$$

Pros

Region graphs provide a natural abstraction which enables to prove decidability of e.g.

- reachability
- timed and untimed bisimilarity
- untimed language equivalence and language emptiness.

Cons

Region graphs have too large state spaces. State explosion is exponential in

- the number of clocks
- the maximal constants appearing in the guards.

Lecture 10 Semantics and Verification 2005
Networks of Timed Automata $\begin{gathered}\text { Regions } \\ \text { Rem }\end{gathered} \begin{aligned} & \text { Definition } \\ & \text { Example } \\ & \text { Logical Properties in UPPAAL }\end{aligned}$

Networks of Timed Automata

Intuition in CCS

$$
\text { (a. Nil } \mid \text { a.Nil) } \backslash\{a\}
$$

Let C be a set of clocks and Chan a set of channels.
We let $A c t=N \cup \mathbb{R} \geq 0$ where

- $N=\{c!\mid c \in$ Chan $\} \cup\{c$? $\mid c \in \operatorname{Chan}\} \cup\{\tau\}$.

Let $A_{i}=\left(L_{i}, \ell_{0}^{i}, E_{i}, l_{i}\right)$ be timed automata for $1 \leq i \leq n$.
Networks of Timed Automata
We call $A=A_{1}\left|A_{2}\right| \cdots \mid A_{n}$ a network of timed automata.

$T(A)=($ Proc, $A c t,\{\xrightarrow{a} \mid a \in A c t\})$ where

- Proc $=\left(L_{1} \times L_{2} \times \cdots \times L_{n}\right) \times\left(C \rightarrow \mathbb{R}^{\geq 0}\right)$, i.e. states are of the form $\left(\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right), v\right)$ where ℓ_{i} is a location in A_{i}
- Act $=\{\tau\} \cup \mathbb{R}^{\geq 0}$
- \longrightarrow is defined as follows:

$$
\begin{aligned}
& \left(\left(\ell_{1}, \ldots, \ell_{i}, \ldots, \ell_{n}\right), v\right) \xrightarrow{\tau}\left(\left(\ell_{1}, \ldots, \ell_{i}^{\prime}, \ldots, \ell_{n}\right), v^{\prime}\right) \text { if there is } \\
& \left(\ell_{i} \xrightarrow{g, \tau, r} \ell_{i}^{\prime}\right) \in E_{i} \text { s.t. } v \models g \text { and } v^{\prime}=v[r] \text { and } \\
& v^{\prime} \models I_{i}\left(\ell_{i}^{\prime}\right) \wedge \bigwedge_{k \neq i} I_{k}\left(\ell_{k}\right)
\end{aligned}
$$

$$
\left(\left(\ell_{1}, \ldots, \ell_{n}\right), v\right) \xrightarrow{d}\left(\left(\ell_{1}, \ldots, \ell_{n}\right), v+d\right) \text { for all } d \in \mathbb{R}^{\geq 0} \text { s.t. }
$$

$$
v \models \bigwedge_{k} I_{k}\left(\ell_{k}\right) \text { and } v+d \models \bigwedge_{k} I_{k}\left(\ell_{k}\right)
$$

N Networks of Timed Automatata
 $\underset{\substack{\text { Example } \\ \text { Logical Pronerties in upPA }}}{ }$

Continuation

Network of Timed Antompta

Logic for Timed Automata in UPPAAL

Let ϕ and ψ be local properties (check-able locally in a given state).

Example: (H.busy \wedge W.rest $\wedge 20 \leq z \leq 30$)
$\left(\left(\ell_{1}, \ldots, \ell_{i}, \ldots, \ell_{j}, \ldots, \ell_{n}\right), v\right) \xrightarrow{\tau}\left(\left(\ell_{1}, \ldots, \ell_{i}^{\prime}, \ldots, \ell_{j}^{\prime}, \ldots, \ell_{n}\right), v^{\prime}\right)$
if $i \neq j$ and there are $\left(\ell_{i} \xrightarrow{g_{i}, a!, r_{i}} \ell_{i}^{\prime}\right) \in E_{i}$ and $\left(\ell_{j} \xrightarrow{g_{j}, a ?, r_{j}} \ell_{j}^{\prime}\right) \in E_{j}$ s.t.
$v \models g_{i} \wedge g_{j}$ and $v^{\prime}=v\left[r_{i} \cup r_{j}\right]$ and $v^{\prime} \models I_{i}\left(\ell_{i}^{\prime}\right) \wedge I_{j}\left(\ell_{j}^{\prime}\right) \wedge \bigwedge_{k \neq i, j} I_{k}\left(\ell_{k}\right)$

UPPAAL can check the following formulae (subset of TCTL)

- A $]$ - ϕ invariantly ϕ
- $\mathrm{E}\rangle \phi$ - possibly ϕ
- $\mathrm{A}\rangle \phi$ - always eventually ϕ
- E[] ϕ - potentially always ϕ
- $\phi->\psi-\phi$ always leads to $\psi($ same as A[]$(\phi \Longrightarrow \mathrm{A}\rangle \psi))$

egend:

A and E are so called path quantifiers, and

- [] and \rangle quantify over states of a selected path.

