A Theory of Timed Automata ®

Rajeev Alur ? David L. Dill 3

Computer Science Department, Stanford University

Stanford, CA 94305.

Abstract. We propose timed (finite) automata to model the behavior of real-
time systems over time. Our definition provides a simple, and yet powerful, way to
annotate state-transition graphs with timing constraints using finitely many real-
valued clocks. A timed automaton accepts timed words — infinite sequences in
which a real-valued time of occurrence is associated with each symbol. We study
timed automata from the perspective of formal language theory: we consider closure
properties, decision problems, and subclasses. We consider both nondeterministic
and deterministic transition structures, and both Biichi and Muller acceptance con-
ditions. We show that nondeterministic timed automata are closed under union and
intersection, but not under complementation, whereas deterministic timed Muller
automata are closed under all Boolean operations. The main construction of the
paper is an (PSPACE) algorithm for checking the emptiness of the language of a
(nondeterministic) timed automaton. We also prove that the universality problem
and the language inclusion problem are solvable only for the deterministic automata:
both problems are undecidable (I[}-hard) in the nondeterministic case and PSPACE-
complete in the deterministic case. Finally, we discuss the application of this theory
to automatic verification of real-time requirements of finite-state systems.

Keywords: Real-time systems, automatic verification, formal languages and au-
tomata theory.

! Preliminary versions of this paper appear in the Proceedings of the 17th International Colloguium on
Automata, Languages, and Programming (1990), and in the Proceedings of the REX workshop “Real-time:
theory in practice” (1991).

ZCurrent address: AT&T Bell Laboratories, 600 Mountain Avenue, Room 2D-144, Murray Hill, NJ
07974.

3Supported by the National Science Foundation under grant MIP-8858807, and by the United States
Navy, Office of the Chief of Naval Research under grant N00014-91-J-1901. This publication does not
necessarily reflect the position or the policy of the U.S. Government, and no official endorsement of this
work should be inferred.

1 Introduction

Modal logics and w-automata for qualitative temporal reasoning about concurrent systems
have been studied in great detail (selected references: [36, 32, 16, 28, 47, 44, 37, 11]).
These formalisms abstract away from time, retaining only the sequencing of events. In
the linear time model, it is assumed that an execution can be completely modeled as a
sequence of states or system events, called an execution trace (or just trace). The behavior
of the system is a set of such execution sequences. Since a set of sequences is a formal
language, this leads naturally to the use of automata for the specification and verification
of systems. When the systems are finite-state, as many are, we can use finite automata,
leading to effective constructions and decision procedures for automatically manipulat-
ing and analyzing system behavior. The universal acceptance of finite automata as the
canonical model of finite-state computation can be attributed to the robustness of the
model and the appeal of its theory. In particular, a variety of competing formalisms —
nondeterministic Biichi automata, deterministic and nondeterministic Muller automata,
w-regular expressions, modal formulas of (extended) temporal logic, and second-order for-
mulas of the monadic theory of one successor (S15) — have the same expressiveness, and
define the class of w-regular languages [7, 9, 33, 46, 42]. Consequently many verification
theories are based on the theory of w-regular languages.

Although the decision to abstract away from quantitative time has had many ad-
vantages, it is ultimately counterproductive when reasoning about systems that must
interact with physical processes; the correct functioning of the control system of airplanes
and toasters depends crucially upon real-time considerations. We would like to be able to
specify and verify models of real-time systems as easily as qualitative models. Our goal
is to modify finite automata for this task and develop a theory of timed finite automata,
similar in spirit to the theory of w-regular languages. We believe that this should be the
first step in building theories for the real-time verification problem.

For simplicity, we discuss models that consider executions to be infinite sequences of
events, not states (the theory with state-based models differs only in details). Within this
framework, it is possible to add timing to an execution trace by pairing it with a sequence
of times, where the 2’th element of the time sequence gives the time of occurrence of the
2’th event. At this point, however, a fundamental question arises: what is the nature of
time?

Modeling time

One alternative, which leads to the discrete-time model, requires the time sequence to
be a monotonically increasing sequence of integers. This model is appropriate for certain
kinds of synchronous digital circuits, where signal changes are considered to have changed
exactly when a clock signal arrives. One of the advantages of this model is that it can be
transformed easily into an ordinary formal language. Fach timed trace can be expanded
into a trace where the times increase by exactly one at each step, by inserting a special
silent event as many times as necessary between events in the original trace. Once this
transformation has been performed, the time of each event is the same as its position,
so the time sequence can be discarded, leaving an ordinary string. Hence, discrete time
behaviors can be manipulated using ordinary finite automata. Of course, in physical

processes events do not always happen at integer-valued times. The discrete-time model
requires that continuous time be approximated by choosing some fixed quantum a priori,
which limits the accuracy with which physical systems can be modeled.

The fictitious-clock model is similar to the discrete time model, except that it only
requires the sequence of integer times to be non-decreasing. The interpretation of a timed
execution trace in this model is that events occur in the specified order at real-valued
times, but only the (integer) readings of the actual times with respect to a digital clock
are recorded in the trace. This model is also easily transformed into a conventional
formal language. First, add to the set of events a new one, called tick. The untimed
trace corresponding to a timed trace will include all of the events from the timed trace,
in the same order, but with #;;1 — ¢, number of ticks inserted between the :’th and the
(¢ + 1)’th events (note that this number may be 0). Once again, it is conceptually simple
to manipulate these behaviors using finite automata, but the compensating disadvantage
is that it represents time only in an approximate sense.

We prefer a dense-time model, in which time is a dense set, because it is a more
natural model for physical processes operating over continuous time. In this model, the
times of events are real numbers, which increase monotonically without bound. Dealing
with dense time in a finite-automata framework is more difficult than the other two cases,
because it is not obvious how to transform a set of dense-time traces into an ordinary
formal language. Instead, we have developed a theory of timed formal languages and
timed automata to support automated reasoning about such systems.

Overview

To augment finite w-automata with timing constraints, we propose the formalism of timed
automata. Timed automata accept timed words — infinite sequences in which a real-
valued time of occurrence is associated with each symbol. A timed automaton is a finite
automaton with a finite set of real-valued clocks. The clocks can be reset to 0 (indepen-
dently of each other) with the transitions of the automaton, and keep track of the time
elapsed since the last reset. The transitions of the automaton put certain constraints on
the clock values: a transition may be taken only if the current values of the clocks satisty
the associated constraints. With this mechanism we can model timing properties such
as “the channel delivers every message within 3 to 5 time units of its receipt”. Timed
automata can capture several interesting aspects of real-time systems: qualitative fea-
tures such as liveness, fairness, and nondeterminism; and quantitative features such as
periodicity, bounded response, and timing delays.

We study timed automata from the perspective of formal language theory. We consider
both deterministic and nondeterministic varieties, and for acceptance criteria we consider
both Biichi and Muller conditions. We show that nondeterministic timed automata are
closed under union and intersection, but surprisingly, not under complementation. The
closure properties for the deterministic classes are similar to their untimed counterparts:
deterministic timed Muller automata are closed under all Boolean operations, whereas
deterministic timed Biichi automata are closed under only the positive Boolean operations.
These results imply that, unlike the untimed case, deterministic timed Muller automata
are strictly less expressive than their nondeterministic counterparts.

We study a variety of decision problems for the different types of timed automata. The

main positive result is an untiming construction for timed automata. Due to the real-
valued clock variables, the state space of a timed automaton is infinite, and the untiming
algorithm constructs a finite quotient of this space. This is used to prove that the set
of untimed words consistent with the timing constraints of a timed automaton forms an
w-regular set. It also leads to a PSPACE decision procedure for testing emptiness of the
language of a timed automaton. We also show that the dual problem of testing whether
a timed automaton accepts all timed words (i.e., the universality question) is undecidable
(IIi-hard) for nondeterministic automata. This also implies the undecidability of the
language inclusion problem. However, both these problems can be solved in PSPACE for
the deterministic versions.

Finally, we show how to apply the theory of timed automata to prove correctness of
finite-state real-time systems. We give a PSPACE verification algorithm to test whether
a system modeled as a product of timed automata satisfies its specification given as a
deterministic timed Muller automaton.

Related work

Different ways of incorporating timing constraints in the qualitative models of a system
have been proposed recently, however, no attempt has been made to develop a theory
of timed languages and no algorithms for checking real-time properties in the dense-time
model have been developed.

Perhaps the most standard way of introducing timing information in a process model
is by associating lower and upper bounds with transitions. Examples of these include
timed Petri nets [38], timed transition systems [35, 21], timed [/O automata [31], and
Modecharts [25]. In a timed automaton, unlike these other models, a bound on the time
taken to traverse a path in the automaton, not just the time interval between the successive
transitions, can be directly expressed. Our model is based on an earlier model proposed
by Dill that employs timers [13]. A model similar to Dill’s was independently proposed
and studied by Lewis [30]. He defines state-diagrams, and gives a way of translating a
circuit description to a state-diagram. A state-diagram is a finite-state machine where
every edge is annotated with a matrix of intervals constraining various delays. Lewis also
develops an algorithm for checking consistency of the timing information for a special
class of state-diagrams; the ones for which there exists a constant K such that at most A
transitions can happen in a time interval of unit length. Our untiming construction does
not need the latter assumption, and has a better worst-case complexity. We note that the
decidability and lower bound results presented here carry over to his formalism also.

There have been a few attempts to extend temporal logics with quantitative time
[6, 24, 26, 35, 17, 5, 20]. Most of these logics employ the discrete-time or the fictitious-
clock semantics. In the case of the dense-time model the only previously known result is
an undecidability result: in [5] it is shown that the satisfiability problem for a real-time
extension of the linear-time temporal logic PTL is undecidable (X}-hard) in the dense-time
model.

SCERE

Figure 1: Bilichi automaton accepting (a + b)*a®

2 w-automata

In this section we will briefly review the relevant aspects of the theory of w-reqular lan-
guages.

The more familiar definition of a formal language is as a set of finite words over some
given (finite) alphabet (see, for example, [23]). As opposed to this, an w-language consists
of infinite words. Thus an w-language over a finite alphabet ¥ is a subset of 3% — the set
of all infinite words over ¥. w-automata provide a finite representation for certain types
of w-languages. An w-automaton is essentially the same as a nondeterministic finite-state
automaton, but with the acceptance condition modified suitably so as to handle infinite
input words. Various types of w-automata have been studied in the literature [7, 33, 9, 42].
We will mainly consider two types of w-automata: Biichi automata and Muller automata.

A transition table Ais a tuple (X,5, So, E), where ¥ is an input alphabet, S is a finite
set of automaton states, Sg € S is a set of start states, and E C S x S x ¥ is a set of
edges. The automaton starts in an initial state, and if (s,s’,a) € E then the automaton
can change its state from s to s’ reading the input symbol a.

For a word o = 0103 ... over the alphabet X, we say that

sy 45 s 2 sy 4 ...

is a run of A over o, provided sy € Sg, and (s;_1,s;,0;) € E for all ¢ > 1. For such a run,
the set inf(r) consists of the states s € S such that s = s; for infinitely many 7 > 0.

Different types of w-automata are defined by adding an acceptance condition to the
definition of the transition tables. A Biichi automaton A is a transition table (X, S, S, E)
with an additional set F' C S of accepting states. A run r of A over a word o € ¥ is an
accepting run il inf(r) N F # 0. In other words, a run r is accepting iff some state from
the set F repeats infinitely often along r. The language L(.A) accepted by A consists of
the words o € ¥ such that A has an accepting run over o.

Example 2.1 Consider the 2-state automaton of Figure 1 over the alphabet {a,b}. The
state sg is the start state and s; is the accepting state. Every accepting run of the
automaton has the form

o1 a2 In a a a
T8 — S — - —> 89 — 8] — § — -+

with o; € {a,b} for 1 < i < n for some n > 1. The automaton accepts all words with
only a finite number of b’s; that is, the language Lo = (a + b)*a*. &

Figure 2: Deterministic Muller automaton accepting (a + b)*a®

An w-language is called w-regular iff it is accepted by some Biichi automaton. Thus
the language Lo of Example 2.1 is an w-regular language.

The class of w-regular languages is closed under all the Boolean operations. Language
intersection is implemented by a product construction for Biichi automata [9, 47]. There
are known constructions for complementing Biichi automata [41, 40].

When Biichi automata are used for modeling finite-state concurrent processes, the
verification problem reduces to that of language inclusion. The inclusion problem for
w-regular languages is decidable. To test whether the language of one automaton is
contained in the other, we check for emptiness of the intersection of the first automaton
with the complement of the second. Testing for emptiness is easy; we only need to search
for a cycle that is reachable from a start state and includes at least one accepting state.
In general, complementing a Biichi automaton involves an exponential blow-up in the
number of states, and the language inclusion problem is known to be PSPACE-complete
[41]. However, checking whether the language of one automaton is contained in the
language of a deterministic automaton can be done in polynomial time [27].

A transition table A = (X,S,So, E) is deterministic iff (i) there is a single start state,
that is, [So| = 1, and (ii) the number of a-labeled edges starting at s is at most one
for all states s € S and for all symbols @ € ¥. Thus, for a deterministic transition
table, the current state and the next input symbol determine the next state uniquely.
Consequently, a deterministic automaton has at most one run over a given word. Unlike
the automata on finite words, the class of languages accepted by deterministic Biichi
automata is strictly smaller than the class of w-regular languages. For instance, there is
no deterministic Biichi automaton which accepts the language Lg of Example 2.1. Muller
automata (defined below) avoid this problem at the cost of a more powerful acceptance
condition.

A Muller automaton A is a transition table (¥,S,So, E) with an acceptance family
F C 25 A run r of Aover a word o € X% is an accepting run iff inf(r) € F. That is, a
run r is accepting iff the set of states repeating infinitely often along r equals some set in
F. The language accepted by A is defined as in case of Biichi automata.

The class of languages accepted by Muller automata is the same as that accepted by
Biichi automata, and also equals that accepted by deterministic Muller automata.

Example 2.2 The deterministic Muller automaton of Figure 2 accepts the language L
consisting of all words over {a, b} with only a finite number of b’s. The Muller acceptance
family is {{s1}}. Thus every accepting run can visit the state sy only finitely often. m

Thus deterministic Muller automata form a strong candidate for representing w-regular
languages: they are as expressive as their nondeterministic counterpart, and they can be
complemented in polynomial time. Algorithms for constructing the intersection of two
Muller automata and for checking language inclusion are known [10].

3 Timed automata

In this section we define timed words by coupling a real-valued time with each symbol in
a word. Then we augment the definition of w-automata so that they accept timed words,
and use them to develop a theory of timed regular languages analogous to the theory of
w-regular languages.

3.1 Timed languages

We define timed words so that a behavior of a real-time system corresponds to a timed
word over the alphabet of events. As in the case of the dense-time model, the set of
nonnegative real numbers, R, is chosen as the time domain. A word o is coupled with a
time sequence 7 as defined below:

Definition 3.1 A time sequence 7 = 773 - - - is an infinite sequence of time values 7; € R
with 7; > 0, satisfying the following constraints:

1. Monotonicity: T increases strictly monotonically; that is, 7; < 7,41 for all ¢ > 1.

2. Progress: For every t € R, there is some ¢ > 1 such that 7; > ¢.

A timed word over an alphabet ¥ is a pair (o, 7) where 0 = 105 .. is an infinite word
over Y and 7 is a time sequence. A timed language over ¥ is a set of timed words over Y.
|

If a timed word (o, 7) is viewed as an input to an automaton, it presents the symbol
o; at time 7;. If each symbol o; is interpreted to denote an event occurrence then the
corresponding component 7; is interpreted as the time of occurrence of ;. Under certain
circumstances it may be appropriate to allow the same time value to be associated with
many consecutive events in the sequence. To accommodate this possibility one could use
a slightly different definition of timed words by requiring a time sequence to increase only
monotonically (i.e., require 7; < 7,41 for all ¢ > 1). All our results continue to hold in this

alternative model also.
Let us consider some examples of timed languages.

Example 3.2 Let the alphabet be {a,b}. Define a timed language L to consist of all
timed words (o, 7) such that there is no b after time 5.6. Thus the language L, is given
by

Ly = {(o,7) | Vi.((1i > 5.6) — (0. =a))}.

Another example is the language L consisting of timed words in which a and b alter-
nate, and for the successive pairs of a and b, the time difference between a and b keeps
increasing. The language Lo is given as

Ly = {((ab)”,7) | Vi. ((72i — T2i-1) < (T2iq2 — Toig1)) }- u

b, (x<2)?
Figure 3: Example of a timed transition table

The language-theoretic operations such as intersection, union, complementation are
defined for timed languages as usual. In addition we define the Untime operation which
discards the time values associated with the symbols, that is, it considers the projection
of a timed trace (o, 7) on the first component.

Definition 3.3 For a timed language L over ¥, Untime(L) is the w-language consisting
of o € ¥¥ such that (o,7) € L for some time sequence 7. ®

For instance, referring to Example 3.2, Untime(Ly) is the w-language (a + b)*a®, and
Untime(Ly) consists of a single word (ab)®.

3.2 Transition tables with timing constraints

Now we extend transition tables to timed transition tables so that they can read timed
words. When an automaton makes a state-transition, the choice of the next state depends
upon the input symbol read. In case of a timed transition table, we want this choice to
depend also upon the time of the input symbol relative to the times of the previously
read symbols. For this purpose, we associate a finite set of (real-valued) clocks with each
transition table. A clock can be set to zero simultaneously with any transition. At any
instant, the reading of a clock equals the time elapsed since the last time it was reset.
With each transition we associate a clock constraint, and require that the transition may
be taken only if the current values of the clocks satisfy this constraint. Before we define
the timed transition tables formally, let us consider some examples.

Example 3.4 Consider the timed transition table of Figure 3. The start state is so.
There is a single clock . An annotation of the form x := 0 on an edge corresponds to
the action of resetting the clock o when the edge is traversed. Similarly an annotation of
the form (2 < 2)? on an edge gives the clock constraint associated with the edge.

The automaton starts in state sg, and moves to state s; reading the input symbol a.
The clock = gets set to 0 along with this transition. While in state s, the value of the
clock x shows the time elapsed since the occurrence of the last ¢ symbol. The transition
from state sy to sg is enabled only if this value is less than 2. The whole cycle repeats
when the automaton moves back to state sg. Thus the timing constraint expressed by
this transition table is that the delay between a and the following b is always less than 2;
more formally, the language is

{((ab)*,7) | Vi. (T2s < T2i—1 + 2)}.

d, (y>2)?

OENCE NG
x:=0 y:=0 (x<1)?

Figure 4: Timed transition table with 2 clocks

Thus to constrain the delay between two transitions e; and e;, we require a particular
clock to be reset on ¢;, and associate an appropriate clock constraint with e;. Note that
clocks can be set asynchronously of each other. This means that different clocks can
be restarted at different times, and there is no lower bound on the difference between
their readings. Having multiple clocks allows multiple concurrent delays, as in the next
example.

Example 3.5 The timed transition table of Figure 4 uses two clocks « and y, and accepts
the language

Lz = {((abed)”,7) | V). ((Tajrs < Tajgr + 1) A (Tajga > Taje +2)) 5.

The automaton cycles among the states sg, sy, so and s3. The clock = gets set to
0 each time it moves from s¢ to s; reading a. The check (x < 1)7 associated with the
c-transition from sy to s3 ensures that ¢ happens within time 1 of the preceding a. A
similar mechanism of resetting another independent clock y while reading b and checking
its value while reading d, ensures that the delay between b and the following d is always
greater than 2. m

Notice that in the above example, to constrain the delay between a and ¢ and between
b and d the automaton does not put any explicit bounds on the time difference between
a and the following b, or ¢ and the following d. This is an important advantage of having
multiple clocks which can be set independently of each other. The above language L3 is
the intersection of the two languages L3 and L3 defined as

Lzla = {((abed)*,7) | V5. (Tajy3 < Tajp1 + 1)},
L:Za = {((abed)”,7) | V5. (Tajpa > Tajpe +2)}.

Fach of the languages L} and L3 can be expressed by an automaton which uses just one
clock; however to express their intersection we need two clocks.

We remark that the clocks of the automaton do not correspond to the local clocks
of different components in a distributed system. All the clocks increase at the uniform
rate counting time with respect to a fixed global time frame. They are fictitious clocks
invented to express the timing properties of the system. Alternatively, we can consider
the automaton to be equipped with a finite number of stop-watches which can be started
and checked independently of one another, but all stop-watches refer to the same clock.

3.3 Clock constraints and clock interpretations

To define timed automata formally, we need to say what type of clock constraints are
allowed on the edges. The simplest form of a constraint compares a clock value with a
time constant. We allow only the Boolean combinations of such simple constraints. Any
value from Q, the set of nonnegative rationals, can be used as a time constant. Later, in
Section 5.5, we will show that allowing more complex constraints, such as those involving
addition of clock values, leads to undecidability.

Definition 3.6 For a set X of clock variables, the set ®(X) of clock constraints 6 is
defined inductively by
b=z <cle<ax]|=b|b1 by,

where z is a clock in X and ¢ is a constant in Q. =

Observe that constraints such as true, (z = ¢), ¥ € [2,5) can be defined as abbrevia-
tions.

A clock interpretation v for a set X of clocks assigns a real value to each clock; that
is, it is a mapping from X to R. We say that a clock interpretation v for X satisfies a
clock constraint ¢ over X iff 6 evaluates to true using the values given by v.

For t € R, v+1 denotes the clock interpretation which maps every clock x to the value
v(x) + 1, and the clock interpretation ¢-v assigns to each clock « the value t-v(x). For
Y C X, [V — t]v denotes the clock interpretation for X which assigns ¢t to each « € Y,
and agrees with v over the rest of the clocks.

3.4 Timed transition tables
Now we give the precise definition of timed transition tables.

Definition 3.7 A timed transition table A is a tuple (¥,S, Sy, C, E), where

e Y is a finite alphabet,

e 5 is a finite set of states,

e 55 C S is a set of start states,

e C is a finite set of clocks, and

e ECSxSxYx2°x®(C) gives the set of transitions. An edge (s, s, a,), 8)
represents a transition from state s to state s’ on input symbol a. The set
A C C gives the clocks to be reset with this transition, and ¢ is a clock
constraint over C.

Given a timed word (o, 7), the timed transition table A starts in one of its start states
at time 0 with all its clocks initialized to 0. As time advances, the values of all clocks
change, reflecting the elapsed time. At time 7;, A changes state from s to s’ using some
transition of the form (s,s', 0;, A, é) reading the input oy, if the current values of clocks
satisfy 6. With this transition the clocks in A are reset to 0, and thus start counting time
with respect to the time of occurrence of this transition. This behavior is captured by
defining runs of timed transition tables. A run records the state and the values of all the
clocks at the transition points. For a time sequence 7 = 775 ... we define 79 = 0.

Definition 3.8 A run r, denoted by (3,7), of a timed transition table (X, S, Sy, C, E) over
a timed word (o, 7) is an infinite sequence of the form

T <3071/0> i—j> <3171/1> i—? <327V2> i—?

with s; € S and v; € [C — R], for all ¢ > 0, satisfying the following requirements:
o [nitiation: sg € So, and vg(x) = 0 for all « € C.

e Consecution: for all ¢ > 1, there is an edge in E of the form (s;_1, s;, 04, A;, 6;) such
that (v;_1 + 7 — 7i—1) satisfies ¢; and v; equals [A; — 0](vi_1 + 73 — Ti21)-

The set inf(r) consists of those states s € S such that s = s, for infinitely many ¢ > 0. m

Example 3.9 Consider the timed transition table of Example 3.5. Consider a timed
word

(a,2) — (b,2.7) — (¢,2.8) — (d,5) — ---

Below we give the initial segment of the run. A clock interpretation is represented by
listing the values [, y].

(50, 10,0]) =5 (s1,[0,2)) == (s, [0.7,0]) > (s3,[0.8,0.1]) = (s0,[3,2.3]) -

Along a run r = (3,7) over (o,7), the values of the clocks at time ¢ between 7; and
7,41 are given by the interpretation (v; +¢ — 7;). When the transition from state s; to s;41
occurs, we use the value (v; + 7,41 — 7;) to check the clock constraint; however, at time
Tit1, the value of a clock that gets reset is defined to be 0.

Note that a transition table A = (3,5, Sg, E) can be considered to be a timed transition
table A’. We choose the set of clocks to be the empty set, and replace every edge (s, s', a)
by (s,s’,a,(,true). The runs of A’ are in an obvious correspondence with the runs of A.

3.5 Timed regular languages

We can couple acceptance criteria with timed transition tables, and use them to define
timed languages.

Definition 3.10 A timed Biichi automaton (in short TBA) is a tuple (¥,5,50, C, E, F),
where (X,5,50,C,E) is a timed transition table, and F C S is a set of accepting states.
A run r = (5,7) of a TBA over a timed word (o,7) is called an accepting run iff

inf(r)NEF £ 0.
For a TBA A, the language L(A) of timed words it accepts is defined to be the set
{(o,7) | A has an accepting run over (o,7)}. ®

In analogy with the class of languages accepted by Biichi automata, we call the class
of timed languages accepted by TBAs timed regular languages.

10

b,(x<2)?

Figure 5: Timed Biichi automaton accepting L

Definition 3.11 A timed language L is a timed regular language iff L = L(.A) for some
TBA A m

Example 3.12 The language L3 of Example 3.5 is a timed regular language. The timed
transition table of Figure 4 is coupled with the acceptance set consisting of all the states.
For every w-regular language L over ¥, the timed language {(o,7) | 0 € L} is regular.
A typical example of a nonregular timed language is the language Ly of Example 3.2. Tt
requires that the time difference between the successive pairs of @ and b form an increasing
sequence.
Another nonregular language is {(a¢*,7) | Vi. (7, = 2')}. m

The automaton of Example 3.13 combines the Biichi acceptance condition with the
timing constraints to specify an interesting convergent response property:

Example 3.13 The automaton of Figure 5 accepts the timed language L. over the
alphabet {a, b}.

Ler = {((ab)*,7) | 30.%) 2 i (72 < major +2))

The start state is sg, the accepting state is sy, and there is a single clock z. The
automaton starts in state sg, and cycles between the states sq and sy for a while. Then,
nondeterministically, it moves to state s, setting its clock # to 0. While in the cycle
between the states sy and s3, the automaton resets its clock while reading a, and ensures
that the next b is within 2 time units. Interpreting the symbol b as a response to a request
denoted by the symbol a, the automaton models a system with a convergent response time;
the response time is “eventually” always less than 2 time units. m

The next example shows that timed automata can specify periodic behavior also.

Example 3.14 The automaton of Figure 6 accepts the following language over the al-
phabet {a,b}.
{(o,7) | Vi. 5. (1, =30 N oj =a)}
The automaton has a single state sg, and a single clock x. The clock gets reset at
regular intervals of period 3 time units. The automaton requires that whenever the clock

equals 3 there is an @ symbol. Thus it expresses the property that a happens at all time
values that are multiples of 3. m

11

a,b,(x<3)?
C 3
~(§)
@

a,(x=3)?,x:=0

Figure 6: Timed automaton specitying periodic behavior

3.6 Properties of timed regular languages

The next theorem considers some closure properties of timed regular languages.

Theorem 3.15 The class of timed regular languages is closed under (finite) union and
intersection.

PRrOOF. Consider TBAs A; = (X,5;,5:,,C;, Ei, Fi), ¢ = 1,2,...n. Assume without
loss of generality that the clock sets C; are disjoint. We construct TBAs accepting the
union and intersection of L(A4;).

Since TBAs are nondeterministic the case of union is easy. The required TBA is simply
the disjoint union of all the automata.

Intersection can be implemented by a trivial modification of the standard product
construction for Biichi automata [9]. The set of clocks for the product automaton A is
U,;C;. The states of A are of the form (sq,...3s,, k), whereeach s; € S;,; and 1 < k < n. The
i-th component of the tuple keeps track of the state of A;, and the last component is used
as a counter for cycling through the accepting conditions of all the individual automata.
Initially the counter value is 1, and it is incremented from k to (k + 1) (modulo n) iff the
current state of the k-th automaton is an accepting state. Note that we choose the value
of n mod n to be n.

The initial states of A are of the form (s1,...s,,1) where each s; is a start state of
A;. A transition of A is obtained by coupling the transitions of the individual automata
having the same label. Let {(s;, s}, a,\;,6;) € E; | ¢ =1,...n} be a set of transitions, one
per each automaton, with the same label a. Corresponding to this set, there is a joint
transition of A out of each state of the form (sy,...s,, k) labeled with a. The new state
is (s],...8,7) with j = (k4 1) mod n if s, € Fy, and j = k otherwise. The set of clocks
to be reset with this transition is U;);, and the associated clock constraint is A;0;.

The counter value cycles through the whole range 1,...n infinitely often iff the ac-
cepting conditions of all the automata are met. Consequently, we define the accepting set
for A to consist of states of the form (s1,...s,,n), where s, € F,,. m

In the above product construction, the number of states of the resulting automaton
is n-1L;|S;|. The number of clocks is ¥;|C;|, and the size of the edge set is n-1I;|E;|. Note
that |E| includes the length of the clock constraints assuming binary encoding for the
constants.

12

a,(x=1)?,x:=0

a,x:=0
@W@ y:i)O @ a

b,(y<1)?,y:=0

Figure 7: Timed automaton accepting L opperge

Observe that even for the timed regular languages arbitrarily many symbols can occur
in a finite interval of time. Furthermore, the symbols can be arbitrarily close to each
other. Consider the following example.

Example 3.16 The language accepted by the automaton in Figure 7 is
Lconverge = {((ab)wv T) | V. (T2i—1 =1 A (7—2i — T2i—1 > T2i4+2 — 7—2i—|—1))}-

Every word accepted by this automaton has the property that the sequence of time
differences between a and the following b is strictly decreasing. A sample word accepted
by the automaton is

(a,1) — (b,1.5) — (a,2) — (b,2.25) — (a,3) — (b,3.125) — ---

This example illustrates that the model of reals is indeed different from the discrete-
time model. If we require all the time values 7; to be multiples of some fixed constant e,
however small, the language accepted by the automaton of Figure 7 will be empty.

On the other hand, timed automata do not distinguish between the set of reals R and
the set of rationals Q. Only the denseness of the underlying domain plays a crucial role.
In particular, Theorem 3.17 shows that if we require all the time values in time sequences
to be rational numbers, the untimed language Untime[L(A)] of a timed automaton A
stays unchanged.

Theorem 3.17 Let L be a timed regular language. For every word o, o € Untime(L) iff
there exists a time sequence 7 such that 7; € Q for all 7 > 1, and (o, 7) € L.

PRrROOF. Consider a timed automaton A, and a word o. If there exists a time sequence
7 with all rational time values such that (o,7) € L(A), then clearly, o € Untime[L(A)].

Now suppose for an arbitrary time sequence 7, (0,7) € L(A). Let € € Q be such that
every constant appearing in the clock constraints of A is an integral multiple of €. Let
7o = 0,and 7o = 0. If ; = 7; +nec for some 0 < j <7 and n € N, then choose 7/ = 7/ + ne.
Otherwise choose 7/ € Q such that for all 0 < j < ¢, for all n € N, (7/ — 7}) < ne iff
(1i — 7j) < ne. Note that because of the denseness of Q such a choice of 7/ is always
possible.

Consider an accepting run r = (3,7) of A over (o, 7). Because of the construction of
7/, if a clock x is reset at the ¢-th transition point, then its possible values at the j-th

13

Figure 8: Timed Muller automaton

transition point along the two time sequences, namely, (7; — 7;) and (7] — 7/), satisfy the
same set of clock constraints. Consequently it is possible to construct an accepting run
r" = (3,7') over (o, 7') which follows the same sequence of edges as r. In particular, choose
vy = v, and if the i-th transition along r is according to the edge (s;_1, s;, 0;, Ai, 6;), then

set v/ = [\ = 0](v/_y + 7/ — 7/_;). Consequently, A accepts (o,7'). m

3.7 Timed Muller automata

We can define timed automata with Muller acceptance conditions also.

Definition 3.18 A timed Muller automaton (TMA) is a tuple (¥,5,50, C, E, F), where
(3,8, S0, C, E) is a timed transition table, and F C 25 specifies an acceptance family.

A run r = (5,7) of the automaton over a timed word (o, 7) is an accepting run iff
inf(r) € F.

For a TMA A, the language L(A) of timed words it accepts is defined to be the set
{(o,7) | A has an accepting run over (o,7)}. ®

Example 3.19 Consider the automaton of Figure 8 over the alphabet {a,b,¢}. The
start state is sg, and the Muller acceptance family consists of a single set {sg, s2}. So any
accepting run should cycle between states so and sy only finitely many times, and between
states sp and sy infinitely many times. Every word (o, 7) accepted by the automaton
satisfies: (1) o € (a(b+c¢))*(ac)¥, and (2) for all ¢ > 1, the difference (72,1 — T2i_2) is less
than 2 if the (2¢)-th symbol is ¢, and less than 5 otherwise. m

Recall that untimed Biichi automata and Muller automata have the same expressive
power. The following theorem states that the same holds true for TBAs and TMAs. Thus
the class of timed languages accepted by TMAs is the same as the class of timed regular
languages. The proof of the following theorem closely follows the standard argument that
an w-regular language is accepted by a Biichi automaton iff it is accepted by some Muller
automaton.

Theorem 3.20 A timed language is accepted by some timed Biichi automaton iff it is
accepted by some timed Muller automaton.

ProOF. Let A = (¥,5,S0,C,E,F) be a TBA. Consider the TMA A" with the same
timed transition table as that of A, and with the acceptance family F = {S' € S: S'NF #
0}. Tt is easy to check that L(A) = L(A"). This proves the “only if” part of the claim.

14

In the other direction, given a TMA, we can construct a TBA accepting the same
language using the simulation of Muller acceptance condition by Biichi automata. Let
A be a TMA given as (¥,5,S0,C,E, F). First note that L(A) = Up_rL(Ar) where
Ap = (8,5,50,C, E, {F}), so it suffices to construct, for each acceptance set F, a TBA
A which accepts the language L(Ap). Assume F = {s,...s;}. The automaton Ap
uses nondeterminism to guess when the set F is entered forever, and then uses a counter
to make sure that every state in F is visited infinitely often. States of Ay are of the
form (s,i), where s € S and ¢ € {0,1,...k}. The set of initial states is So x {0}. The
automaton simulates the transitions of A, and at some point nondeterministically sets
the second component to 1. For every transition (s, s’ a,\,d) of A, the automaton Ay
has a transition ((s,0),(s’,0),a, A, 6), and, in addition, if s’ € F it also has a transition
((5,0),(s',1),a, A, 0).

While the second component is nonzero, the automaton is required to stay within the
set F. For every A-transition (s,s’,a, A,) with both s and s" in F, for each 1 < ¢ < &,
there is an Ap-transition ((s,4), (s',j),a, A,8) where j = (i + 1) mod k, if s equals s;, else
J = 1. The only accepting state is (si, k). m

4 Checking emptiness

In this section we develop an algorithm for checking the emptiness of the language of a
timed automaton. The existence of an infinite accepting path in the underlying transition
table is clearly a necessary condition for the language of an automaton to be nonempty.
However, the timing constraints of the automaton rule out certain additional behaviors.
We will show that a Biichi automaton can be constructed that accepts exactly the set of
untimed words that are consistent with the timed words accepted by a timed automaton.

4.1 Restriction to integer constants

Recall that our definition of timed automata allows clock constraints which involve com-
parisons with rational constants. The following lemma shows that, for checking emptiness,
we can restrict ourselves to timed automata whose clock constraints involve only integer
constants. For a timed sequence 7 and t € Q, let ¢-7 denote the timed sequence obtained
by multiplying all 7; by t.

Lemma 4.1 Consider a timed transition table A, a timed word (o,7), and t € Q. (3,7)
is a run of A over (o,7) iff (3,1-7) is a run of A; over (o,t-7), where A, is the timed
transition table obtained by replacing each constant d in each clock constraint labeling

the edges of A by t-d.

PROOF. The lemma can be proved easily from the definitions using induction. m

Thus there is an isomorphism between the runs of A and the runs of A,. If we choose
t to be the least common multiple of denominators of all the constants appearing in the
clock constraints of A, then the clock constraints for A, use only integer constants. In this
translation, the values of the individual constants grow at most with the product of the
denominators of all the original constants. We assume binary encoding for the constants.

15

Let us denote the length of the clock constraints of A by |6(.A)|. It is easy to prove that
|6(A;)| is bounded by [6(A)[>. Observe that this result depends crucially on the fact that
we encode constants in binary notation; if we use unary encoding then |6(.A:)| can be
exponential in [6(.A)|.

Observe that L(A) is empty iff L[A;] is empty. Hence, to decide the emptiness of
L(A) we consider A;. Also Untime[L(A)] equals Untime[L(A;)]. In the remainder of the

section we assume that the clock constraints use only integer constants.

4.2 Clock regions

At every point in time the future behavior of a timed transition table is determined by
its state and the values of all its clocks. This motivates the following definition:

Definition 4.2 For a timed transition table (¥,S,Sq, C,E), an extended state is a pair
(s,v) where s € S and v is a clock interpretation for C. m

Since the number of such extended states is infinite (in fact, uncountable), we cannot
possibly build an automaton whose states are the extended states of A. But if two
extended states with the same A-state agree on the integral parts of all clock values, and
also on the ordering of the fractional parts of all clock values, then the runs starting from
the two extended states are very similar. The integral parts of the clock values are needed
to determine whether or not a particular clock constraint is met, whereas the ordering of
the fractional parts is needed to decide which clock will change its integral part first. For
example, if two clocks x and y are between 0 and 1 in an extended state, then a transition
with clock constraint (x = 1) can be followed by a transition with clock constraint (y = 1),
depending on whether or not the current clock values satisfy (z < y).

The integral parts of clock values can get arbitrarily large. But if a clock x is never
compared with a constant greater than ¢, then its actual value, once it exceeds ¢, is of no
consequence in deciding the allowed paths.

Now we formalize this notion. For any ¢ € R, fract(t) denotes the fractional part of ¢,
and |t] denotes the integral part of #; that is, t = [t| 4 fract(t). We assume that every
clock in C appears in some clock constraint.

Definition 4.3 Let A = (X,5,50,C,E) be a timed transition table. For each « € C, let
¢, be the largest integer ¢ such that (x < ¢) or (¢ < x) is a subformula of some clock
constraint appearing in E.

The equivalence relation ~ is defined over the set of all clock interpretations for C;
v~v' iff all the following conditions hold:

1. For all € C, either |v(x)] and [¢/(x)] are the same, or both v(x) and v/(x) are
greater than c,.

2. For all ,y € C with v(x) < ¢, and v(y) < ¢, fract(v(x)) < fract(v(y)) iff
fract(v'(z)) < fract(V'(y)).

3. For all @ € C with v(x) < ¢, fract(v(x)) = 0 iff fract(v'(z)) = 0.

A clock region for A is an equivalence class of clock interpretations induced by ~. m

16

y 6 Corner points: e.g. [(0,1)]
1 14 Open line segments: e.g. [0 <z =y < 1]
8 Open regions: e.g. [0 <z <y < 1]

Figure 9: Clock regions

We will use [v] to denote the clock region to which v belongs. Each region can be
uniquely characterized by a (finite) set of clock constraints it satisfies. For example,
consider a clock interpretation v over two clocks with v(z) = 0.3 and v(y) = 0.7. Every
clock interpretation in [v] satisfies the constraint (0 < @ < y < 1), and we will represent
this region by [0 < < y < 1]. The nature of the equivalence classes can be best
understood through an example.

Example 4.4 Consider a timed transition table with two clocks x and y with ¢, = 2 and
¢, = 1. The clock regions are shown in Figure 9. m

Note that there are only a finite number of regions. Also note that for a clock constraint
6 of A, if v~1' then v satisfies 6 iff v/ satisfies 6. We say that a clock region « satisfies a
clock constraint 6 iff every v € « satisfies 6. Each region can be represented by specifying

(1) for every clock x, one clock constraint from the set
{r=cle=0,1,...c;}U{c—1l<a<ec|le=1,...c;} U{ax> e},

(2) for every pair of clocks x and y such that c— 1 <a <candd—1<y <d
appear in (1) for some ¢, d, whether fract(x) is less than, equal to, or
greater than fract(y).

By counting the number of possible combinations of equations of the above form, we get
the upper bound in the following lemma.

Lemma 4.5 The number of clock regions is bounded by [|C|! - 2/ 11,cc(2¢, + 2)]. m

Remember that |6(.A)| stands for the length of the clock constraints of A assuming
binary encoding, and hence the product Il,ec(2¢, + 2) is O[2|5(“4)|]. Since the number
of clocks |C] is bounded by [6(.A)|, henceforth, we assume that the number of regions is

O[2|5(“4)|]. Note that if we increase 6(.A) without increasing the number of clocks or the
size of the largest constants the clocks are compared with, then the number of regions
does not grow with |6(.A)|. Also observe that a region can be represented in space linear

in [8(A)).

17

4.3 The region automaton

The first step in the decision procedure for checking emptiness is to construct a transition
table whose paths mimic the runs of A in a certain way. We will denote the desired
transition table by R(A), the region automaton of A. A state of R(A) records the state
of the timed transition table A, and the equivalence class of the current values of the
clocks. It is of the form (s,a) with s € S and « being a clock region. The intended
interpretation is that whenever the extended state of A is (s,v), the state of R(A) is
(s,[v]). The region automaton starts in some state (so, [ro]) where s¢ is a start state of A,
and the clock interpretation vy assigns 0 to every clock. The transition relation of R(.A)
is defined so that the intended simulation is obeyed. It has an edge from (s, a) to (s', /)
labeled with a iff A in state s with the clock values v € o can make a transition on a to
the extended state (s',v') for some ' € «'.

The edge relation can be conveniently defined using a time-successor relation over the
clock regions. The time-successors of a clock region « are all the clock regions that will
be visited by a clock interpretation v € a as time progresses.

Definition 4.6 A clock region o’ is a time-successor of a clock region « iff for each v € «,
there exists a positive ¢ € R such that v +t € o/. ®

Example 4.7 Consider the clock regions shown in Figure 9 again. The time-successors
of a region « are the regions that can be reached by moving along a line drawn from some
point in « in the diagonally upwards direction (parallel to the line # = y). For example,
the region [(1 < # < 2),(0 <y < & — 1)] has, other than itself, the following regions as
time-successors: [(z = 2),(0 <y <)], [(x > 2),(0 <y < 1)], [(x > 2),(y = 1)] and
(2> 2),(y> 1)) m

Now let us see how to construct all the time-successors of a clock region. Recall that a
clock region « is specified by giving (1) for every clock x, a constraint of the form (x = ¢)
or (c—1 <z <c)or (x> c¢,),and (2) for every pair « and y such that (c—1 < & < ¢) and
(d—1 < y < d) appear in (1), the ordering relationship between fract(x) and fract(y).
To compute all the time-successors of a we proceed as follows. First observe that the
time-successor relation is a transitive relation. We consider different cases.

First suppose that « satisfies the constraint (¢ > ¢,) for every clock x. The only
time-successor of « is itself. This is the case for the region [(# > 2),(y > 1)] in Figure 9.

Now suppose that the set Cy consisting of clocks = such that « satisfies the constraint
(x = ¢) for some ¢ < ¢, is nonempty. In this case, as time progresses the fractional
parts of the clocks in Cy become nonzero, and the clock region changes immediately. The
time-successors of « are same as the time-successors of the clock region /3 specified as
below:

(1) For « € Cy, if « satisfies (v = ¢,) then [satisfies (x > ¢;), otherwise if «
satisfies (x = ¢) then [satisfies (¢ < @ < ¢+1). For a & Cy, the constraint
in (is the same as that in «.

(2) For clocks « and y such that @ < ¢, and y < ¢, holds in «, the ordering
relationship in 3 between their fractional parts is the same as in a.

18

For instance, in Figure 9, the time-successors of [(x = 0),(0 < y < 1)] are same as the
time-successors of [0 < & < y < 1].

It both the above cases do not apply, then let Cy be the set of clocks = for which «
does not satisfy (@ > ¢;) and which have the maximal fractional part; that is, for all
clocks y for which « does not satisfy (y > ¢,), fract(y) < fract(z) is a constraint of a. In
this case, as time progresses, the clocks in Cy assume integer values. Let 3 be the clock
region specified by

(1) For x € Cyq, if « satisfies (¢ — 1 < @ < ¢) then 8 satisfies (z = ¢). For
x & Cp, the constraint in [is same as that in «a.

(2) For clocks x and y such that (¢ —1 < a <¢) and (d — 1 < y < d) appear
in (1), the ordering relationship in 3 between their fractional parts is same
as in a.

In this case, the time-successors of « include «, 3, and all the time-successors of 3. For
instance, in Figure 9, time-successors of [0 < & < y < 1] include itself, [(0 < 2 < 1),(y =
1)], and all the time-successors of [(0 < x < 1), (y = 1)].

Now we are ready to define the region automaton.

Definition 4.8 For a timed transition table A = (X,5,Sq, C, E), the corresponding re-
gion automaton R(A) is a transition table over the alphabet X.

e The states of R(A) are of the form (s,) where s € S and « is a clock region.
e The initial states are of the form (sq, [vo]) where so € Sg and () = 0 for all « € C.

e R(A)has an edge ((s,a), (s, a’), a) iff there is an edge (s, s, a, A, §) € E and a region
o such that (1) o is a time-successor of «, (2) o satisfies 6, and (3) o' = [— 0]a”.

Example 4.9 Consider the timed automaton Ay shown in Figure 10. The alphabet
is {a,b,c,d}. Every state of the automaton is an accepting state. The corresponding
region automaton R(Ap) is also shown. Only the regions reachable from the initial region
(s0,[x = y = 0]) are shown. Note that ¢, = 1 and ¢, = 1. The timing constraints of the
automaton ensure that the transition from s; to s3 is never taken. The only reachable
region with state component s, satisfies the constraints [y = 1,2 > 1], and this region has
no outgoing edges. Thus the region automaton helps us in concluding that no transitions
can follow a b-transition. m

From the bound on the number of regions, it follows that the number of states in R(.A)

is O[|S|-2|5(“4)|]. An inspection of the definition of the time-successor relation shows that
every region has at most ¥,cc[2¢, + 2] successor regions. The region automaton has at
most one edge out of (s, a) for every edge out of s and every time-successor of a. It follows
that the number of edges in R(A) is O[|E|-2|5(“4)|]. Note that computing the time-successor
relation is easy, and can be done in time linear in the length of the representation of the
region. Constructing the edge relation for the region automaton is also relatively easy; in
addition to computing the time-successors, we also need to determine whether the clock

19

a,(y<1)?,y:=0

O<y<x<1 O<y<1<x

Figure 10: Automaton Ay and its region automaton

constraint labeling a particular A-transition is satisfied by a clock region. The region

graph can be constructed in time O[(|S| + |E|)-2|5(“4)|].
Now we proceed to establish a correspondence between the runs of A and the runs of

R(A).

Definition 4.10 For a run r = (3,7) of A of the form

rol <3071/0> i—j> <3171/1> i—? <327V2> i—?

define its projection [r] = (3, [7]) to be the sequence

7]+ (s0,[w0]) 2= (s1,[n1]) 2 (s9,[ra]) 2> .-

20

From the definition of the edge relation for R(A), it follows that [r] is a run of R(.A)
over a. Since time progresses without bound along r, every clock € C is either reset
infinitely often, or from a certain time onwards it increases without bound. Hence, for
all @ € C, for infinitely many ¢ > 0, [v,] satisfies [(z = 0) V (x > ¢;)]. This prompts the
following definition:

Definition 4.11 A run r = (3, @) of the region automaton R(A) of the form

ro: (sg,q0) 5 (s1,00) 2 (sg,qg) 2 -
is progressive iff for each clock € C, there are infinitely many ¢ > 0 such that «; satisfies
[(=0)V (z >¢)]. =

Thus for a run r of A over (o, 7), [r] is a progressive run of R(A) over . The following
Lemma 4.13 implies that progressive runs of R(A) precisely correspond to the projected
runs of A. Before we prove the lemma let us consider the region automaton of Example 4.9
again.

Example 4.12 Consider the region automaton R(Ag) of Figure 10. Every run r of
R(Ap) has a suffix of one of the following three forms: (i) the automaton cycles between
the regions (s1,[y =0 < x < 1]) and (s3,[0 < y < x < 1]), (ii) the automaton stays in the
region (ss3,[0 <y < 1 < z]) using the self-loop, or (iii) the automaton stays in the region
(s3,[x > 1,y > 1]).

Only the case (iii) corresponds to the progressive runs. For runs of type (i), even
though y gets reset infinitely often, the value of z is always less than 1. For runs of type
(ii), even though the value of x is not bounded, the clock y is reset only finitely often,
and yet, its value is bounded. Thus every progressive run of Ag corresponds to a run of

R(Ap) of type (iii). m

Lemma 4.13 If r is a progressive run of R(A) over o then there exists a time sequence
7 and a run r’ of A over (o, 7) such that r equals [r].

PROOF. Consider a progressive run r = (3, @) of R(A) over 0. We construct the run
r’ and the time sequence 7 step by step. As usual, v’ starts with (sq,). Now suppose
that the extended state of A is (s;,1;) at time 7; with v; € a;. There is an edge in R(A)
from (s;, a;) to (Si41, iy1) labeled with o,41. From the definition of the region automaton
it follows that there is an edge (s;, Siy1,Tit1, Aig1,0i41) € E and a time-successor o/ of
a; such that o satisfies 6,41 and a;11 = [Aiqq +— 0]l ,. From the definition of time-
successor, there exists a time 7,41 such that (v; + 7,41 — 7)) € ai y. Now it is clear the
next transition of A can be at time 7,41 to an extended state (s;41, v;41) With viy1 € @iq.
Using this construction repeatedly we get a run v’ = (3,7) over (o, 7) with [r'] = r.

The only problem with the above construction is that 7 may not satisfy the progress
condition. Suppose that 7 is a converging sequence. We use the fact that r is a progressive
run to construct another time sequence 7’ satisfying the progress requirement and show
that the automaton can follow the same sequence of transitions as r’ but at times 7/.

Let Cy be the set of clocks reset infinitely often along r. Since 7 is a converging
sequence, after a certain position onwards, every clock in Cy gets reset before it reaches
the value 1. Since r is progressive, every clock x not in Cgy, after a certain position

21

onwards, never gets reset, and continuously satisfies *+ > ¢,. This ensures that there
exists j > 0 such that (1) after the j-th transition point each clock & & Cqy continuously
satisfies (x > ¢;), and each clock x € Cy continuously satisfies (z < 1), and (2) for each
k> j, (1, — 7;) is less than 0.5.

Let 7 < k1 < ky,... be an infinite sequence of integers such that each clock x in Cy
is reset at least once between the k;-th and k;;;-th transition points along r. Now we
construct another sequence " = (3,7’) with the sequence of transition times 7’ as follows.
The sequence of transitions along r” is same as that along r'. If ¢ & {ki,ky...} then
we require the (¢ + 1)-th transition to happen after a delay of (7,41 — 7;), otherwise we
require the delay to be 0.5. Observe that along r” the delay between the k;-th and k;1-th
transition points is less than 1. Consequently, in spite of the additional delays, the value
of every clock in Cy remains less than 1 after the j-th transition point. So the truth of
all the clock constraints and the clock regions at the transition points remain unchanged
(as compared to r’). From this we conclude that r” satisfies the consecution requirement,
and is a run of A. Furthermore, [r"] = [r'] = r.

Since 7' has infinitely many jumps each of duration 0.5, it satisfies the progress re-
quirement. Hence r” is the run required by the lemma. m

4.4 The untiming construction

For a timed automaton A, its region automaton can be used to recognize Untime[L(.A)].

The following theorem is stated for TBAs, but it also holds for TM As.

Theorem 4.14 Given a TBA A = (3,55, C,E, F), there exists a Biichi automaton
over ¥ which accepts Untime[L(A)].

PROOF. We construct a Biichi automaton A’ as follows. Its transition table is R(.A),
the region automaton corresponding to the timed transition table (¥,S,Sq,C,E). The
accepting set of A" is ' = {(s,a) | s € F'}.

If r is an accepting run of A over (o, 7), then [r] is a progressive and accepting run of
A’ over o. The converse follows from Lemma 4.13. Given a progressive run r of A’ over
o, the lemma gives a time sequence 7 and a run r’ of A over (o, 7) such that r equals [r'].
If r is an accepting run, so is 1. It follows that o € Untime[L(.A)] iff A’ has a progressive,
accepting run over it.

For z € C,let F, = {(s,a) | @ E [(x = 0) V (z > ¢;)]}. Recall that a run of A’ is
progressive iff some state from each F, repeats infinitely often. It is straightforward to
construct another Biichi automaton A" such that A’ has a progressive and accepting run
over o iff A" has an accepting run over o.

The automaton A" is the desired automaton; L(A") equals Untime[L(A)]. m

Example 4.15 Let us consider the region automaton R(Aq) of Example 4.9 again. Since
all states of Ag are accepting, from the description of the progressive runs in Example 4.12
it follows that the transition table R(Ag) can be changed to a Biichi automaton by choos-
ing the accepting set to consist of a single region (s3,[x > 1,y > 1]). Consequently

Untime[L(Ao)] = L[R(Ap)] = ac(ac)”d”.

22

Theorem 4.14 says that the timing information in a timed automaton is “regular”
in character; its consistency can be checked by a finite-state automaton. An equivalent
formulation of the theorem is

If a timed language L is timed regular then Untime(L) is w-regular.

Furthermore, to check whether the language of a given TBA is empty, we can check
for the emptiness of the language of the corresponding Biichi automaton constructed by
the proof of Theorem 4.14. The next theorem follows.

Theorem 4.16 Given a timed Biichi automaton A = (X,S,Sg, C, E, F) the emptiness of
L(A) can be checked in time O[(|S| + |E|)-2|5(“4)|].

PROOF. Let A’ be the Biichi automaton constructed as outlined in the proof of The-
orem 4.14. Recall that in Section 4.3 we had shown that the number of states in A’ is
O[|S|-2|5(“4)|], the number of edges is O[|E|-2|5(“4)|].

The language L(.A) is nonempty iff there is a cycle C' in A’ such that C' is accessible
from some start state of A" and C' contains at least one state each from the set F/ and each
of the sets F,. This can be checked in time linear in the size of A’ [41]. The complexity
bound of the theorem follows. m

Recall that if we start with an automaton A whose clock constraints involve rational
constants, we need to apply the above decision procedure on A; for the least common
denominator ¢ of all the rational constants (see Section 4.1). This involves a blow-up in
the size of the clock constraints; we have §[A4,] = O[6(.A)?].

The above method can be used even it we change the acceptance condition for timed
automata. In particular, given a timed Muller automaton A we can effectively construct
a Muller (or, Biichi) automaton which accepts Untime[L(.A)], and use it to check for the
emptiness of L(A).

4.5 Complexity of checking emptiness

The complexity of the algorithm for deciding emptiness of a TBA is exponential in the
number of clocks and the length of the constants in the timing constraints. This blow-up
in complexity seems unavoidable; we reduce the acceptance problem for linear bounded
automata, a known PSPACE-complete problem [23], to the emptiness question for TBAs
to prove the PSPACE lower bound for the emptiness problem. We also show the problem
to be PSPACE-complete by arguing that the algorithm of Section 4.4 can be implemented
in polynomial space.

Theorem 4.17 The problem of deciding the emptiness of the language of a given timed
automaton A, is PSPACE-complete.

PRrROOF. [PSPACE-membership] Since the number of states of the region automaton
is exponential in the number of clocks of A, we cannot construct the entire transition
table. But it is possible to (nondeterministically) check for nonemptiness of the region
automaton by guessing a path of the desired form using only polynomial space. This is a
fairly standard trick, and hence we omit the details.

23

[PSPACE-hardness| The question of deciding whether a given linear bounded automa-
ton accepts a given input string is PSPACE-complete [23]. A linear bounded automaton
M is a nondeterministic Turing machine whose tape head cannot go beyond the end of
the input markers. We construct a TBA A such that its language is nonempty iff the
machine M halts on a given input.

Let 7 be the tape alphabet of M and let @ be its states. Let ¥ =7 U (? x @), and
let aq,asq,...a; denote the elements of ¥. A configuration of M in which the tape reads
Y172 - - - Yn, and the machine is in state ¢ reading the -th tape symbol, is represented by
the string o1, ...0, over ¥ such that o; = v, if j # ¢ and 0; = (v, q).

The acceptance corresponds to a special state ¢y; after which the configuration stays
unchanged. The alphabet of A includes ¥, and in addition, has a symbol ag. A compu-
tation of M is encoded by the word

O'%Clo. . .O'i(loa'%ao. . .0'2

J
n dg ...

ag...oqaq9...070

such that of ... o’ encodes the j-th configuration according to the above scheme. The
time sequence associated with this word also encodes the computation: we require the
time difference between successive ag’s to be k+ 1, and if o/ = a; then we require its time
to be [greater than the time of the previous ay. The encoding in the time sequence is
used to enforce the consecution requirement.

We want to construct A which accepts precisely the timed words encoding the halting
computations of M according to the above scheme. We only sketch the construction.
A uses 2n 4+ 1 clocks. The clock x is reset with each ag. While reading ao we require
(x = k+ 1) to hold, and while reading a; we require (x = ¢) to hold. These conditions
ensure that the encoding in the time sequence is consistent with the word. For each tape
cell 7, we have two clocks z; and y;. The clock x; is reset with o7, for odd values of j,
and the clock y; is reset with Uf, for even values of j. Assume that the automaton has
read the first j configurations, with j odd. The value of the clock x; represents the i-th
cell of the j-th configuration. Consequently, the possible choices for the values of o' are
determined by examining the values of x;_1, ; and z;;; according to the transition rules
for M. While reading the (5 + 1)-th configuration, the y-clocks get set to appropriate
values; these values are examined while reading the (5 4+ 2)-th configuration. This ensures
proper consecution of configurations. Proper initialization and halting can be enforced in
a straightforward way. The size of A is polynomial in n and the size of M. m

Note that the source of this complexity is not the choice of R to model time. The
PSPACE-hardness result can be proved if we leave the syntax of timed automata un-
changed, but use the discrete domain N to model time. Also this complexity is insensitive
to the encoding of the constants; the problem is PSPACE-complete even if we encode all
constants in unary.

5 Intractable problems

In this section we show the universality problem for timed automata to be undecidable.
The universality problem is to decide whether the language of a given automaton over

24

Y. comprises all the timed words over Y. Specifically, we show that the problem is II}-
hard by reducing a IIj-hard problem of 2-counter machines. The class II} consists of
highly undecidable problems, including some nonarithmetical sets (for an exposition of
the analytical hierarchy consult, for instance, [39]). Note that the universality problem
is same as deciding emptiness of the complement of the language of the automaton.
The undecidability of this problem has several implications such as nonclosure under
complement and undecidability of testing for language inclusion.

5.1 A Yi-complete problem

A nondeterministic 2-counter machine M consists of two counters C' and D, and a se-
quence of n instructions. Each instruction may increment or decrement one of the coun-
ters, or jump, conditionally upon one of the counters being zero. After the execution
of a nonjump instruction, M proceeds nondeterministically to one of the two specified
instructions.

We represent a configuration of M by a triple (¢,¢,d), where 1 < ¢ < n, ¢ > 0, and
d > 0 give the values of the location counter and the two counters €' and D, respectively.
The consecution relation on configurations is defined in the obvious way. A computation of
M is an infinite sequence of related configurations, starting with the initial configuration
(1,0,0). It is called recurring iff it contains infinitely many configurations in which the
location counter has the value 1.

The problem of deciding whether a nondeterministic Turing machine has, over the
empty tape, a computation in which the starting state is visited infinitely often, is known
to be Xi-complete [19]. Along the same lines we obtain the following result.

Lemma 5.1 The problem of deciding whether a given nondeterministic 2-counter ma-
chine has a recurring computation, is ¥{-hard. m

5.2 Undecidability of the universality problem

Now we proceed to encode the computations of 2-counter machines using timed automata,
and use the encoding to prove the undecidability result.

Theorem 5.2 Given a timed automaton over an alphabet ¥ the problem of deciding
whether it accepts all timed words over ¥ is II}-hard.

ProOOF. We encode the computations of a given 2-counter machine M with n instruc-
tions using timed words over the alphabet {b1,...b,,a1,a2}. A configuration (z,c¢,d) is
represented by the sequence b;aSad. We encode a computation by concatenating the se-
quences representing the individual configurations. We use the time sequence associated
with a timed word o to express that the successive configurations are related as per the
requirements of the program instructions. We require that the subsequence of o corre-
sponding to the time interval [j,j + 1) encodes the j-th configuration of the computation.
Note that the denseness of the underlying time domain allows the counter values to get
arbitrarily large. To enforce a requirement such as the number of a; symbols in two in-
tervals encoding the successive configurations is the same we require that every a; in the
first interval has a matching a; at distance 1 and vice versa.

Define a timed language L,,q. as follows. (o, 7) is in Lyyge iff

25

e bilailagl bi2ai2a§l2 -+« such that (i1, ¢, dy), (i2,¢2,dz) - -+ is a recurring computa-

tion of M.
o For all j > 1, the time of b;; is ;.
e Forall j > 1,

— if ¢j41 = ¢; then for every a; at time ¢ in the interval (j,j + 1) there is an a4
at time ¢t + 1.

— if ¢j41 = ¢j + 1 then for every a; at time ¢ in the interval (5 + 1, j + 2) except
the last one, there is an a; at time ¢t — 1.

— if ¢j41 = ¢; — 1 then for every a; at time ¢ in the interval (j,j 4+ 1) except the
last one, there is an a; at time ¢ + 1.

Similar requirements hold for ay’s.

Clearly, Lygec 1s nonempty iff M has a recurring computation. We will construct a timed
automaton A,,q.. which accepts the complement of L,,4... Hence A,,4.. accepts every
timed word iff M does not have a recurring computation. The theorem follows from
Lemma 5.1.

The desired automaton A,,4.. is a disjunction of several TBAs.

Let A be the TBA which accepts (o, 7) iff for some integer j > 1, either there is no b
symbol at time j, or the subsequence of o in the time interval (j,j + 1) is not of the form
ajas. It is easy to construct such a timed automaton.

A timed word (o, 7) in Lyuqe should encode the initial configuration over the interval
[1,2). Let A;,; be the TBA which requires that the subsequence of o corresponding to
the interval [1,2) is not by; it accepts the language {(o,7) | (o1 # b))V (11 # 1)V(72 < 2)}.

For each instruction 1 <7 < n we construct a TBA A;. A; accepts (o, 7) iff the timed
word has b; at some time ¢, and the configuration corresponding to the subsequence in
[t + 1,1 + 2) does not follow from the configuration corresponding to the subsequence in
[t,t+ 1) by executing the instruction ¢. We give the construction for a sample instruction,
say, “increment the counter D and jump nondeterministically to instruction 3 or 5”. The
automaton .A4; is the disjunction of the following six TBAs A}, ... A%.

Let A! be the automaton which accepts (o,) iff for some j > 1, 0; = b;, and at time
7; + 1 there is neither b3 nor bs. It is easy to construct this automaton.

Let A? be the following TBA:

X#17?

In this figure, an edge without a label means that the transition can be taken on every
input symbol. While in state s,, the automaton cannot accept a symbol a4 if the condition
(x = 1) holds. Thus A? accepts (o, 7) iff there is some b; at time ¢ followed by an a; at
time ¢/ < (¢t + 1) such that there is no matching a; at time (¢’ + 1).

26

Similarly we can construct A? which accepts (o, 7) iff there is some b; at time ¢, and
for some t' < (t + 1) there is no a; at time t’ but there is an @y at time (¢ + 1). The
complements of A? and A} together ensure proper matching of a;’s.

Along similar lines we ensure proper matching of a, symbols. Let A{ be the automaton
which requires that for some b; at time ¢, there is an ay at some t' < (t+1) with no match
at ('+1). Let Af be the automaton which says that for some b; at time ¢ there are two
az’sin (141,14 2) without matches in (¢, +1). Let A? be the automaton which requires
that for some b; at time ¢ the last ay in the interval (¢ + 1,¢ + 2) has a matching ay in
(t,t+1). Now consider a word (o, 7) such that there is b; at some time ¢ such that the
encoding of as’s in the intervals (¢, 4 1) and (¢ + 1, 4+ 2) do not match according to
the desired scheme. Let the number of ay’s in (¢, + 1) and in (¢ + 1,¢ + 2) be k and [
respectively. If k > [then the word is accepted by A?!. If k = [, then either there is no
match for some ay in (¢, + 1), or every ay in (¢, + 1) has a match in (t +1,£+2). In
the former case the word is accepted by Af, and in the latter case it is accepted by A.
If k < [the word is accepted by A?.

The requirement that the computation be not recurring translates to the requirement
that b, appears only finitely many times in . Let A,..,, be the Biichi automaton which
expresses this constraint.

Putting all the pieces together we claim that the language of the disjunction of Ajg,
Ainity Aveeur, and each of A;, is the complement of L,,4... ®

It is shown in [5] that the satisfiability problem for a real-time extension of the propo-
sitional linear temporal logic PTL becomes undecidable if a dense domain is chosen to
model time. Thus our undecidability result is not unusual for formalisms reasoning about
dense real-time. Obviously, the universality problem for TMAs is also undecidable. We
have not been able to show that the universality problem is II}-complete, an interest-
ing problem is to locate its exact position in the analytical hierarchy. In the following
subsections we consider various implications of the above undecidability result.

5.3 Inclusion and equivalence

Recall that the language inclusion problem for Biichi automata can be solved in PSPACE.
However, it follows from Theorem 5.2 that there is no decision procedure to check whether
the language of one TBA is a subset of the other. This result is an obstacle in using timed
automata as a specification language for automatic verification of finite-state real-time
systems.

Corollary 5.3 Given two TBAs A; and A, over an alphabet X, the problem of checking
L(A;) C L(Ay) is TT}-hard.
PRrROOF. We reduce the universality problem for a given timed automaton A over ¥ to

the language inclusion problem. Let A,,;, be an automaton which accepts every timed
word over ¥. The automaton A is universal iff L(Ay.;,) € L(A). =

Now we consider the problem of testing equivalence of two automata. A natural
definition for equivalence of two automata uses equality of the languages accepted by the
two. However alternative definitions exist. We will explore one such notion.

27

Definition 5.4 For timed Biichi automata A; and Ay over an alphabet ¥, define
Ay~ Ay iff L(A) = L(Ay). Define Ay ~3 Ay iff for all timed automata A over X,
L(A) N L(Ay) is empty precisely when L(A) N L(Ajy) is empty. =

For a class of automata closed under complement the above two definitions of equiv-
alence coincide. However, these two equivalence relations differ for the class of timed
regular languages because of the nonclosure under complement (to be proved shortly). In
fact, the second notion is a weaker notion: A; ~y A, implies A; ~3 A3, but not vice versa.
The motivation behind the second definition is that two automata (modeling two finite-
state systems) should be considered different only when a third automaton (modeling the
observer or the environment) composed with them gives different behaviors: in one case
the composite language is empty, and in the other case there is a possible joint execution.
The proof of Theorem 5.2 can be used to show undecidability of this equivalence also.
Note that the problems of deciding the two types of equivalences lie at different levels of
the hierarchy of undecidable problems.

Theorem 5.5 For timed Biichi automata A4; and A, over an alphabet X,

1. The problem of deciding whether A; ~; A, is ITi-hard.

2. The problem of deciding whether Ay ~5 A, is complete for the co-r.e. class.

PROOF. The language of a given TBA A is universal iff A~y A,,;,. Hence the II}-
hardness of the universality problem implies II{-hardness of the first type of equivalence.

Now we show that the problem of deciding nonequivalence, by the second definition,
is recursively enumerable. If the two automata are inequivalent then there exists an
automaton A over ¥ such that only one of L(A) N L(A;) and L(A) N L(A;y) is empty.
Consider the following procedure P: P enumerates all the TBAs over ¥ one by one.
For each TBA A, it checks for the emptiness of L(A) N L(A;) and the emptiness of
L(A)N L(A;y). If P ever finds different answers in the two cases, it halts saying that 4,
and A, are not equivalent.

Finally we prove that the problem of deciding the second type of equivalence is unsolv-
able. We use the encoding scheme used in the proof of Theorem 5.2. The only difference
is that we use the halting problem of a deterministic 2-counter machine M instead of the
recurring computations of a nondeterministic machine. Recall that the halting problem
for deterministic 2-counter machines is undecidable. Assume that the n-th instruction
is the halting instruction. We obtain A’ . = by replacing the disjunct A, by an au-
tomaton which accepts (o, 7) iff b, does not appear in o. The complement of L(A/,,..)
consists of the timed words encoding the halting computation.

We claim that A,,;, ~3 A’ il the machine M does not halt. If M does not halt

undec

then A’ . accepts all timed words, and hence, its language is the same as that of A,,i,.
If M halts, then we can construct a timed automaton Aj,; which accepts a particular
timed word encoding the halting computation of M. If M halts in k steps, then Ay
uses k clocks to ensure proper matching of the counter values in successive configurations.
The details are very similar to the PSPACE-hardness proof of Theorem 4.17. L(Ajp.u) N
L(A,.iy) is nonempty whereas L(Ap) N L(A,,..) is empty, and thus A,,;, and A, .
are inequivalent in this case. This completes the proof. m

28

— ()
x=17?

Figure 11: Noncomplementable automaton

5.4 Nonclosure under complement

The ITj-hardness of the inclusion problem implies that the class of TBAs is not closed
under complement.

Corollary 5.6 The class of timed regular languages is not closed under complementation.

PRrROOF. Given TBAs A; and A; over an alphabet ¥, L(Ay) C L(Ay) iff the intersection
of L(A;) and the complement of L(A;) is empty. Assume that TBAs are closed under
complement. Consequently, L(A;) € L(Ay) iff there is a TBA A such that L(A;)N L(A)
is nonempty, but L(As) N L(A) is empty. That is, L(A;) € L(Ay) iff A; and A, are
inequivalent according to ~3. From Theorem 5.5 it follows that the complement of the
inclusion problem is recursively enumerable. This contradicts the IIj-hardness of the
inclusion problem. m

The following example provides some insight regarding the nonclosure under comple-
mentation.

Example 5.7 The language accepted by the automaton of Figure 11 over {a} is
{(a*,7) | T >1.3j >0 (r; =7+ 1)}

The complement of this language cannot be characterized using a TBA. The comple-
ment needs to make sure that no pair of a’s is separated by distance 1. Since there is no
bound on the number of @’s that can happen in a time period of length 1, keeping track of
the times of all the a’s within the past 1 time unit, would require an unbounded number
of clocks. m

5.5 Choice of the clock constraints

In this section we consider some of the ways to modify our definition of clock constraints
and indicate how these decisions affect the expressiveness and complexity of different
problems. Recall that our definition of the clock constraints allows Boolean combinations
of atomic formulas which compare clock values with (rational) constants. With this
vocabulary, timed automata can express only constant bounds on the delays between
transitions.

First suppose we extend the definition of clock constraints to allow subformulas involv-
ing two clocks such as (@ < y+¢). In particular, in Definition 3.6 of the set ®(X) of clock

29

a,x:=0

C
2x=3y

Figure 12: Automaton with clock constraints using +

constraints, we allow, as atomic constraints, the conditions (x < y+¢) and (v 4¢ < y), for
x,y € X and ¢ € Q. Thus the allowed clock constraints are quantifier-free formulas using
the primitives of comparison (<) and addition by rational constants (4c¢). The untiming
construction can handle this extension very easily. We need to refine the equivalence
relation on clock interpretations. Now, in addition to the previous conditions, we require
that two equivalent clock interpretations agree on all the subformulas appearing in the
clock constraints. Also it is easy to prove that this extension of clock constraints does not
add to the expressiveness of timed automata.

Next let us allow the primitive of addition in the clock constraints. Now we can write
clock constraints such as (z +y < 2’ +y’) which allow the automaton to compare various
delays. This greatly increases the expressiveness of the formalism. The language of the
automaton in the following example is not timed regular.

Example 5.8 Consider the automaton of Figure 12 with the alphabet {a,b,c}. It ex-
presses the property that the symbols a, b, and ¢ occur cyclically, and the delay between
b and ¢ is always twice the delay between the last pair of @ and b. The language is defined
by

{((abe)”, 7) [V5. [(7a; — 73j-1) = 2(78j-1 — T3;-2)]}-

Intuitively, the constraints involving addition are too powerful and cannot be imple-
mented by finite-state systems. Even if we constrain all events to occur at integer time
values (i.e., discrete-time model), to check that the delay between first two symbols is
same as the delay between the next two symbols, an automaton would need an unbounded
memory. Thus with finite resources, an automaton can compare delays with constants,
but cannot remember delays. In fact, we can show that introducing addition in the syntax
of clock constraints makes the emptiness problem for timed automata undecidable.

Theorem 5.9 Allowing the addition primitive in the syntax of clock constraints makes
the emptiness problem for timed automata IT1}-hard.

PRrROOF. As in the proof of Theorem 5.2 we reduce the problem of recurring compu-
tations of nondeterministic 2-counter machines to the emptiness problem for time au-
tomata using the primitive +. The alphabet is {a,by,...0,}. We say that a timed

30

word (o, 7) encodes a computation (i1, ¢1,dq), (2, c2,ds) - -+ of the 2-counter machine iff
o = b ab,ab, - - - with 75; — 19,1 = ¢;, and 7941 — To; = d; for all 7 > 1. Thus the delay
between b and the following a encodes the value of the counter €, and the delay between
a and the following b encodes the value of D. We construct a timed automaton which
accepts precisely the timed words encoding the recurring computations of the machine.
The primitive of + is used to express a consecution requirement such as the value of the
counter (' remains unchanged. The details of the proof are quite straightforward. m

6 Deterministic timed automata

The results of Section 5 show that the class of timed automata is not closed under com-
plement, and one cannot automatically compare the languages of two automata. In this
section we define deterministic timed automata, and show that the class of languages ac-
cepted by deterministic timed Muller automata (DTMA) is closed under all the Boolean
operations.

6.1 Definition

Recall that in the untimed case a deterministic transition table has a single start state,
and from each state, given the next input symbol, the next state is uniquely determined.
We want a similar criterion for determinism for the timed automata: given an extended
state and the next input symbol along with its time of occurrence, the extended state
after the next transition should be uniquely determined. So we allow multiple transitions
starting at the same state with the same label, but require their clock constraints to be
mutually exclusive so that at any time only one of these transitions is enabled.

Definition 6.1 A timed transition table (¥,S,So, C, E) is called deterministic iff
1. it has only one start state, |So| = 1, and

2. for all s € S, for all @ € ¥, for every pair of edges of the form (s,—,a,—,é;) and
(s,—,a,—,062), the clock constraints é; and 65 are mutually exclusive (i.e., 61 A 03 is
unsatisfiable).

A timed automaton is deterministic ifl its timed transition table is deterministic. m

Note that in absence of clocks the above definition matches with the definition of
determinism for transition tables. Thus every deterministic transition table is also a
deterministic timed transition table. Let us consider an example of a DTMA.

Example 6.2 The DTMA of Figure 13 accepts the language L. of Example 3.13:
Lee = {((ab)¥,7) | F0.¥) > 0. (12 < 7251 + 2)}.

The Muller acceptance family is given by {{s1,s2}}. The state s; has two mutually
exclusive outgoing transitions on b. The acceptance condition requires that the transition
with the clock constraint (x > 2) is taken only finitely often. m

31

a,x:=0 b,(x<2)?

b,(x>2)? a,x:=0
Figure 13: Deterministic timed Muller automaton

Deterministic timed automata can be easily complemented because of the following
property:

Lemma 6.3 A deterministic timed transition table has at most one run over a given
timed word.

PROOF. Consider a deterministic timed transition table A, and a timed word (o, 7).
The run starts at time 0 with the extended state (sq, vg) where s is the unique start state.
Suppose the extended state of A at time 7;_1 is (s, r), and the run has been constructed
up to (j — 1) steps. By the deterministic property of A, at time 7; there is at most one
transition (s, s’, 0,6, A) such that the clock interpretation at time 7;, v+7; — 7j_1, satisfies
6. If such a transition does not exist then A has no run over (o, 7). Otherwise, this choice
of transition uniquely extends the run to the j-th step, and determines the extended state
at time 7;. The lemma follows by induction. m

6.2 Closure properties

Now we consider the closure properties for deterministic timed automata. Like in the
untimed case, the class of languages accepted by deterministic timed Muller automata is
closed under all Boolean operations.

Theorem 6.4 The class of timed languages accepted by deterministic timed Muller au-
tomata is closed under union, intersection, and complementation.

PRrOOF. We define a transformation on DTMAs to make the proofs easier; for every
DTMA A = (3,5, s0,C,E, F) we construct another DTMA A" by completing A as fol-
lows. First we add a dummy state ¢ to the automaton. From each state s (including
q), for each symbol a, we add an a-labeled edge from s to ¢. The clock constraint for
this edge is the negation of the disjunction of the clock constraints of all the a-labeled
edges starting at s. We leave the acceptance condition unchanged. This construction
preserves determinism as well as the set of accepted timed words. The new automaton
A” has the property that for each state s and each input symbol «a, the disjunction of the
clock constraints of the a-labeled edges starting at s is a valid formula. Observe that A~
has precisely one run over any timed word. We call such an automaton complete. In the
remainder of the proof we assume each DTMA to be complete.

Let A; = (X, 5;, 80, Ci, Eiy Fi), for @ = 1,2, be two complete DTMAs with disjoint sets
of clocks. First we construct a timed transition table A using a product construction.
The set of states of A is S; X Sa. Its start state is (sq,, s0,). The set of clocks is C; U Cs.

32

The transitions of A are defined by coupling the transitions of the two automata having
the same label. Corresponding to an Aj-transition (sq,t1,a, A1, 61) and an Ay-transition
($2,t2,a, Ay, 02), A has a transition ((sy, s2), (t1,%2),a, Ay U Xg, 81 A 62). It is easy to check
that A is also deterministic. A has a unique run over each (o, 7), and this run can be
obtained by putting together the unique runs of A; over (o, 7).

Let F* consist of the sets F C S; x Sy such that the projection of F onto the first
component is an accepting set of A;; that is,

Fl = {Fg81><82|{8681|38/€SQ.<S,S/>EF}671}.

Hence a run r of A is an accepting run for A, iff inf(r) € F'. Similarly define F? to
consist of the sets F such that {s’ | 3s € S;. (s, ') € F} is in F3. Now coupling A with
the Muller acceptance family F' U F? gives a DTMA accepting L(A;) U L(A,), whereas
using the acceptance family F' N F* gives a DTMA accepting L(A;) N L(A3).

Finally consider complementation. Let A be a complete DTMA (3,5, s0,C, E, F). A
has exactly one run over a given timed word. Hence, (o, 7) is in the complement of L(.A) iff
the run of A over it does not meet the acceptance criterion of A. The complement language
is, therefore, accepted by a DTMA which has the same underlying timed transition table
as A, but its acceptance condition is given by 25 — F. m

Now let us consider the closure properties of DTBAs. Recall that deterministic Biichi
automata (DBA) are not closed under complement. The property that “there are infinitely
many a’s” is specifiable by a DBA, however, the complement property, “there are only
finitely many a’s” cannot be expressed by a DBA. Consequently we do not expect the
class of DTBAs to be closed under complementation. However, since every DTBA can be
viewed as a DTMA, the complement of a DTBA-language is accepted by a DTMA. The

next theorem states the closure properties.

Theorem 6.5 The class of timed languages accepted by DTBAs is closed under union
and intersection, but not closed under complement. The complement of a DTBA language
is accepted by some DTMA.

PROOF. For the case of union, we construct the product transition table as in case of
DTMAs (see proof of Theorem 6.4). The accepting set is {(s,s') | s € F1 V &’ € Fy}.

A careful inspection of the product construction for TBAs (see proof of Theorem 3.15)
shows that it preserves determinism. The closure under intersection for DTBAs follows.

The nonclosure of deterministic Blichi automata under complement leads to the non-
closure for DTBAs under complement. The language {(o,7) | o € (b*a)¥} is specifiable by
a DBA. Its complement language {(o,7) | o € (a 4 b)*b*} is not specifiable by a DTBA.
This claim follows from Lemma 6.7 (to be proved shortly), and the fact that the language
(a + b)*b¥ is not specifiable by a DBA.

Let A = (X,85,s0,C,E,F) be a complete deterministic automaton. (o,7) is in the
complement of L(A) iff the (unique) run of A over it does not meet the acceptance
criterion of A. The complement language is, therefore, accepted by a DTMA with the
same underlying timed transition table as A, and the acceptance family 257, m

33

6.3 Decision problems

In this section we examine the complexity of the emptiness problem and the language
inclusion problem for deterministic timed automata.

The emptiness of a timed automaton does not depend on the symbols labeling its
edges. Consequently, checking emptiness of deterministic automata is no simpler; it is
PSPACE-complete.

Since deterministic automata can be complemented, checking for language inclusion
is decidable. In fact, while checking L(A;) C L(A3), only A; need be deterministic, A,
can be nondeterministic. The problem can be solved in PSPACE:

Theorem 6.6 For a timed automaton A; and a deterministic timed automaton Aj;, the

problem of deciding whether L(A;) is contained in L(Ay) is PSPACE-complete.

PrOOF. PSPACE-hardness follows, even when A; is deterministic, from the fact that
checking for the emptiness of the language of a deterministic timed automaton is PSPACE-
hard. Let A, be a deterministic automaton which accepts the empty language. Now
for a deterministic timed automaton A, L(A) is empty iff L(A) C L(Acnpy)-

Observe that L(A;) C L(Ay) iff the intersection of L(A4;) with the complement of
L(A3) is empty. Recall that complementing the language of a deterministic automaton
corresponds to complementing the acceptance condition. First we construct a timed
transition table A from the timed transition tables of A; and Ay using the product
construction (see proof of Theorem 6.4). The size of A is proportional to the product of
the sizes of A;. Then we construct the region automaton R(A). L(Ay) € L(Az) iff R(A)
has a cycle which is accessible from its start state, meets the progressiveness requirement,
the acceptance criterion for A;, and the complement of the acceptance criterion for A,.

The existence of such a cycle can be checked in space polynomial in the size of A, as in
the proof of PSPACE-solvability of emptiness (Theorem 4.17). m

6.4 Expressiveness

In this section we compare the expressive power of the various types of timed automata.

Every DTBA can be expressed as a DTMA simply by rewriting its acceptance condi-
tion. However the converse does not hold. First observe that every w-regular language
is expressible as a DMA, and hence as a DTMA. On the other hand, since deterministic
Biichi automata are strictly less expressive than deterministic Muller automata, certain
w-regular languages are not specifiable by DBAs. The next lemma shows that such lan-
guages cannot be expressed using DTBAs either. It follows that DTBAs are strictly less
expressive than DTMAs. In fact, DT MAs are closed under complement, whereas DTBAs
are not.

Lemma 6.7 For an w-language L, the timed language {(o,7) | ¢ € L} is accepted by
some DTBA iff L is accepted by some DBA.

PRrROOF. Clearly if L is accepted by a DBA, then {(o,7) | 0 € L} is accepted by the
same automaton considered as a timed automaton.

Now suppose that the language {(o,7) | o € L} is accepted by some DTBA A. We
construct another DTBA A" such that L(A') = {(o,7) | (¢ € L) A Vi.(1; = 0)}. A

34

Class of timed languages Operations closed under
TMA = TBA union, intersection
U
DTMA union, intersection, complement
U
DTBA union, intersection

Figure 14: Classes of timed automata

requires time to increase by 1 at each transition. The automaton A’ can be obtained from
A by introducing an extra clock . We add the conjunct # = 1 to the clock constraint of
every edge in A and require it to be reset on every edge. A’ is also deterministic.

The next step is the untiming construction for A’. Observe that Untime(L(A")) = L.
While constructing R(A') we need to consider only those clock regions which have all
clocks with zero fractional parts. Since the time increase at every step is predetermined,
and A’ is deterministic, it follows that R(A’) is a deterministic transition table. We need
not check the progressiveness condition also. It follows that the automaton constructed
by the untiming procedure is a DBA accepting L. m

From the above discussion one may conjecture that a DTMA language L is a DTBA
language if Untime(L) is a DBA language. To answer this let us consider the convergent
response property Lo specifiable using a DTMA (see Example 6.2). This language in-
volves a combination of liveness and timing. We conjecture that no DTBA can specify
this property (even though Untime(Lqyt) can be trivially specified by a DBA).

Along the lines of the above proof we can also show that for an w-language L, the
timed language {(o,7) | 0 € L} is accepted by some DTMA (or TMA, or TBA) iff L is
accepted by some DMA (or MA, or BA, respectively).

Since DTMASs are closed under complement, whereas TMAs are not, it follows that the
class of languages accepted by DTMAs is strictly smaller than that accepted by TMAs.
In particular, the language of Example 5.7, (“some pair of a’s is distance 1 apart”) is not
representable as a DTMA; it relies on nondeterminism in a crucial way.

We summarize the discussion on various types of automata in the table of Figure 14
which shows the inclusions among various classes and the closure properties of various
classes. Compare this with the corresponding results for the various classes of w-automata
shown in Figure 15.

7 Verification

In this section we discuss how to use the theory of timed automata to prove correctness
of finite-state real-time systems. We have chosen a simple formulation of the verification
problem, but it suffices to illustrate the application of timed automata to verification
problems. We start by introducing time in linear trace semantics for concurrent processes.

35

Class of w-languages Operations closed under

MA = BA = DMA | union, intersection, complement
U
DBA union, intersection

Figure 15: Classes of w-automata

7.1 Trace semantics

In trace semantics, we associate a set of observable events with each process, and model
the process by the set of all its traces. A trace is a (linear) sequence of events that may
be observed when the process runs. For example, an event may denote an assignment of a
value to a variable, or pressing a button on the control panel, or arrival of a message. All
events are assumed to occur instantaneously. Actions with duration are modeled using
events marking the beginning and the end of the action. Hoare originally proposed such
a model for CSP [22].

In our model, a trace will be a sequence of sets of events. Thus if two events a and b
happen simultaneously, the corresponding trace will have a set {a, b} in our model. In the
usual interleaving models, this set will be replaced by all possible sequences, namely, a
followed by b and b followed by a. Also we consider only infinite sequences, which model
nonterminating interaction of reactive systems with their environments.

Formally, given a set A of events, a trace ¢ = 0103 ... is an infinite word over P*(A)
— the set of nonempty subsets of A. An untimed process is a pair (A, X') comprising of
the set A of its observable events and the set X of its possible traces.

Example 7.1 Consider a channel P connecting two components. Let a represent the
arrival of a message at one end of P, and let b stand for the delivery of the message at the
other end of the channel. The channel cannot receive a new message until the previous
one has reached the other end. Consequently the two events a and b alternate. Assuming
that the messages keep arriving, the only possible trace is

op : {a} — {b} — {a} — {b} — ---.

Often we will denote the singleton set {a} by the symbol a. The process P is represented
by ({a,b},(ab)*). m

Various operations can be defined on processes; these are useful for describing com-
plex systems using the simpler ones. We will consider only the most important of these
operations, namely, parallel composition. The parallel composition of a set of processes
describes the joint behavior of all the processes running concurrently.

The parallel composition operator can be conveniently defined using the projection
operation. The projection of ¢ € PT(A)¥ onto B C A (written o[B) is formed by
intersecting each event set in o with B and deleting all the empty sets from the sequence.
For instance, in Example 7.1 op[{a} is the trace a¥. Notice that the projection operation

36

may result in a finite sequence; but for our purpose it suffices to consider the projection
of a trace o onto B only when o; N B is nonempty for infinitely many :.

For a set of processes {P; = (A;, Xi) | ¢ = 1,2,...n}, their parallel composition ||; P;
is a process with the event set U;A; and the trace set

{U € P+(U¢Ai)w | N; U(AZ € XZ}

Thus o is a trace of ||; P, iff o[A; is a trace of P, for each ¢ = 1,...n. When there are
no common events the above definition corresponds to the unconstrained interleavings of
all the traces. On the other hand, if all event sets are identical then the trace set of the
composition process is simply the set-theoretic intersection of all the component trace
sets.

Example 7.2 Consider another channel () connected to the channel P of Example 7.1.
The event of message arrival for) is same as the event b. Let ¢ denote the delivery of
the message at the other end of Q). The process @) is given by ({b, ¢}, (bc)*).

When P and () are composed we require them to synchronize on the common event
b, and between every pair of b’s we allow the possibility of the event a happening before
the event ¢, the event ¢ happening before a, and both occurring simultaneously. Thus
[P || @] has the event set {a,b,c}, and has an infinite number of traces. m

In this framework, the verification question is presented as an inclusion problem. Both
the implementation and the specification are given as untimed processes. The implemen-
tation process is typically a composition of several smaller component processes. We
say that an implementation (A, X) is correct with respect to a specification (A, Xg) iff
X; C Xs.

Example 7.3 Consider the channels of Example 7.2. The implementation process is
[P || @] The specification is given as the process S = ({a,b,c},(abc)¥). Thus the
specification requires the message to reach the other end of () before the next message
arrives at P. In this case, [P || Q)] does not meet the specification S, for it has too many
other traces, specifically, the trace ab(acb)”. m

Notice that according to the above definition of the verification problem, an imple-
mentation with X; = 0 is correct with respect to every specification. To overcome this
problem, one needs to distinguish between output events (the events controlled by the
system), and the input events (the events controlled by its environment), and require
that the implementation should not prevent its environment from executing the input
events [14]. We believe that distinguishing between input and output events and intro-
ducing timing are two orthogonal issues, and our goal in this paper is to indicate how to
address the latter problem.

7.2 Adding timing to traces

An untimed process models the sequencing of events but not the actual times at which
the events occur. Thus the description of the channel in Example 7.1 gives only the
sequencing of the events a and b, and not the delays between them. Timing can be added

37

to a trace by coupling it with a sequence of time values. We choose the set of reals to
model time.

Recall that a time sequence 7 = 797 ... is an infinite sequence of time values 7; € R
satisfying the strict monotonicity and progress constraints. A timed trace over a set of
events A is a pair (o,7) where o is a trace over A, and 7 is a time sequence. Note that,
since different events happening simultaneously appear in a single element in a trace,
there is no reason to allow the possibility of the adjacent elements in a trace having the
same associated time value.

In a timed trace (o,7), each 7; gives the time at which the events in o; occur. In
particular, 7y gives the time of the first observable event; we always assume 7 > 0, and
define 79 = 0. Observe that the progress condition implies that only a finite number of
events can happen in a bounded interval of time. In particular, it rules out convergent time
sequences such as 1/2,3/4,7/8, ... representing the possibility that the system participates
in infinitely many events before time 1.

A timed process is a pair (A, L) where A is a finite set of events, and L is a set of
timed traces over A.

Example 7.4 Consider the channel P of Example 7.1 again. Assume that the first
message arrives at time 1, and the subsequent messages arrive at fixed intervals of length
3 time units. Furthermore, it takes 1 time unit for every message to traverse the channel.
The process has a single timed trace

pp = (a,1) — (b,2) = (a,4) — (b,5) — ---
and it is represented as a timed process PT = ({a, b}, {pp}). m

The operations on untimed processes are extended in the obvious way to timed pro-
cesses. To get the projection of (o,7) onto B C A, we first intersect each event set in
o with B and then delete all the empty sets along with the associated time values. The
definition of parallel composition remains unchanged, except that it uses the projection
for timed traces. Thus in parallel composition of two processes, we require that both the
processes should participate in the common events at the same time. This rules out the
possibility of interleaving: parallel composition of two timed traces is either a single timed
trace or is empty.

Example 7.5 As in Example 7.2 consider another channel () connected to P. For (),
as before, the only possible trace is o9 = (bc)”. In addition, the timing specification of
() says that the time taken by a message for traversing the channel, that is, the delay
between b and the following ¢, is some real value between 1 and 2. The timed process Q7
has infinitely many timed traces, and it is given by

[{b,c}, {(0g,7) | Vi.(T2ic1+ 1 < Toi < Tom1 +2)}].

The description of [PT || Q7] is obtained by composing pp with each timed trace of Q7.
The composition process has uncountably many timed traces. An example trace is

(a,1) — (b,2) — (¢,3.8) — (a,4) — (b,5) — (¢,6.02) — ---

38

The time values associated with the events can be discarded by the Untime operation.
For a timed process P = (A, L), Untime[(A, L)] is the untimed process with the event set
A and the trace set consisting of traces o such that (o,7) € L for some time sequence .

Note that

Untime(Py || P2) € Untime(Py) || Untime(Py).

However, as Example 7.6 shows, the two sides are not necessarily equal. In other words,
the timing information retained in the timed traces constrains the set of possible traces
when two processes are composed.

Example 7.6 Consider the channels of Example 7.5. Observe that Untime(PT) = P and
Untime(QT) = Q. [PT || Q7] has a unique untimed trace (abc)”. On the other hand,
[P || @] has infinitely many traces; between every pair of b events all possible orderings
of an event ¢ and an event ¢ are admissible. m

The verification problem is again posed as an inclusion problem. Now the implemen-
tation is given as a composition of several timed processes, and the specification is also
given as a timed process.

Example 7.7 Consider the verification problem of Example 7.3 again. If we model the
implementation as the timed process [PT || Q7] then it meets the specification S. The
specification S is now a timed process ({a, b, ¢}, {((abe)*,7)}). Observe that, though the
specification S constrains only the sequencing of events, the correctness of [PT || Q7]
with respect to S crucially depends on the timing constraints of the two channels. m

7.3 w-automata and verification

We start with an overview of the application of Biichi automata to verify untimed pro-
cesses [45, 44]. Observe that for an untimed process (A, X), X is an w-language over the
alphabet P*(A). If it is a regular language it can be represented by a Biichi automaton.

We model a finite-state (untimed) process P with event set A using a Biichi automaton
Ap over the alphabet PT(A). The states of the automaton correspond to the internal
states of the process. The automaton Ap has a transition (s,s’,a), with a C A, if the
process can change its state from s to s’ participating in the events from a. The acceptance
conditions of the automaton correspond to the fairness constraints on the process. The
automaton Ap accepts (or generates) precisely the traces of P; that is, the process P is
given by (A, L(Ap)). Such a process P is called an w-regular process.

The user describes a system consisting of various components by specifying each in-
dividual component as a Biichi automaton. In particular, consider a system [com-
prising of n components, where each component is modeled as an w-regular process
P, = (Ai, L(A;)). The implementation process is [||; P;]. We can automatically con-
struct the automaton for I using the construction for language intersection for Biichi
automata. Since the event sets of various components may be different, before we apply
the product construction, we need to make the alphabets of various automata identical.
Let A = U;A;. From each A;, we construct an automaton A, over the alphabet P*(A)
such that L(A]) = {oc € PT(A)¥ | o[A; € L(A;)}. Now the desired automaton Ay is the
product of the automata A

39

The specification is given as an w-regular language S over P*(A). The implementation
meets the specification iff L(A;) C S. The property S can presented as a Biichi automaton
Ags. In this case, the verification problem reduces to checking emptiness of L{A;)NL(Asg)°.

The verification problem is PSPACE-complete. The size of A;j is exponential in the
description of its individual components. If Ag is nondeterministic, taking the comple-
ment involves an exponential blow-up, and thus the complexity of verification problem is
exponential in the size of the specification also. However, if Ag is deterministic, then the
complexity is only polynomial in the size of the specification.

Even if the size of the specification and the sizes of the automata for the individual
components are small, the number of components in most systems of interest is large,
and in the above method the complexity is exponential in this number. Thus the product
automaton Aj has a prohibitively large number of states, and this limits the applicability
of this approach. Alternative methods which avoid enumeration of all the states in A;
have been proposed, and shown to be applicable to verification of some moderately sized
systems [8, 18].

7.4 Verification using timed automata

For a timed process (A, L), L is a timed language over P*(A). A timed regular process is
one for which the set L is a timed regular language, and can be represented by a timed
automaton.

Finite-state systems are modeled by TBAs. The underlying transition table gives the
state-transition graph of the system. We have already seen how the clocks can be used
to represent the timing delays of various physical components. As before, the acceptance
conditions correspond to the fairness conditions. Notice that the progress requirement
imposes certain fairness requirements implicitly. Thus, with a finite-state process P, we
associate a TBA Ap such that L(Ap) consists of precisely the timed traces of P.

Typically, an implementation is described as a composition of several components.
Each component should be modeled as a timed regular process P, = (A;, L(A;)). It is
possible to construct a TBA A; which represents the composite process [||; F;]. To do
this, first we need to make the alphabets of various automata identical, and then take the
intersection. However, in the verification procedure we are about to outline, we will not
explicitly construct the implementation automaton Aj.

The specification of the system is given as another timed regular language S over the
alphabet PT(A), where A = U;A;. The system is correct ift L(A7) C S. If S is given as a
TBA, then in general, it is undecidable to test for correctness. However, if S is given as
a DTMA Ag, then we can solve this as outlined in Section 6.3.

Putting together all the pieces, we conclude:

Theorem 7.8 Given timed regular processes P; = (A;, L(A;)), ¢ = 1,...n, modeled
by timed automata A;, and a specification as a deterministic timed automaton Ag, the

inclusion of the trace set of [||; P;] in L(Ag) can be checked in PSPACE.

Proo¥. Consider TBAs A; = (P+(A;),S:,Si,, Ci, Ei,), i = 1,...n, and the DTMA
As = (P*(A),So, So,, Co, Eo, F). Assume without loss of generality that the clock sets
C;, 1 =0,...n, are disjoint.

40

The verification algorithm constructs the transition table of the region automaton
corresponding to the product A of the timed transition tables of A; with Ag. The set of
clocks of A is C = U;C;. The states of A are of the form (sq,...s,) with each s; € S;.
The initial states of A are of the form (so,...s,) with each s; € S;,. A transition of A is
obtained by coupling the transitions of the individual automata labeled with consistent
event sets. A state s = (sp,...s,) has a transition to state s’ = (s{,...s!) labeled
with event set a € P*(A), clock constraint A;6;, and the set U;A; of clocks, iff for each
0 < i < n, either there is a transition (s;, st,aN A;, A;, 6;) € E;, or the automaton A; does
not participate in this transition: s: =s;, a N A; =0, \; =0, and §; = true.

The region automaton R(A) is defined from the product table A as described in
Section 4. To test the desired inclusion, the algorithm searches for a cycle in the region
automaton such that (1) it is accessible from the initial state of R(A), (2) it satisfies
the progessiveness condition: for each clock x € C, the cycle contains at least one region
satisfying [(x = 0) V (& > ¢;)], (3) since our definition of the composition requires that
we consider only those infinite runs in which each automaton participates infinitely many
times, we require that, for each 1 <2 < n, the cycle contains a transition in which the
automaton A; participates, (4) the fairness requirements of all implementation automata
A; are met: for each 1 < 7 < n, the cycle contains some state whose i-th component
belongs to the accepting set F;, (5) the fairness condition of the specification is not met:
the projection of the states in the cycle onto the component of Ag does not belong to the
acceptance family F. The desired inclusion does not hold iff a cycle with all the above
conditions can be found.

Each state of the region automaton can be represented in space polynomial in the
description of the input automata. It follows that the inclusion test can be performed in

PSPACE. m

The number of vertices in the region automaton is O[|As|-Hi|AZ’|-2|5(A5)|+E"|5(A")|], and
the time complexity of the above algorithm is linear in this number. There are mainly
three sources of exponential blow-up:

1. The complexity is proportional to the number of states in the global timed automa-
ton describing the implementation [||; P;]. This is exponential in the number of
components.

2. The complexity is proportional to the product of the constants ¢, the largest con-
stant x is compared with, over all the clocks x involved.

3. The complexity is proportional to the number of permutations over the set of all
clocks.

The first factor is present in the simplest of verification problems, even in the untimed
case. Since the number of components is typically large, this exponential factor has been
a major obstacle in implementing model-checking algorithms.

The second factor is typical of any formalism to reason about quantitative time. The
blow-up by actual constants is observed even for simpler, discrete models. Note that if
the bounds on the delays of different components are relatively prime then this factor
leads to a major blow-up in the complexity.

41

id T

approach
—G)—

x:=0

exit in
(x<5)? (x>2)?

®< out SZ

Figure 16: TRAIN

Lastly, in the untiming construction, we need to account for all the possible orderings
of the fractional parts of different clocks, and this is the source of the third factor. We
remark that switching to a simpler, say discrete-time, model will avoid this blow-up in
complexity. However since the total number of clocks is linear in the number of indepen-
dent components, this blow-up is the same as that contributed by the first factor, namely,
exponential in the number of components.

7.5 Verification example

We consider an example of an automatic controller that opens and closes a gate at a
railroad crossing [29]. The system is composed of three components: TRAIN, GATE and
CONTROLLER.

The automaton modeling the train is shown in Figure 16. The event set is {approach,
exit, in, out, idr}. The train starts in state sg. The event idr represents its idling event;
the train is not required to enter the gate. The train communicates with the controller
with two events approach and exit. The events in and out mark the events of entry
and exit of the train from the railroad crossing. The train is required to send the signal
approach at least 2 minutes before it enters the crossing. Thus the minimum delay between
approach and in is 2 minutes. Furthermore, we know that the maximum delay between
the signals approach and exit is 5 minutes. This is a liveness requirement on the train.
Both the timing requirements are expressed using a single clock x.

The automaton modeling the gate component is shown in Figure 17. The event set
is {raise, lower, up, down, ids}. The gate is open in state sg and closed in state s,. It
communicates with the controller through the signals lower and raise. The events up and
down denote the opening and the closing of the gate. The gate responds to the signal
lower by closing within 1 minute, and responds to the signal raise within 1 to 2 minutes.
The gate can take its idling transition 2d¢ in states so or sy forever.

Finally, Figure 18 shows the automaton modeling the controller. The event set is

42

G
lower
—
y:O
up down
(y>1) A(y<2)? (y<1)?
y:=0
GO
raise
id G
Figure 17: GATE
id c
O approach
—&)
@ z:=0
raise lower
(z<1)? (z=1)?

@4 z:=0
R S2
exit

Figure 18: CONTROLLER

43

Figure 19: Safety property

{approach, exit, raise, lower, idc}. The controller idle state is sq. Whenever it receives
the signal approach from the train, it responds by sending the signal lower to the gate.
The response time is 1 minute. Whenever it receives the signal exit, it responds with a
signal raise to the gate within 1 minute.

The entire system is then

[TRAIN || GATE || CONTROLLER].

The event set is the union of the event sets of all the three components. In this example,
all the automata are particularly simple; they are deterministic, and do not have any
fairness constraints (every run is an accepting run). The timed automaton A;j specifying
the entire system is obtained by composing the above three automata.

The correctness requirements for the system are the following:

1. Safety: Whenever the train is inside the gate, the gate should be closed.
2. Real-time Liveness: The gate is never closed at a stretch for more than 10 minutes.

The specification refers to only the events in, out, up, down. The safety property
is specified by the automaton of Figure 19. An edge label in stands for any event set
containing in, and an edge label “in, mout” means any event set not containing out, but
containing in. The automaton disallows in before down, and up before out. All the states
are accepting states.

The real-time liveness property is specified by the timed automaton of Figure 20. The
automaton requires that every down be followed by up within 10 minutes.

Note that the automaton is deterministic, and hence can be complemented. Further-
more, observe that the acceptance condition is not necessary; we can include state s;
also in the acceptance set. This is because the progress of time ensures that the self-
loop on state s; with the clock constraint (@ < 10) cannot be taken indefinitely, and the
automaton will eventually visit state sq.

The correctness of A; against the two specifications can be checked separately as
outlined in Section 7. Observe that though the safety property is purely a qualitative
property, it does not hold if we discard the timing requirements.

44

~down (x<10)?

up,(x<10)?

Figure 20: Real-time liveness property

& New results on timed automata

Timed automata provide a natural way of expressing timing delays of a real-time system.
In this presentation, we have studied them from the perspective of formal language theory.
Now we briefly review other results about timed automata. The precise formulation of
timed automata is different in different papers, but the underlying idea remains the same.

Timed automata are useful for developing a decision procedure for the logic MITL, a
real-time extension of the linear temporal logic PTL [4]. The decision procedure constructs
a timed automaton A, from a given MITL-formula ¢, such that A4 accepts precisely the
satisfying models of ¢; thereby reducing the satisfiability question for ¢ to the emptiness
question for Ayg. This construction can also be used to check the correctness of a system
modeled as a product of timed automata against MITL-specification.

The untiming construction for timed automata forms the basis for verification algo-
rithms in the branching-time model also. In [1], we develop a model-checking algorithm
for specifications written in TCTL — a real-time extension of the branching-time tempo-
ral logic CTL of [16]. In [43], a notion of timed bisimulation is defined for timed automata,
and an algorithm for deciding whether two timed automata are bisimilar, is given.

Timed automata is a fairly low-level representation, and automatic translations from
more structured representations such as process algebras, timed Petri nets, or high-level
real-time programming languages, should exist. Recently, Sifakis et al. have shown how
to translate a term of the real-time process algebra ATP to a timed automaton [34].

One promising direction of extending the process model discussed here is to incorpo-
rate probabilistic information. This is particularly relevant for systems that control and
interact with physical processes. We add probabilities to timed automata by associat-
ing fixed distributions with the delays. This extension makes our processes generalized
semi-Markov processes (GSMPs). Surprisingly, the untiming construction used to test
for emptiness of a timed automaton can be used to analyze the behavior of GSMPs also.
In [2], we present an algorithm that combines model-checking for TCTL with model-
checking for discrete-time Markov chains. The method can also be adopted to check
properties specified using deterministic timed automata [3].

Questions other than verification can also be studied using timed automata. For
example, Wong-Toi and Hoffmann study the problem of supervisory control of discrete
event systems when the plant and specification behaviors are represented by timed au-
tomata [48]. The problem of synthesizing schedulers from timed automata specifications

45

is addressed in [15]. Courcoubetis and Yannakakis use timed automata to solve certain
minimum and maximum delay problems for real-time systems [12]. For instance, they
show how to compute the earliest and the latest time a target state can appear along the

runs of an automaton from a given initial state.

References

1]

[3]

[9]

[10]

[11]

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In
Proceedings of the Fifth IEEE Symposium on Logic in Computer Science, pages 414—
425, 1990.

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems. In Automata, Languages and Programming: Proceedings of the 18th ICALP,
Lecture Notes in Computer Science 510, 1991.

R. Alur, C. Courcoubetis, and D. Dill. Verifying automata specifications of prob-
abilistic real-time systems. In Proceedings of REX workshop “Real-time: theory in
practice”, Lecture Notes in Computer Science 600, pages 28-44. Springer-Verlag,
1991.

R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. In Proceed-
ings of the Tenth ACM Symposium on Principles of Distributed Computing, pages
139-152, 1991.

R. Alur and T. Henzinger. A really temporal logic. In Proceedings of the 30th I[FEFE
Symposium on Foundations of Computer Science, pages 164—169, 1989.

A. Bernstein and P. Harter. Proving real-time properties of programs with temporal
logic. In Proceedings of the Fighth ACM Symposium on Operating System Principles,
pages 164-176, 1981.

R. Biichi. On a decision method in restricted second-order arithmetic. In Proceedings
of the International Congress on Logic, Methodology, and Philosophy of Science 1960,
pages 1-12. Stanford University Press, 1962.

J. Burch, E. Clarke, D. Dill, L. Hwang, and K. L. McMillan. Symbolic model check-
ing: 10%° states and beyond. Information and Computation, 98(2):142-170, 1992.

Y. Choueka. Theories of automata on w-tapes: a simplified approach. Journal of
Computer and System Sciences, 8:117-141, 1974.

E. Clarke, I. Draghicescu, and R. Kurshan. A unified approach for showing language
containment and equivalence between various types of w-automata. Technical report,
Carnegie Mellon University, 1989.

E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal-logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, 1986.

46

[12]

[13]

[14]

[15]

[22]

23]

[24]

[25]

[26]

C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-
time systems. In Proceedings of the Third Workshop on Computer-Aided Verification,
Lecture Notes in Computer Science 575, pages 399-409, 1991.

D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, Lecture
Notes in Computer Science 407, pages 197-212. Springer—Verlag, 1989.

D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent
Circuits. MIT Press, 1989.

D. Dill and H. Wong-Toi. Synthesizing processes and schedulers from temporal spec-
ifications. In Proceedings of the Second Workshop on Computer-Aided Verification,
Lecture Notes in Computer Science 531, pages 272-281, 1990.

E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2:241-266, 1982.

E. A. Emerson, A. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. In Proceedings of the Second Workshop on Computer-Aided Verification,
Lecture Notes in Computer Science 531, pages 136-145, 1990.

P. Godefroid and P. Wolper. A partial approach to model-checking. In Proceedings
of the Sizth IEEE Symposium on Logic in Computer Science, pages 406—415, 1991.

D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 26:222-243, 1983.

E. Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic. In Proceedings
of the Fifth IEEE Symposium on Logic in Computer Science, pages 402-413, 1990.

T. Henzinger, Z. Manna, and A. Pnueli. Temporal proot methodologies for real-time
systems. In Proceedings of the 18th ACM Symposium on Principles of Programming
Languages, pages 353-366, 1991.

C. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666-677, 1978.

J. Hoperoft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

F. Jahanian and A. Mok. Safety analysis of timing properties in real-time systems.

IEEE Transactions on Software Engineering, SE-12(9):890-904, 1986.

F. Jahanian and A. Mok. A graph-theoretic approach for timing analysis and its
implementation. [EEE Transactions on Computers, C-36(8):961-975, 1987.

R. Koymans. Specifying real-time properties with metric temporal logic. Journal of

Real-Time Systems, 2:255-299, 1990.

47

[27]

28]

[29]

30]

31]

32]

R. Kurshan. Complementing deterministic Biichi automata in polynomial time. Jour-
nal of Computer and System Sciences, 35:59-T1, 1987.

L. Lamport. What good is temporal logic? In R. Mason, editor, Information
Processing 83: Proceedings of the Ninth [FIP World Computer Congress, pages 657—
668. Elsevier Science Publishers, 1983.

N. Leveson and J. Stolzy. Analyzing safety and fault tolerance using timed Petri
nets. In Proceedings of International Joint Conference on Theory and Practice of Soft-
ware Development, Lecture Notes in Computer Science 186, pages 339-355. Springer-
Verlag, 1985.

H. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal un-
certainty. Technical Report TR-15-89, Harvard University, 1989.

N. Lynch and H. Attiya. Using mappings to prove timing properties. In Proceedings of
the Ninth ACM Symposium on Principles of Distributed Computing, pages 265-280,
1990.

Z. Manna and A. Pnueli. The temporal framework for concurrent programs. In

R. Boyer and J. Moore, editors, The Correctness Problem in Computer Science,
pages 215-274. Academic Press, 1981.

R. McNaughton. Testing and generating infinite sequences by a finite automaton.

Information and Control, 9:521-530, 1966.

X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.
In Proceedings of REX workshop “Real-time: theory in practice”, Lecture Notes in
Computer Science 600, pages 549-572. Springer-Verlag, 1991.

J. Ostroft. Temporal Logic of Real-time Systems. Research Studies Press, 1990.

A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-
stum on Foundations of Computer Science, pages 4677, 1977.

A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. In Current Trends in Concurrency,
Lecture Notes in Computer Science 224, pages 510-584. Springer-Verlag, 1986.

C. Ramchandani. Analysis of asynchronous concurrent systems by Petri nets. Tech-
nical Report MAC TR-120, Massachusetts Institute of Technology, 1974.

H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill,
1967.

S. Safra. On the complexity of w-automata. In Proceedings of the 29th IEEE Sym-
posium on Foundations of Computer Science, pages 319-327, 1988.

A. P. Sistla, M. Vardi, and P. Wolper. The complementation problem for Biichi
automata with applications to temporal logic. Theoretical Computer Science, 49:217—

237, 1987.

48

[42]

[43]

[44]

W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133-191. Elsevier Science Publishers,

1990.

K. Cerans. Decidability of bisimulation equivalence for parallel timer processes. In
Proceedings of the Fourth Workshop on Computer-Aided Verifiction, Lecture Notes
in Computer Science, 1992. To appear.

M. Vardi. Verification of concurrent programs — the automata-theoretic framework.
In Proceedings of the Second IEEE Symposium on Logic in Computer Science, pages
167-176, 1987.

M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First IEEE Symposium on Logic in Computer
Science, pages 332-344, 1986.

P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72—

99, 1983.

P. Wolper, M. Vardi, and A. P. Sistla. Reasoning about infinite computation paths.
In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science,
pages 185-194, 1983.

H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems.
In Proceedings of the 30th IEEE Conference on Decision and Control, pages 1527—
1528, 1991.

49

