	Focus of the Course	Overview of the Course		
Semantics and Verification 2005		 Transition systems and CCS. 		
Lecture 1	 Study of mathematical models for the formal description and analysis of programs. 	 Strong and weak bisimilarity, bisimulation games. Hennessy-Milner logic and bisimulation. 		
	 Particular focus on parallel and reactive systems. 	 Tarski's fixed-point theorem. Hennessy-Milner logic with recursively defined formulae. 		
Lecturer: Jiri Srba B2-203, srba@cs.aau.dk Assistant: Bjørn Haagensen B2-205, bh@cs.aau.dk	 Verification tools and implementation techniques underlying them. 	 Timed automata and their semantics. Binary decision diagrams and their use in verification. Two mini projects. 		
Lecture 1 () Semantics and Verification 2005 Mini Projects	1 / 28 Lecture 1 () Semantics and Verification 2005 2 / 28 Lectures	E Lecture 1 () Semantics and Verification 2005 Tutorials		
 Verification of a communication protocol in CWB. Verification of an algorithm for mutual exclusion in UPPAAL. Pensum dispensation. 	 Two guest lectures (G. Behrmann, K. G. Larsen). Ask questions. Take your own notes. Read the recommended literature as soon as possible after the lecture. 	 Regularly before each lecture. Supervised peer learning. Two classrooms, work in groups of 2 or 3 people. Print out the exercise list, bring literature and your notes. Feedback from teaching assistant on your request. Star exercises (*) (part of the exam). 		

Lecture 1 ()

Semantics and Verification 2005

4 / 28

Lecture 1 ()

Semantics and Verification 2005

5 / 28

Lecture 1 ()

Semantics and Verification 2005

6 / 28

3 / 28

Exam	Literature	Hints		
 Individual and oral. Preparation time (star exercises). Pensum dispensation. 	 On-line literature. Compendiums (2004 + 2005, 141 kr). Best Reader Competition with award! 	 Check regularly the course web-page. Anonymous feedback form on the course web-page. Attend and actively participate during tutorials. Take your own notes. 		
Lecture 1 () Semantics and Verification 2005 7 / 28 Aims of the Course	Lecture 1 () Semantics and Verification 2005 8 / 28 Classical View	Lecture 1 () Semantics and Verification 2005 9 / 28 Reactive systems		
Present a general theory of reactive systems and its applications.	Characterization of a Classical Program Program transforms an input into an output.			
 Design. Specification. Verification (possibly automatic and compositional). 	 Denotational semantics: a meaning of a program is a partial function states → states 	 What about: Operating systems? Communication protocols? Control programs? Multila degrae? 		
 Give the students practice in modelling parallel systems in a formal framework. Give the students skills in analyzing behaviours of reactive systems. Introduce algorithms and tools based on the modelling formalisms. 	 Nontermination is bad! In case of termination, the result is unique. 	 Mobile phones? Vending machines? 		
	Is this all we need?			
Lecture 1 () Semantics and Verification 2005 10 / 28	Lecture 1 () Semantics and Verification 2005 11 / 28	Lecture 1 () Semantics and Verification 2005 12 / 28		

Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli from its environment.

Key Issues:

- communication and interaction
- parallelism

Nontermination is good!

- The result (if any) does not have to be unique.
 - Lecture 1 ()

ure 1 ()

Classical vs. Reactive Computing

	Classical	Reactive/Parallel
interaction	no	yes
nontermination	undesirable	often desirable
unique result	yes no	
semantics	$states \hookrightarrow states$?

ntics and Verification 2005

Analysis of Reactive Systems

Questions

How can we develop (design) a system that "works"?How do we analyze (verify) such a system?

Fact of Life Even short parallel programs may be hard to analyze.

The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

- Intel's Pentium-II bug in floating-point division unit
- Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

mantics and Verification 2005

Mars Pathfinder

Lecture 1 ()

Lecture 1 ()

• ...

Labelled Transition System

Question

Lecture 1 ()

How to Model Reactive Systems

13 / 28

What is the most abstract view of a reactive system (process)?

Semantics and Verification 2005

Answer

A process performs an action and becomes another process.

Definition A **labelled transition system** (LTS) is a triple

 $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ where

• Proc is a set of states (or processes),

• Act is a set of labels (or actions), and

• for every $a \in Act$, $\xrightarrow{a} \subseteq Proc \times Proc$ is a binary relation on states called the **transition relation**.

We will use the infix notation $s \xrightarrow{a} s'$ meaning that $(s, s') \in \xrightarrow{a}$.

Sometimes we distinguish the initial (or start) state.

Lecture 1 ()

Semantics and Verification 2005

16 / 28 Lecture 1 ()

Semantics and Verification 2005

17 / 28

14 / 28

Semantics and Verification 2005

18 / 28

15 / 28

Sequencing, Nondeterminism and Parallelism	Binary Relations	Closures			
LTS explicitly focuses on interaction . LTS can also describe: • sequencing $(a; b)$ • choice (nondeterminism) $(a + b)$ • limited notion of parallelism (by using interleaving) $(a b)$	Definition A binary relation R on a set A is a subset of $A \times A$. $R \subseteq A \times A$ Sometimes we write $x R y$ instead of $(x, y) \in R$. Properties • R is reflexive if $(x, x) \in R$ for all $x \in A$ • R is symmetric if $(x, y) \in R$ implies that $(y, x) \in R$ for all $x, y \in A$ • R is transitive if $(x, y) \in R$ and $(y, z) \in R$ implies that $(x, z) \in R$ for all $x, y, z \in A$	 Let R, R' and R" be binary relations on a set A. Reflexive Closure R' is the reflexive closure of R if and only if R ⊆ R', R' is reflexive, and R' is the <i>smallest</i> relation that satisfies the two conditions above, i.e., for any relation R": if R ⊆ R" and R" is reflexive, then R' ⊆ R". 			
Lecture 1 () Semantics and Verification 2005 19 / 28 Closures	Lecture 1 () Semantics and Verification 2005 20 / 28 Closures	Lecture 1 () Semantics and Verification 2005 21 / 28 Labelled Transition Systems – Notation			
 Let <i>R</i>, <i>R'</i> and <i>R''</i> be binary relations on a set <i>A</i>. Symmetric Closure <i>R'</i> is the symmetric closure of <i>R</i> if and only if <i>R</i> ⊆ <i>R'</i>, <i>R'</i> is symmetric, and <i>R'</i> is the <i>smallest</i> relation that satisfies the two conditions above, i.e., for any relation <i>R''</i>: if <i>R</i> ⊆ <i>R''</i> and <i>R''</i> is symmetric, then <i>R'</i> ⊆ <i>R''</i>. 	 Let R, R' and R" be binary relations on a set A. Transitive Closure R' is the transitive closure of R if and only if R ⊆ R', R' is transitive, and R' is the <i>smallest</i> relation that satisfies the two conditions above, i.e., for any relation R": if R ⊆ R" and R" is transitive, then R' ⊆ R". 	Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} a \in Act\})$ be an LTS. • we extend $\stackrel{a}{\longrightarrow}$ to the elements of Act^* • $\longrightarrow = \bigcup_{a \in Act} \stackrel{a}{\longrightarrow}$ • \longrightarrow^* is the reflexive and transitive closure of \longrightarrow • $s \stackrel{a}{\longrightarrow}$ and $s \stackrel{a}{\longrightarrow}$ • reachable states			

Lecture 1	0	

Semantics and Verification 2005

22 / 28

Lecture 1 ()

Semantics and Verification 2005

23 / 28

Lecture 1 ()

Semantics and Verification 2005

24 / 28

How to Describe LTS?		(Calculus of Communicating Systems		Process Algebra			
Syntax unknown entity programming language ??? CCS	 → Semantics known entity → what (denotational) or how (operational) it com → Labelled Transition System 	putes	Insight of Robin Mil	d "Calculus of Communicating Systems". Iner (1989) processes have an algebraic structure. $\boxed{P_1} \text{ op } \boxed{P_2} \Rightarrow \boxed{P_1 \text{ op } P_2}$		behaviour). Define composit process behaviou Example atomic instruction new operators: sequential comparallel comp	pomic processes (modelling the ionally new operations (building in from simple ones).	ng more complex k:=x+2)
Lecture 1 () Semanti	tics and Verification 2005	25 / 28	Lecture 1 ()	Semantics and Verification 2005	26 / 28	Lecture 1 ()	Semantics and Verification 2005	27 / 2

CCS Basics (Sequential Fragment)

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)

- names and recursive definitions $\begin{pmatrix} def \\ = \end{pmatrix}$
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the operations above.

28 / 28 Lecture 1 () Semantics and Verification 2005

A I I _

28