Focus of the Course Overview of the Course

Semantics and Verification 2005
o Transition systems and CCS.
Lecture 1 o Study of mathematical models for the formal description and analysis o Strong and weak bisimilarity, bisimulation games.
of programs. o Hennessy-Milner logic and bisimulation.
o Tarski's fixed-point theorem.
o Particular focus on parallel and reactive systems. o Hennessy-Milner logic with recursively defined formulae.

Lecturer: Jiri Srba B2-203. srba@cs.aau.dk o Verification tools and implementation techniques underlying them. o Timed automata and their semantics.

Assistant: Bjgrn Haagensen B2-205, bhecs . aau. dk o Binary decision diagrams and their use in verification.

o Two mini projects.

Lecture 1 () Semantics and Verification 2005 1/28 Lecture 1 () Semantics and Verification 2005 2/28 Lecture 1 () Semantics and Verification 2005 3/28

Mini Projects Lectures Tutorials

o Regularly before each lecture.

o Verification of a communication protocol in CWB. o Two guest lectures (G. Behrmann, K. G. Larsen). o Supervised peer learning.
o Verification of an algorithm for mutual exclusion in UPPAAL. o Ask questions. o Two classrooms, work in groups of 2 or 3 people.

o Take your own notes. o Print out the exercise list, bring literature and your notes.
o Pensum dispensation. o Read the recommended literature as soon as possible after the lecture. o Feedback from teaching assistant on your request.

o Star exercises (*) (part of the exam).

Lecture 1 () Semantics and Verification 2005 4/28 Lecture 1 () Semantics and Verification 2005 5/28 Lecture 1 () Semantics and Verification 2005 6/28

Exam Literature Hints

o Check regularly the course web-page.

o Individual and oral. o On-line literature.
. . . . o Anonymous feedback form on the course web-page.
o Preparation time (star exercises). o Compendiums (2004 + 2005, 141 kr). Y pag
. . . . o Attend and actively participate during tutorials.
o Pensum dispensation. o Best Reader Competition with award!
o Take your own notes.
Lecture 1 () Semantics and Verification 2005 7/28 Lecture 1 () Semantics and Verification 2005 8/28 Lecture 1 () Semantics and Verification 2005 9/28
Aims of the Course Classical View Reactive systems
Present a general theory of reactive systems and its applications. Characterization of a Classical Program
Program transforms an input into an output.
o Design. What about:

o Specification. : ?
o Denotational semantics: © Operating systems?

a meaning of a program is a partial function o Communication protocols?
o Control programs?

o Verification (possibly automatic and compositional).

states — states

©

Mobile phones?
@ Give the students practice in modelling parallel systems in a formal

framework.

©

o Nontermination is bad! Vending machines?

@ Give the students skills in analyzing behaviours of reactive systems. © In case of termination, the result is unique.
@ Introduce algorithms and tools based on the modelling formalisms.

Is this all we need?

Lecture 1 () Semantics and Verification 2005 10 /28 Lecture 1 () Semantics and Verification 2005 11/28 Lecture 1 () Semantics and Verification 2005 12 /28

Reactive systems

Characterization of a Reactive System

Reactive System is a system that computes by reacting to stimuli from
its environment.

Key Issues:

o communication and interaction

o parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Lecture 1 () Semantics and Verification 2005 13 /28

Classical vs. Reactive Computing

[Classical Reactive/Parallel |
interaction no yes
nontermination undesirable often desirable
unique result yes no
semantics | states — states ?
Lecture 1 () Semantics and Verification 2005 16 / 28

Analysis of Reactive Systems

Questions

o How can we develop (design) a system that "works"?
o How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

Lecture 1 () Semantics and Verification 2005 14 /28
How to Model Reactive Systems
Question
What is the most abstract view of a reactive system (process)?
Answer
A process performs an action and becomes another process.
Lecture 1 () Semantics and Verification 2005 17 /28

The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

o Intel's Pentium-Il bug in floating-point division unit
o Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer
Mars Pathfinder

©

Lecture 1 () Semantics and Verification 2005 15 /28

Labelled Transition System

Definition
A labelled transition system (LTS) is a triple
(Proc, Act, {—25| a € Act}) where

o Proc is a set of states (or processes),

o Act is a set of labels (or actions), and

o for every a € Act, -2, C Proc x Proc is a binary relation on states
called the transition relation.

We will use the infix notation s —2 s’ meaning that (s,s’) €.

Sometimes we distinguish the initial (or start) state.

Lecture 1 () Semantics and Verification 2005 18 /28

Sequencing, Nondeterminism and Parallelism

LTS explicitly focuses on interaction.

LTS can also describe:
o sequencing (a; b)
o choice (nondeterminism) (a + b)

o limited notion of parallelism (by using interleaving) (a|b)

Lecture 1 () Semantics and Verification 2005

Closures

Let R, R’ and R” be binary relations on a set A.

Symmetric Closure

R’ is the symmetric closure of R if and only if
@ RCFR,
@ R’ is symmetric, and

@ R’ is the smallest relation that satisfies the two conditions above, i.e.,
for any relation R":
if RC R” and R" is symmetric, then R' C R".

19/28

Binary Relations

Definition
A binary relation R on a set A is a subset of A x A.

RCAxA

Sometimes we write x R y instead of (x,y) € R.

Properties
o R is reflexive if (x,x) € R for all x € A
o R is symmetric if (x,y) € R implies that (y,x) € R for all x,y € A

o R is transitive if (x,y) € R and (y, z) € R implies that (x,z) € R
forall x,y,z€ A

Lecture 1 () Semantics and Verification 2005

Closures

Let R, R’ and R” be binary relations on a set A.

Transitive Closure

R’ is the transitive closure of R if and only if
@ RCR,
@ R’ is transitive, and

@ R’ is the smallest relation that satisfies the two conditions above, i.e.,
for any relation R":
if R C R” and R” is transitive, then R’ C R".

20 /28

Lecture 1 () Semantics and Verification 2005 22 /28

Lecture 1 () Semantics and Verification 2005 23 /28

Closures

Let R, R’ and R” be binary relations on a set A.

Reflexive Closure

R’ is the reflexive closure of R if and only if
® RCR,
@ R’ is reflexive, and

@ R’ is the smallest relation that satisfies the two conditions above, i.e.,
for any relation R”:
if RC R” and R" is reflexive, then R’ C R".

Lecture 1 () Semantics and Verification 2005 21/28

Labelled Transition Systems — Notation

Let (Proc, Act,{—>~| a € Act}) be an LTS.

o we extend — to the elements of Act*

a
° = UaeAct

o —* is the reflexive and transitive closure of —
a a,
o s—and s~

o reachable states

Lecture 1 () Semantics and Verification 2005 24 / 28

How to Describe LTS?

Calculus of Communicating Systems

Process algebra called “Calculus of Communicating Systems”.

Process Algebra

Basic Principle

@ Define a few atomic processes (modelling the simplest process
J behaviour).

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

@ Define compositionally new operations (building more complex
process behaviour from simple ones).

J Example

Syntax _, Semantics ccs
unknown entity J known entity J
rosramming language — what (denotational) or
prog g [anguag) how (operational) it computes
?77? J T Labelled Transition Systems |
CCs
Lecture 1 () Semantics and Verification 2005 25 / 28 Lecture 1 ()

CCS Basics (Sequential Fragment)

o Nil (or 0) process (the only atomic process)

o action prefixing (a.P)

. .. def
o names and recursive definitions (=)

o nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the

operations above.

Lecture 1 ()

Semantics and Verification 2005 28 /28

[P op [Pi] = [Prop P

Semantics and Verification 2005

26 / 28 Lecture 1 ()

@ atomic instruction: assignment (e.g. x:=2 and x:=x+2)
@ new operators:

sequential composition (Py; P2)

parallel composition (P | P2)

Now e.g. (x:=1 | x:=2); x:=x+2; (x:=x-1 | x:=x+5) is a process.

Semantics and Verification 2005

27 /28

