PSPACE-Hardness of Strong Bisimilarity for BPP

Jiri Srba, BRICS Aalborg

30.11 - 1.12 2005 PhD Course at FIRST Graduate School, IT University

Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPP

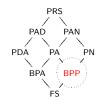
Summary of Results for BPP

- Language equivalence is undecidable [Hüttel'94].
- Strong bisimilarity is decidable [Christensen, Hirshfeld, Moller'93], even in PSPACE [Jančar'03].
- We will argue how to show PSPACE-hardness [Srba'02].

BPP - Basic Parallel Processes

Basic Parallel Processes (BPP) $(1, \mathcal{P})$ -PRS

Rule type: $X \stackrel{a}{\longrightarrow} X ||Y||Z$ $X \stackrel{a}{\longrightarrow} \epsilon$



- a basic model of purely parallel programs
- fragment of CCS without restriction, relabelling and communication
- equivalent to communication free subclass of Petri nets

Example

Let $Const = \{Q_1, Q_2, \dots, Q_k\}$ and $Act = \{q_1, q_2, \dots, q_k\}$.

$$Q_j \xrightarrow{q_j} Q_j$$
 for all j , $1 \le j \le k$

Let
$$i_1,\ldots,i_\ell\in\{1,2,\ldots,k\}$$
 and $j_1,\ldots,j_m\in\{1,2,\ldots,k\}$. Now
$$Q_{i_1}\|\cdots\|Q_{i_\ell}\sim Q_{j_1}\|\cdots\|Q_{j_m}$$

if and only if

$$\{i_1,\ldots,i_\ell\}=\{j_1,\ldots,j_m\}.$$

E.g.: $Q_1 \| Q_2 \| Q_2 \sim Q_2 \| Q_1$

Reduction Idea

Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPF

QSAT — a PSPACE-Complete Problem

Quantified Satisfiability (QSAT) or also Quantified Boolean formula (QBF) problem is PSPACE-complete.

Problem: **QSAT**

A natural number n > 0 and a Boolean Instance:

formula ϕ in conjunctive normal form with

Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPP

Boolean variables x_1, \ldots, x_n and y_1, \ldots, y_n .

Question: Is $\exists x_1 \forall y_1 \exists x_2 \forall y_2 \dots \exists x_n \forall y_n . \phi$ true?

Example:

 $\exists x_1 \forall y_1 \exists x_2 \forall y_2. (x_1 \vee \neg y_1 \vee y_2) \wedge (\neg x_1 \vee y_1 \vee y_2) \wedge (x_1 \vee y_1 \vee y_2 \vee \neg y_2)$

For a QSAT formula C we construct a BPP system with two processes X and X' such that:

C is true

if and only if

 $X \sim X'$

PSPACE-Hardness of Strong Bisimilarity for BPF

Bisimulation Game

$\exists x_1$

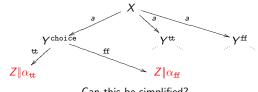
Problems:

- ullet the $\stackrel{ ext{tt}}{\longrightarrow}$ and $\stackrel{ ext{ff}}{\longrightarrow}$ arrows
- exponential blow up in the size

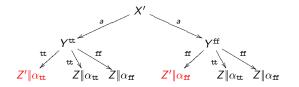
Reduction from QSAT to \sim of BPP

- We present a construction enabling the defender to force the attacker to perform a certain move (Defender's Choice).
- We show a way how to remember (encode) and check satisfied clauses.

Defender's Choice Technique



Can this be simplified?



Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPI

Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPP

How to Represent Clauses

Let us fix a QSAT formula C:

$$C \equiv \exists x_1 \forall y_1 \exists x_2 \forall y_2 \dots \exists x_n \forall y_n . C_1 \land C_2 \land \dots \land C_k$$

New process constants Q_1, \ldots, Q_k such that for all $j, 1 \le j \le k$:

$$Q_i \stackrel{q_j}{\longrightarrow} Q_i$$

Example:

Satisfied clauses C_1 , C_3 and C_4 are represented by $Q_1 || Q_3 || Q_4$.

How to Remember Satisfied Clauses

$$C \equiv \exists x_1 \forall y_1 \exists x_2 \forall y_2 \dots \exists x_n \forall y_n, C_1 \land C_2 \land \dots \land C_k$$

Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPP

Let

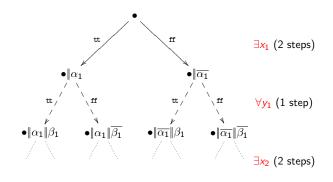
 $\alpha_i \equiv Q_{i_1} \| Q_{i_2} \| \cdots \| Q_{i_\ell}$ such that x_i occurs positively in $C_{i_1}, C_{i_2}, \ldots, C_{i_{\ell}}$

 $\overline{lpha_i} \equiv Q_{i_1} \| Q_{i_2} \| \cdots \| Q_{i_\ell}$ such that x_i occurs negatively in $C_{i_1}, C_{i_2}, \ldots, C_{i_\ell}$

 $\beta_i \equiv Q_{i_1} \|Q_{i_2}\| \cdots \|Q_{i_\ell}$ such that y_i occurs positively in $C_{i_1}, C_{i_2}, \ldots, C_{i_\ell}$

 $\overline{m{eta}_i} \equiv Q_{i_1} \| Q_{i_2} \| \cdots \| Q_{i_\ell}$ such that y_i occurs negatively in $C_{i_1}, C_{i_2}, \ldots, C_{i_\ell}$.

Remembering Clauses

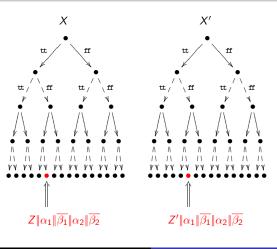


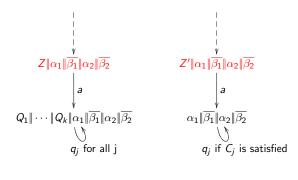
PSPACE-Hardness of Strong Bisimilarity for BP

Generation Phase from X and X'

Checking Clauses

Strong Bisimilarity on BPP is PSPACE-Complete





 $Z \stackrel{a}{\longrightarrow} Q_1 \| Q_2 \| \cdots \| Q_k$

 $Z' \stackrel{\mathsf{a}}{\longrightarrow} \epsilon$

Theorem

Strong bisimilarity on BPP is PSPACE-hard.

Theorem

Strong bisimilarity on BPP is PSPACE-complete.

Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPP

Jiri Srba, BRICS Aalborg PSPACE-Hardness of Strong Bisimilarity for BPP