Semantics and Verification 2005

Lecture 10

- region graph and the reachability problem
- networks of timed automata
- model checking of timed automata

Lecture 10 ()

Semantics and Verification 2005

Intuition

Let $v, v': C \to \mathbb{R}^{\geq 0}$ be clock valuations. Let \sim denote **untimed bisimilarity** of timed transition systems.

Our Aim

Define an **equivalence relation** ≡ over clock valuations such that

- ① $v \equiv v'$ implies $(\ell, v) \sim (\ell, v')$ for any location ℓ
- 2 = has only finitely many equivalence classes.

Automatic Verification of Timed Automata

Fact

Even very simple timed automata generate timed transition systems with infinitely (even uncountably) many reachable states.

Question

Is any automatic verification approach (like bisimilarity checking, model checking or reachability analysis) possible at all?

Answer

1 / 15

Yes, using region graph techniques.

Key idea: infinitely many clock valuations can be categorized into finitely many equivalence classes.

Lecture 10 ()

Semantics and Verification 2005

2 / 15

Semantics and Verification 2005

3 / 15

Clock (Region) Equivalence

Equivalence Relation on Clock Valuations

Clock valuations v and v' are equivalent ($v \equiv v'$) iff

① for all $x \in C$ such that $v(x) \le c_x$ or $v'(x) \le c_x$ we have

$$\lfloor v(x) \rfloor = \lfloor v'(x) \rfloor$$

2 for all $x \in C$ such that $v(x) < c_x$ we have

$$frac(v(x)) = 0$$
 iff $frac(v'(x)) = 0$

3 for all $x, y \in C$ such that $v(x) \le c_x$ and $v(y) \le c_y$ we have

$$frac(v(x)) \le frac(v(y))$$
 iff $frac(v'(x)) \le frac(v'(y))$

Preliminaries

Let $d \in \mathbb{R}^{\geq 0}$. Then

- let |d| be the integer part of d, and
- let frac(d) be the fractional part of d.

Any $d \in \mathbb{R}^{\geq 0}$ can be now written as $d = \lfloor d \rfloor + \mathit{frac}(d)$.

Example: |2.345| = 2 and frac(2.345) = 0.345.

Let A be a timed automaton and $x \in C$ be a clock. We define

$$c_x \in \mathbb{N}$$

as the largest constant with which the clock x is ever compared either in the guards or in the invariants present in A.

Regions

Let ν be a clock valuation. The \equiv -equivalence class represented by ν is denoted by $[\nu]$ and defined by $[\nu] = \{\nu' \mid \nu' \equiv \nu\}$.

Definition of a Region

Lecture 10 ()

An \equiv -equivalence class [v] represented by some clock valuation v is called a **region**.

Theorem

For every location ℓ and any two valuations v and v' from the same region $(v \equiv v')$ it holds that

$$(\ell, v) \sim (\ell, v')$$

where \sim stands for untimed bisimilarity.

Lecture 10 () Semantics and Verification 2005 4 / 15 Lecture 10 () Semantics and Verification 2005 5 / 15 Lecture 10 () Semantics and Verification 2005 6 / 15

Symbolic States and Region Graph

state
$$(\ell, v) \rightsquigarrow \text{ symbolic state } (\ell, [v])$$

Note: $v \equiv v'$ implies that $(\ell, \lceil v \rceil) = (\ell, \lceil v' \rceil)$.

Region Graph

Region graph of a timed automaton A is an unlabelled (and untimed) transition system where

- states are symbolic states
- o symbolic states is defined as follows: $(\ell, [v]) \Longrightarrow (\ell', [v'])$ iff $(\ell, v) \stackrel{a}{\longrightarrow} (\ell', v')$ for some label a $(\ell, [v]) \Longrightarrow (\ell, [v'])$ iff $(\ell, v) \stackrel{d}{\longrightarrow} (\ell, v')$ for some $d \in \mathbb{R}^{\geq 0}$

Fact

A region graph of any timed automaton is finite.

entics and Verification 2005

7 / 15

Zones and Zone Graphs

Zones provide a more efficient representation of symbolic state spaces. A number of regions can be described by one zone.

A zone is described by a **clock constraint** $g \in \mathcal{B}(C)$.

$$[g] = \{v \mid v \models g\}$$

Region Graphs

symbolic state: $(\ell, [v])$

where v is a clock valuation

Zone Graphs

symbolic state: $(\ell, [g])$

where g is a clock constraint

A zone is usually represented (and stored in the memory) as DBM (Difference Bound Matrix).

Application of Region Graphs to Reachability

We write $(\ell, \nu) \longrightarrow (\ell', \nu')$ whenever \bullet $(\ell, v) \xrightarrow{a} (\ell', v')$ for some label a, or

 \bullet $(\ell, \nu) \xrightarrow{d} (\ell', \nu')$ for some $d \in \mathbb{R}^{\geq 0}$.

Reachability Problem for Timed Automata

Instance (input): Automaton $A = (L, \ell_0, E, I)$ and a state (ℓ, ν) .

Question: Is it true that $(\ell_0, \nu_0) \longrightarrow^* (\ell, \nu)$?

(where $v_0(x) = 0$ for all $x \in C$)

Reduction of Timed Automata Reachability to Region Graphs Reachability for timed automata is decidable because

> $(\ell_0, \nu_0) \longrightarrow^* (\ell, \nu)$ in a timed automaton if and only if $(\ell_0, [\nu_0]) \Longrightarrow^* (\ell, [\nu])$ in its (finite) region graph.

Lecture 10 ()

Networks of Timed Automata

Timed Automata in Parallel

Intuition in CCS

 $(\overline{a}.Nil \mid a.Nil) \setminus \{a\}$

Let C be a set of clocks and Chan a set of channels.

We let $Act = N \cup \mathbb{R}^{\geq 0}$ where

 $\bullet \ \ N = \{c! \mid c \in Chan\} \cup \{c? \mid c \in Chan\} \cup \{\tau\}.$

Let $A_i = (L_i, \ell_0^i, E_i, I_i)$ be timed automata for $1 \le i \le n$.

Networks of Timed Automata

Lecture 10 ()

We call $A = A_1 | A_2 | \cdots | A_n$ a network of timed automata.

Applicability of Region Graphs

Region graphs provide a natural abstraction which enables to prove decidability of e.g.

- reachability
- timed and untimed bisimilarity
- untimed language equivalence and language emptiness.

Cons

8 / 15

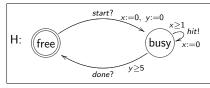
11 / 15

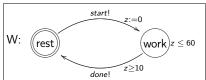
Region graphs have too large state spaces. State explosion is exponential in

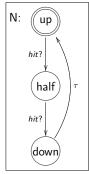
- the number of clocks
- the maximal constants appearing in the guards.

Lecture 10 () 9 / 15

Example: Hammer, Worker, Nail







Lecture 10 ()

emantics and Verification 2005

Timed Transition System Generated by $A = A_1 | \cdots | A_n$

$$T(A) = (Proc, Act, \{ \stackrel{a}{\longrightarrow} | a \in Act \})$$
 where

- $Proc = (L_1 \times L_2 \times \cdots \times L_n) \times (C \to \mathbb{R}^{\geq 0})$, i.e. states are of the form $((\ell_1, \ell_2, \dots, \ell_n), v)$ where ℓ_i is a location in A_i
- $Act = \{\tau\} \cup \mathbb{R}^{\geq 0}$

$$((\ell_1, \dots, \ell_i, \dots, \ell_n), v) \xrightarrow{\tau} ((\ell_1, \dots, \ell'_i, \dots, \ell_n), v') \text{ if there is }$$

$$(\ell_i \xrightarrow{g,\tau,r} \ell'_i) \in E_i \text{ s.t. } v \models g \text{ and } v' = v[r] \text{ and } v' \models I_i(\ell'_i) \land \bigwedge_{k \neq i} I_k(\ell_k)$$

$$((\ell_1,\ldots,\ell_n),v) \stackrel{d}{\longrightarrow} ((\ell_1,\ldots,\ell_n),v+d)$$
 for all $d \in \mathbb{R}^{\geq 0}$ s.t. $v \models \bigwedge_k I_k(\ell_k)$ and $v+d \models \bigwedge_k I_k(\ell_k)$

Continuation

$$((\ell_1,\ldots,\ell_i,\ldots,\ell_j,\ldots,\ell_n),v) \xrightarrow{\tau} ((\ell_1,\ldots,\ell_i',\ldots,\ell_j',\ldots,\ell_n),v') \text{ if } i \neq j$$
 and there are $(\ell_i \xrightarrow{g_i,a!,r_i} \ell_i') \in E_i$ and $(\ell_j \xrightarrow{g_j,a?,r_j} \ell_j') \in E_j$ s.t. $v \models g_i \land g_j$ and $v' \models v[r_i \cup r_j]$ and $v' \models I_i(\ell_i') \land I_j(\ell_j') \land \bigwedge_{k \neq i,j} I_k(\ell_k)$

Logic for Timed Automata in UPPAAL

Let ϕ and ψ be **local properties** (check-able locally in a given state).

Example: (H.busy \land W.rest \land 20 \le z \le 30)

UPPAAL can check the following formulae (subset of TCTL)

- $\bullet \ \, \mathbf{A}[]\phi \text{invariantly } \phi$
- $\bullet~\mathbf{E}\langle\rangle\phi$ possibly ϕ
- \bullet $\mathbf{A}\langle\rangle\phi$ always eventually ϕ
- $\mathbf{E}[]\phi$ potentially always ϕ
- $\phi \rightarrow \psi \phi$ always leads to ψ (same as A[]($\phi \implies A\langle \psi \rangle$)

Legend:

- $\, \bullet \,$ A and E are so called path quantifiers, and
- [] and () quantify over states of a selected path.

Lecture 10 () Semantics and Verification 2005

n 2005

Lecture 1

13 / 15

semantics and Verification 2005

14 / 15

Lecture 10 () Semantics and Verification

15 / 15