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Abstract. Bounded model checking has received recent attention as an
efficient verification method. The basic idea behind this new method is
to reduce the model checking problem to the propositional satisfiability
decision problem or SAT. However, this method has rarely been applied
to Petri nets, because the ordinary encoding would yield a large formula
due to the concurrent and asynchronous nature of Petri nets. In this
paper, we propose a new SAT-based verification method for safe Petri
nets. This method can reduce verification time by representing the
behavior by very succinct formulas. Through an experiment using a
suite of Petri nets, we show the effectiveness of the proposed method.
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1 Introduction

Model checking [5] is a powerful technique for verifying systems that are modeled
as a finite state machine. The main challenge in model checking is to deal with
the state space explosion problem, because the number of states can be very
large for realistic designs. Recently bounded model checking has been receiving
attention as a new solution to this problem [2,6]. The main idea is to look for
counterexamples (or witnesses) that are shorter than some fixed length k for a
given property. If a counterexample can be found, then it is possible to conclude
that the property does not hold in the system. The key behind this approach is
to reduce the model checking problem to the propositional satisfiability problem.
The formula to be checked is constructed by unwinding the transition relation of
the system k times such that satisfying assignments represent counterexamples.

In the literature, it has been reported that this method can work efficiently,
especially for the verification of digital circuits. An advantage of this method
is that it works efficiently even when compact BDD representation cannot be
obtained. It is also an advantage that the approach can exploit recent advances
in decision procedures of satisfiability.

On the other hand, this method does not work well for asynchronous sys-
tems like Petri nets, because the encoding scheme into propositional formulas
is not suited for such systems; it would require a large formula to represent the
transition relation, thus resulting in large execution time and low scalability.

To address this issue, approaches that use other techniques than SAT decision
procedures have been proposed in [8,9]. These approaches allow bounded model
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checking of Petri nets by using answer set programming [9] and by using Boolean
circuit satisfiability checking [8].

In this paper, we tackle the same problem but in a different way; we propose
a new verification method using ordinary SAT solvers. As in [8,9], we limit our
discussions to verification of 1-bounded or safe Petri nets in this paper. The new
method enhances the effectiveness of SAT-based verification in the following two
ways.

– Our method uses a much succinct formula, compared to the existing method.
This shortens the execution time of a SAT procedure.

– Our method allows the formula to represent counterexamples of length
greater than k while guaranteeing to detect counterexamples of length k
or less. This enlarges the state space that can be explored.

To demonstrate the effectiveness of the approach, we show the results of applying
it to a suite of Petri nets.

The remainder of the paper is organized as follows. Section 2 describes the
basic definition of Petri nets and how to represent them symbolically. Section
3 explains our proposed method for reachability checking. Section 4 discusses
liveness checking. In Section 5 a pre-processing procedure is proposed. Experi-
mental results are presented in Section 6. Section 7 concludes the paper with a
summary and directions for future work.

2 Preliminaries

2.1 Petri Nets

A Petri net is a 4-tuple (P, T ,F , M0) where P = {p1, p2, · · · , pm} is a finite
set of places, T = {t1, t2, · · · , tn} (P ∩ T = ∅) is a finite set of transitions,
F ⊆ (P × T ) ∪ (T × P) is a set of arcs, and M0 is the initial state (marking).
The set of input places and the set of output places of t are denoted by •t and
t•, respectively.

We define a relation t→ over states as follows: S
t→ S′ iff some t ∈ T is

enabled at S and S′ is the next state resulted in by its firing. Also we define
a computation as a sequence of states S0S1 · · ·Sl such that for any 0 ≤ i < l

either (i) Si
t→ Si+1 for some t, or (ii) Si = Si+1 and no t is enabled at Si. Si

is reachable from S0 in i steps iff there is a computation S0S1 · · ·Si. We define
the length of a computation S0S1 · · ·Si as i.

A Petri net is said to be 1-bounded or safe if the number of tokens in each
place does not exceed one for any state reachable from the initial state. Note
that no source transition (a transition without any input place) exists if a Petri
net is safe. For example, the Petri net shown in Figure 1 is safe. Figure 2 shows
the reachability graph of this Petri net. In this graph, each state is represented
by the places marked with a token.
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Fig. 1. A Petri net.
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Fig. 2. Reachability graph.

2.2 Symbolic Representation

This subsection describes how a safe Petri net can be represented symbolically.
For a safe Petri net, a state S can be viewed as a Boolean vector S = (s1, · · · , sm)
of length m such that si = 1 iff place pi is marked with a token.

Any set of states can be represented as a Boolean function such that f(S) =
1 iff S is in the set. We say that f(S) is a characteristic function of the set.

We denote by Et(S) the characteristic function of the set of states in which
transition t is enabled; that is:

Et(S) :=
∧

pi∈•t

si

For example, for the Petri net we have:

Et1(S) := s1, Et2(S) := s1, Et3(S) := s2, Et4(S) := s3,
Et5(S) := s4, Et6(S) := s5, Et7(S) := s6 ∧ s7

Any relation over states can be similarly encoded since a relation is simply
a set of tuples. Let Tt(S, S′) be the characteristic function for the relation t→.
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Tt(S, S′) is represented as follows:

Tt(S, S′) := Et(S) ∧
∧

pi∈•t\t•
¬s′i ∧

∧

pi∈t•
s′i ∧

∧

pi∈P\(•t∪t•)

(si ↔ s′i)

For t1 in the Petri net in Figure 1, for example, we have:

Tt1(S, S′) := s1 ∧ ¬s′1 ∧ s′2 ∧ s′3 ∧ (s4 ↔ s′4) ∧ (s5 ↔ s′5) ∧ (s6 ↔ s′6) ∧ (s7 ↔ s′7)

3 Reachability Checking

3.1 Applying the Existing Encoding to Reachability Checking

Let R be the set of states whose reachability to be checked and let R(S) denote
its characteristic function. Although there are some variations [16], the basic
formula used for checking reachability is as follows:

I(S0) ∧ T (S0, S1) ∧ T (S1, S2) ∧ · · · ∧ T (Sk−1, Sk) ∧
(
R(S0) ∨ · · · ∨ R(Sk)

)

where I(S) is the characteristic function of the set of the initial states, and
T (S, S′) is the transition relation function such that

T (S, S′) = 1 iff S′ is reachable from S′ in one step.

Clearly, I(S0) ∧ T (S0, S1) ∧ T (S1, S2) · · · ∧ T (Sk−1, Sk) = 1 iff S0, S1, · · · , Sk

is a computation from the initial states. Hence the above formula is satisfiable
iff some state in R is reachable from one of the initial states in at most k steps.
By checking the satisfiability of the formula, therefore, the verification can be
carried out.

For Petri nets, M0 is the only initial state. Thus we have:

I(S) :=
∧

pi∈P0

si ∧
∧

pi∈P\P0

¬si

where P0 is the set of places marked with a token in M0. For example, for the
Petri net in Figure 1, I(S) will be:

I(S) := s1 ∧ ¬s2 ∧ ¬s3 ∧ ¬s4 ∧ ¬s5 ∧ ¬s6 ∧ ¬s7

T (S, S′) = 1 iff either (i) S
t→ S′ for some t, or (ii) S = S′ and no t is enabled

at S. Hence we have:

T (S, S′) := Tt1(S, S′) ∨ · · · ∨ Ttn
(S, S′)

∨
( ∧

pi∈P
(si ↔ s′i) ∧ ¬Et1(S) ∧ · · · ∧ ¬Etn

(S)
)

In practice, this formula would be very large in size. Figure 3 shows the
formula T (S, S′) obtained from the Petri net in Figure 1. It should be noted
that the efficiency of SAT-based verification critically depends on the size of the
formula to be checked.
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3.2 Proposed Encoding

We define dt(S, S′) as follows:

dt(S, S′) := Tt(S, S′) ∨
∧

pi∈P
(si ↔ s′i)

:=
(
(

∧

pi∈•t

si ∧
∧

pi∈•t\t•
¬s′i ∧

∧

pi∈t•
s′i) ∨

∧

pi∈•t∪t•
(si ↔ s′i)

)

∧
∧

pi∈P\(•t∪t•)

(si ↔ s′i)

For the Petri net shown in Figure 1, for example, we have:

dt1(S, S′) :=
(
(s1 ∧ ¬s′1 ∧ s′2 ∧ s′3) ∨

(
(s1 ↔ s′1) ∧ (s2 ↔ s′2) ∧ (s3 ↔ s′3)

))

∧(s4 ↔ s′4) ∧ (s5 ↔ s′5) ∧ (s6 ↔ s′6) ∧ (s7 ↔ s′7)

It is easy to see that dt(S, S′) = 1 iff S
t→ S′ or S = S′. In other words,

dt(S, S′) differs from Tt(S, S′) only in that dt(S, S′) evaluates to true also when
S = S′. We now define a relation ⇀ over states as follows: S ⇀ S′ iff S

t→ S′

for some t or S = S′. Clearly dt(S, S′) = 1 iff S ⇀ S′.
A step (or more) can be represented by a conjunction of dt(S, S′). Note that

this is in contrast to the ordinary encoding where a disjunction of Tt(S, S′) is
used to represent one step. Specifically, our proposed scheme uses the following
formula ϕk:

ϕk := Mk ∧ R(Sk∗n)

where

Mk := I(S0)
∧dt1(S0, S1) ∧ dt2(S1, S2) ∧ · · · ∧ dtn(Sn−1, Sn)
∧dt1(Sn, Sn+1) ∧ dt2(Sn+1, Sn+2) ∧ · · · ∧ dtn(S2n−1, S2n)
· · ·
∧dt1(S(k−1)∗n, S(k−1)∗n+1) ∧ · · · ∧ dtn(Sk∗n−1, Sk∗n)
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If ϕk is satisfiable, then there exists a state in R that can be reached in at
most k ∗ n steps from the initial state M0, because ϕk evaluates to true iff (i)
S0 = M0, (ii) for any 0 ≤ i < k ∗ n, Si ⇀ Si+1, and (iii) Sk∗n ∈ R.

On the other hand, if ϕk is unsatisfiable, then one can conclude that no
state in R can be reached in k steps or less. This can be explained as follows.
Suppose that a computation M0M1 · · ·Ml(0 ≤ l ≤ k) exists that starts from
the initial state M0 to a state Ml in R. Let tij be the transition such that

Mj

tij→ Mj+1. Then, ϕk is satisfied by the following assignment: for 0 ≤ j < l,
Sj∗n, Sj∗n+1, · · · , Sj∗n+ij−1 = Mj , Sj∗n+ij , · · · , S(j+1)∗n = Mj+1; and for l ≤
j < k, Sj∗n, Sj∗n+1, · · · , S(j+1)∗n = Ml.

An important observation is that the method may be able to find witness
computations of length greater than k. The length of witnesses that can be found
is at most k ∗ n, and this upper bound is achievable.

Another important advantage of our method is that it is possible to con-
struct a very succinct formula that has the same satisfiability of ϕk. Let
Si = (s1,i, s2,i, · · · , sm,i). For each dt(Sj , Sj+1) in ϕk, term (si,j ↔ si,j+1) can
be removed for all pi ∈ P\(•t ∪ t•) by quantifying si,j+1. The reason for this
is as follows: Let ϕ̂k be the subformula of ϕk that is obtained by removing the
term (si,j ↔ si,j+1); that is, ϕk = ϕ̂k ∧ (si,j ↔ si,j+1). Because this term
(si,j ↔ si,j+1) occurs as a conjunct in ϕk, ϕk evaluates to true only if si,j and
si,j+1 have the same value. Hence ϕ̂k with si,j+1 being replaced with si,j has the
same satisfiability as ϕk. The other terms remaining in ϕ̂k can also be removed
in the same way.

Below is the formula that is thus obtained from the Petri net in Figure 1
when k = 1.

I(S0)
∧

(
(s1,0 ∧ ¬s1,1 ∧ s2,1 ∧ s3,1)

∨
(
(s1,0 ↔ s1,1) ∧ (s2,0 ↔ s2,1) ∧ (s3,0 ↔ s3,1)

))

∧
(
(s1,1 ∧ ¬s1,2 ∧ s4,2 ∧ s5,2)

∨
(
(s1,1 ↔ s1,2) ∧ (s4,0 ↔ s4,2) ∧ (s5,0 ↔ s5,2)

))

∧
(
(s2,1 ∧ ¬s2,3 ∧ s6,3) ∨

(
(s2,1 ↔ s2,3) ∧ (s6,0 ↔ s6,3)

))

∧
(
(s3,1 ∧ ¬s3,4 ∧ s7,4) ∨

(
(s3,1 ↔ s3,4) ∧ (s7,0 ↔ s7,4))

)

∧
(
(s4,2 ∧ ¬s4,5 ∧ s6,5) ∨

(
(s4,2 ↔ s4,5) ∧ (s6,3 ↔ s6,5))

)

∧
(
(s5,2 ∧ ¬s5,6 ∧ s7,6) ∨

(
(s5,2 ↔ s5,6) ∧ (s7,4 ↔ s7,6))

)

∧
(
(s6,5 ∧ s7,6 ∧ ¬s6,7 ∧ ¬s7,7 ∧ s1,7)

∨
(
(s1,2 ↔ s1,7) ∧ (s6,5 ↔ s6,7) ∧ (s7,6 ↔ s7,7)

))

∧R(S7)[s2,7←s2,3,s3,7←s3,4,s4,7←s4,5,s5,7←s5,6]

where F[x←y] represents a formula generated by substituting y for x in F .
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Note that this resulting formula is quite smaller than T (S, S′) in Figure 3,
since Tt(S, S′) contains at least m(= |P|) literals, while its counterpart in our
encoding only contains at most 4|•t|+3|t•| literals. The difference becomes larger
if the number of places that are neither input nor output places increases for
each transition.

It should also be noted that in this particular case, k = 1 is enough to explore
all the reachable states. That is, for any reachable state M , a sequence of states
S0S1 · · ·S7 exists such that: S0 = M0; for any i, Si−1

ti→ Si or Si−1 = Si; and
S7 = M .

In the worst case, our encoding introduces n + 1 different Boolean variables
for a single place in order to encode one step. Compared with the ordinary
encoding which requires only two different variables (for the current and next
states), this number might seem prohibitively large. In practice, however, this
rarely causes a problem, because for many transitions in Petri nets representing
practical concurrent systems, input and output places are often only a small
fraction of all places, and from our experience, the performance of SAT solvers
critically depends on the number of literals, but not on the number of different
variables.

3.3 Complexity Issues

Reachability checking is a very difficult problem in terms of computational com-
plexity. For arbitrary Petri nets, the problem is decidable but is in EXPSPACE.
Although this problem is easier if the Peri net is safe, the complexity is still
PSPACE-complete [3].

The proposed method reduces the reachability problem to the propositional
satisfiability problem. It is well known that the latter problem is in NP-complete.
In many practical situations, however, our method works well for the following
reasons: first, recently developed SAT solvers can often perform very effectively
due to powerful heuristics; and second, if the state to be checked is reachable
and is close to the initial state, it will suffice to check a small formula to decide
the reachability.

3.4 Related Properties

Here we show that various properties can be verified with our method, by ac-
cordingly adjusting R(S) which represents the state set whose reachability is to
be checked.

L0- and L1-liveness. A transition t is said to be L1-live iff t can be fired at
least once. If t is not L1-live, then t is said to be L0-live or dead. L1-liveness
can be verified by checking the reachability to a state where the transition of
interest is enabled. The characteristic function of the states where a transition t
is enabled is: ∧

pi∈•t

si
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Deadlock. A Petri net has a deadlock if there exists a reachable state where
no transition can be fired. The set of states where no transition is enabled can
be represented as:

¬
∨

t∈T
Et(S)

4 L3-Liveness Verification

In this section, we discuss verifying properties that can not be checked by reacha-
bility analysis. As an example, we consider the problem of checking L3-liveness;
a transition t is said to be L3-live iff a computation starting from the initial
state exists on which t is fired infinitely often.

In our method, the L3-liveness of a given transition is checked by searching
a computation that contains a loop where t is fired. This idea is the same as
LTL bounded model checking; but in our case a slight modification is required
to the method described in the previous section, in order to select only loops
that involve the firing of the transition of interest.

Specifically we introduce d′t(S, S′, f) as an alternative representation to
dt(S, S′). Here f is a Boolean variable. d′t(S, S′, f) is defined as follows.

d′t(S, S′, f) :=
(
f ↔ (

∧

pi∈•t

si ∧
∧

pi∈•t\t•
¬s′i ∧

∧

pi∈t•
s′i)

)

∧
(
f ∨

∧

pi∈•t∪t•
(si ↔ s′i)

)
∧

∧

pi∈P\(•t∪t•)

(si ↔ s′i)

It is easy to see that dt(S, S′) = ∃f.[d′t(S, S′, f)]. Also the following two proper-
ties hold:

– d′t(S, S′, 0) = 1 iff S = S′ holds and S
t→ S′ does not hold.

– d′t(S, S′, 1) = 1 iff S
t→ S′.

Let Mtm

k be defined as follows:

Mtm

k := I(S0)
∧dt1(S0, S1) ∧ dt2(S1, S2) ∧ · · · ∧ dtm−1(Sm−2, Sm−1)

∧d′tm
(Sm−1, Sm, fm−1) ∧ dtm+1(Sm, Sm+1) ∧ · · · ∧ dtn

(Sn−1, Sn)
∧dt1(Sn, Sn+1) ∧ dt2(Sn+1, Sn+2) ∧ · · · ∧ dtm−1(Sn+m−2, Sn+m−1)

∧d′tm
(Sn+m−1, Sn+m, fn+m−1) ∧ dtm+1(Sn+m, Sn+m+1) ∧ · · ·

∧dtn(S2n−1, S2n)
· · ·
∧dt1(S(k−1)∗n, S(k−1)∗n+1) ∧ · · ·

∧d′tm
(S(k−1)∗n+m−1, S(k−1)∗n+m, f(k−1)∗n+m−1) ∧ · · ·

∧dtn(Sk∗n−1, Sk∗n)

Mtm

k is different from Mk only in that dtm
(S, S′) is replaced with d′tm

(S, S′, f).
Since dt(S, S′) = ∃f.[d′t(S, S′, f)], if Mtm

k is satisfied by S0, S1, · · · , Sk∗n, then
Si ⇀ Si+1 for any 0 ≤ i < k ∗ n.
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Now let us define iLtm

k as follows:

iLtm

k := (Si∗n = Sk∗n)
∧(fi∗n+m−1 ∨ f(i+1)∗n+m−1 ∨ · · · ∨ f(k−1)∗n+m−1)

If both Mtm

k and iLtm

k are satisfied by S0, · · · , Sn∗k, then Si∗nSi∗n+1 · · ·Sk∗n

comprises a loop in which Sj
tm→ Sj+1 for some j such that i ∗ n ≤ j < k ∗ n.

On the other hand, if a computation M0 · · ·Mk exists such that Mi is identical
to Mk and Mj

tm→ Mj+1(i ≤ j < k), then Mtm

k ∧ iLtm
i can be satisfied by

assigning as follows: (i) for 0 ≤ j ≤ k, Sj∗n, Sj∗n+1, · · · , Sj∗n+ij−1 = Mj and

Sj∗n+ij , · · · , S(j+1)∗n = Mj+1, and (ii) for j (i ≤ j < k), if Mj
tm→ Mj+1, then

fj+n+m−1 = 1; otherwise fj+n+m−1 = 0.
As a result, we obtain:

ϕtm

k := Mtm

k ∧
∨

0≤i≤k−1
iLtm

k

Because of the above discussions, one can see that if ϕtm

k is satisfiable, then
transition tm is L3-live; otherwise, no computation of length less than or equal
to k exists that is a witness for L3-liveness of tm.

5 Transition Ordering

In this section, we introduce an important pre-processing procedure for our
method. Thus far we have not discussed the order of the transitions; we have
implicitly assumed that transitions with small indices are taken first into con-
sideration in constructing a formula to be checked. However the state space that
can be explored by our method critically depends on this order of transitions.
As an example, take the Petri net shown in Figure 1 again. As stated before, all
reachable state can be explored by our method even with k = 1 if transitions are
considered in the order t1, t2, · · · , t7. Now suppose that the order were the oppo-
site, that is, t7, t6, · · · , t1. In this case the number of states that can be checked
would be considerably reduced. Precisely, when k = 1, the state sets that can be
reached would be {M0, M1, M2}.

To obtain an appropriate order, we develop a heuristic as shown in Figure
4. In this algorithm a set V isited and a queue Done are used to represent the
set of already visited places and the order of the transitions, respectively. This
algorithm traverses the net structure in a depth first manner, from a place with
a token in the initial state M0. The procedure visit place() is called with the
parameter p being that place. In the procedure, p is added to V isited first. Then
for each of the output transitions, say t, the following is done: If t has not yet
been ordered and all its input places have been visited, then t is enqueued and
the procedure is recursively called with the parameter being each of t’s output
places. Because a transition t is ordered after all its input places are visited, t is
usually ordered earlier than the transitions in •(•t).
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Transitions that can not be reached from the initially marked places are not
ordered in this algorithm. Since a safe Petri net has no source transition, those
transitions will never be enabled and thus can be safely ignored.

Finally we should remark that a problem similar to this transition ordering
arises in using transition chaining [14], a technique for speeding up BDD-based
reachability analysis. The authors of [14] suggested that given a transition t, all
transitions in •(•t) should be ordered first. However no detailed algorithm was
presented in their paper.

main {
set V isited := ∅;
queue Done := ∅;
for p ∈ P0 // P0 is the set of marked places in M0.
call visit place(p);
}

visit place(p){
add p to V isited;
for t ∈ p•

if(t �∈ Done and ∀p̂ ∈ •t [p̂ ∈ V isited]){
enqueue t to Done;
for p̂ : p̂ ∈ t• and p̂ /∈ V isited
call visit place(p̂);
}
}

Fig. 4. Algorithm for ordering transitions.

6 Experimental Results

We conducted experimental evaluation using a Linux workstation with a 2GHz
Xeon processor and 512MByte memory. All Petri nets used in the experiment
were taken from [8]. Table 1 shows the size of these Petri nets. Remember that
m = |P| is the number of places and n = |T | is the number of transitions. The
‘States’ column represents the number of reachable states reported in [8]. These
Petri nets all contain deadlock.

We checked the following properties: (1) L1-liveness for a transition; (2) dead-
lock freedom; and (3) L3-liveness for a transition. For (1) and (3), the transition
to be checked was selected at random. In the experiment, ZChaff, an implementa-
tion of Chaff [13], was used as a SAT solver. Structure preserving transformation
[15] was used for transforming the formula to be checked into CNF, as ZChaff
only takes a CNF Boolean formula as an input.

For each model we incremented k until a satisfying assignment (that is a
counterexample or a witness) was found. Table 2 shows the time (in seconds)



SAT-Based Verification of Safe Petri Nets 89

Table 1. Problem Instances.

Problem m n States
DARTES(1) 331 251 >1500000
DP(12) 72 48 531440
ELEV(1) 63 99 163
ELEV(2) 146 299 1092
ELEV(3) 327 783 7276
ELEV(4) 736 1939 48217
HART(25) 94 92 >1000000
HART(50) 252 152 >1000000
HART(75) 377 227 >1000000
HART(100) 502 302 >1000000
KEY(2) 94 92 536
KEY(3) 129 133 4923
KEY(4) 164 174 44819
MMGT(2) 86 114 816
MMGT(3) 122 172 7702
MMGT(4) 158 232 66308
Q(1) 163 194 123596

required by ZChaff to find a satisfying assignment for the value of k. For some
cases, a counterexample/witness could not be found because no such computa-
tion existed, processing was not completed within a reasonable amount of time,
or memory shortage occurred. For these cases we show the largest k for which
our method was able to prove that no satisfying assignment exists (denoted as
‘> k’) and the time used to prove it (denoted with parentheses).

For comparison purposes, the following two other methods were tested: ordi-
nary SAT-based bounded model checking and BDD-based model checking. Both
methods are implemented in the NuSMV tool [4]. We used the PEP tool [7]
to generate the input programs to NuSMV from the Petri nets. Table 2 shows
the results of using these methods; the “SAT” columns and the “BDD” columns
show the results of using ordinary SAT-based bounded model checking and those
of BDD-based model checking, respectively. L3-liveness was not checked because
this property is not always verifiable with these methods.

From the results, it can be seen that the proposed method completed veri-
fication for most of the problems that the two existing methods were not able
to solve. When compared to the ordinary bounded model checking, one can see
that our method required a much smaller value of k to find a witness. As a result,
even for the problems the existing methods were able to handle (e.g., DP(12) or
KEY(2)), our method often outperformed these methods in execution time.
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Table 2. Results.

L1-Liveness Deadlock L3-Liveness
NuSMV NuSMVOurs

SAT BDD
Ours

SAT BDD
Ours

Problem k Time k Time Time k Time k Time Time k Time
DARTES(1) 1 0.01 >1 0.01 NA 1 0.02 >1 0.02 NA >10 0.18
DP(12) 1 0.0 3 0.01 NA 1 0.0 12 37308.6 NA 1 0.0
ELEV(1) 2 0.01 8 1.14 0.46 1 0.04 9 0.26 0.55 >27 0.19
ELEV(2) 2 0.03 >5 1.75 8.72 1 1.12 >5 6.82 32.46 >8 0.14
ELEV(3) 2 0.11 >1 0.0 NA 1 14.64 >1 0.02 NA >3 0.05
ELEV(4) >1 0.07 >0 0.0 NA 1 208.4 >0 0.01 NA >1 0.0
HART(25) 1 0.0 >6 0.47 NA 1 0.0 >6 5.67 NA >38 1022.46
HART(50) 1 0.0 >2 0.02 NA 1 0.0 >2 0.02 NA >19 4.47
HART(75) 1 0.0 >1 0.0 NA 1 0.0 >1 0.01 NA >12 158.68
HART(100) 1 0.01 >0 0.0 NA 1 0.0 >0 0.0 NA >9 34.11
KEY(2) 1 0.0 6 0.03 746.07 1 0.0 >9 1.61 NA >29 0.29
KEY(3) 1 0.01 6 0.04 NA 1 0.0 >6 1.43 NA >20 0.4
KEY(4) 1 0.01 >4 0.14 NA 1 0.0 >4 0.18 NA >15 0.28
MMGT(2) 1 0.0 5 0.03 0.65 1 0.0 8 0.07 0.71 >22 0.26
MMGT(3) 2 0.01 >6 2.81 1.49 2 0.07 >6 46.78 1.6 >14 0.18
MMGT(4) 3 0.02 >5 0.24 3.53 3 0.25 >5 12.64 3.61 >10 0.18
Q(1) >13 5.28 >4 0.19 NA 1 0.02 >4 0.49 NA >13 3.3

7 Conclusions

In this paper, we proposed a new method for bounded model checking. By ex-
ploiting the interleaving nature of Petri nets, our method generates much more
succinct formulas than ordinary bounded model checking, thus resulting in high
efficiency. We applied the proposed method to a collection of safe Petri nets. The
results showed that our method outperformed ordinary bounded model checking
in all cases tested and beat BDD-based model checking especially when a short
computation exists that was a counterexample/witness.

There are several directions in which further work is needed. First a more
comprehensive comparison is needed with existing verification methods other
than those discussed here. Especially, comparison with bounded reachability
checking proposed by Heljanko [8] should be conducted, since his approach is
similar to ours in the sense that both can be used for reachability checking for
safe Petri nets. Other important verification methods include those based on
partial order reduction.

We think that applying the proposed method to other models than (pure)
Petri nets is also important. To date we have obtained some results of applying
our method to detection of feature interactions in telecommunication services
[17]. Hardware verification (e.g., [10,18]) is also an important area where the
applicability of our method should be tested.
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Another direction is to extend the method to verify properties other than
reachability and L3-liveness. Currently we are working on modifying the pro-
posed method for verification of arbitrary LTL X formulas. LTL X is an impor-
tant class of temporal logic; many model checking tools, such as SPIN [11] and
the one described in [9], can be used to verify temporal formulas in this class.

Recently it was shown that SAT can be used, in combination with unfolding
[12], for coverability checking of unbounded Petri nets [1]. Our approach can not
be directly applied to unbounded Petri nets; but we think that extending the
proposed method to infinite state systems is a challenging but important issue.

Acknowledgments. The authors wish to thank anonymous referees for their
useful comments.
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