
A Theory of Timed Automata 1Rajeev Alur 2 David L. Dill 3Computer Science Department, Stanford UniversityStanford, CA 94305.Abstract. We propose timed (�nite) automata to model the behavior of real-time systems over time. Our de�nition provides a simple, and yet powerful, way toannotate state-transition graphs with timing constraints using �nitely many real-valued clocks . A timed automaton accepts timed words | in�nite sequences inwhich a real-valued time of occurrence is associated with each symbol. We studytimed automata from the perspective of formal language theory: we consider closureproperties, decision problems, and subclasses. We consider both nondeterministicand deterministic transition structures, and both B�uchi and Muller acceptance con-ditions. We show that nondeterministic timed automata are closed under union andintersection, but not under complementation, whereas deterministic timed Mullerautomata are closed under all Boolean operations. The main construction of thepaper is an (PSPACE) algorithm for checking the emptiness of the language of a(nondeterministic) timed automaton. We also prove that the universality problemand the language inclusion problem are solvable only for the deterministic automata:both problems are undecidable (�11-hard) in the nondeterministic case and PSPACE-complete in the deterministic case. Finally, we discuss the application of this theoryto automatic veri�cation of real-time requirements of �nite-state systems.Keywords: Real-time systems, automatic veri�cation, formal languages and au-tomata theory.1Preliminary versions of this paper appear in the Proceedings of the 17th International Colloquium onAutomata, Languages, and Programming (1990), and in the Proceedings of the REX workshop \Real-time:theory in practice" (1991).2Current address: AT&T Bell Laboratories, 600 Mountain Avenue, Room 2D-144, Murray Hill, NJ07974.3Supported by the National Science Foundation under grant MIP-8858807, and by the United StatesNavy, O�ce of the Chief of Naval Research under grant N00014-91-J-1901. This publication does notnecessarily re
ect the position or the policy of the U.S. Government, and no o�cial endorsement of thiswork should be inferred.

1 IntroductionModal logics and !-automata for qualitative temporal reasoning about concurrent systemshave been studied in great detail (selected references: [36, 32, 16, 28, 47, 44, 37, 11]).These formalisms abstract away from time, retaining only the sequencing of events. Inthe linear time model, it is assumed that an execution can be completely modeled as asequence of states or system events, called an execution trace (or just trace). The behaviorof the system is a set of such execution sequences. Since a set of sequences is a formallanguage, this leads naturally to the use of automata for the speci�cation and veri�cationof systems. When the systems are �nite-state, as many are, we can use �nite automata,leading to e�ective constructions and decision procedures for automatically manipulat-ing and analyzing system behavior. The universal acceptance of �nite automata as thecanonical model of �nite-state computation can be attributed to the robustness of themodel and the appeal of its theory. In particular, a variety of competing formalisms |nondeterministic B�uchi automata, deterministic and nondeterministic Muller automata,!-regular expressions, modal formulas of (extended) temporal logic, and second-order for-mulas of the monadic theory of one successor (S1S) | have the same expressiveness, andde�ne the class of !-regular languages [7, 9, 33, 46, 42]. Consequently many veri�cationtheories are based on the theory of !-regular languages.Although the decision to abstract away from quantitative time has had many ad-vantages, it is ultimately counterproductive when reasoning about systems that mustinteract with physical processes; the correct functioning of the control system of airplanesand toasters depends crucially upon real-time considerations. We would like to be able tospecify and verify models of real-time systems as easily as qualitative models. Our goalis to modify �nite automata for this task and develop a theory of timed �nite automata,similar in spirit to the theory of !-regular languages. We believe that this should be the�rst step in building theories for the real-time veri�cation problem.For simplicity, we discuss models that consider executions to be in�nite sequences ofevents, not states (the theory with state-based models di�ers only in details). Within thisframework, it is possible to add timing to an execution trace by pairing it with a sequenceof times, where the i'th element of the time sequence gives the time of occurrence of thei'th event. At this point, however, a fundamental question arises: what is the nature oftime?Modeling timeOne alternative, which leads to the discrete-time model, requires the time sequence tobe a monotonically increasing sequence of integers. This model is appropriate for certainkinds of synchronous digital circuits, where signal changes are considered to have changedexactly when a clock signal arrives. One of the advantages of this model is that it can betransformed easily into an ordinary formal language. Each timed trace can be expandedinto a trace where the times increase by exactly one at each step, by inserting a specialsilent event as many times as necessary between events in the original trace. Once thistransformation has been performed, the time of each event is the same as its position,so the time sequence can be discarded, leaving an ordinary string. Hence, discrete timebehaviors can be manipulated using ordinary �nite automata. Of course, in physical1

processes events do not always happen at integer-valued times. The discrete-time modelrequires that continuous time be approximated by choosing some �xed quantum a priori,which limits the accuracy with which physical systems can be modeled.The �ctitious-clock model is similar to the discrete time model, except that it onlyrequires the sequence of integer times to be non-decreasing. The interpretation of a timedexecution trace in this model is that events occur in the speci�ed order at real-valuedtimes, but only the (integer) readings of the actual times with respect to a digital clockare recorded in the trace. This model is also easily transformed into a conventionalformal language. First, add to the set of events a new one, called tick. The untimedtrace corresponding to a timed trace will include all of the events from the timed trace,in the same order, but with ti+1 � ti number of ticks inserted between the i'th and the(i+1)'th events (note that this number may be 0). Once again, it is conceptually simpleto manipulate these behaviors using �nite automata, but the compensating disadvantageis that it represents time only in an approximate sense.We prefer a dense-time model, in which time is a dense set, because it is a morenatural model for physical processes operating over continuous time. In this model, thetimes of events are real numbers, which increase monotonically without bound. Dealingwith dense time in a �nite-automata framework is more di�cult than the other two cases,because it is not obvious how to transform a set of dense-time traces into an ordinaryformal language. Instead, we have developed a theory of timed formal languages andtimed automata to support automated reasoning about such systems.OverviewTo augment �nite !-automata with timing constraints, we propose the formalism of timedautomata. Timed automata accept timed words | in�nite sequences in which a real-valued time of occurrence is associated with each symbol. A timed automaton is a �niteautomaton with a �nite set of real-valued clocks. The clocks can be reset to 0 (indepen-dently of each other) with the transitions of the automaton, and keep track of the timeelapsed since the last reset. The transitions of the automaton put certain constraints onthe clock values: a transition may be taken only if the current values of the clocks satisfythe associated constraints. With this mechanism we can model timing properties suchas \the channel delivers every message within 3 to 5 time units of its receipt". Timedautomata can capture several interesting aspects of real-time systems: qualitative fea-tures such as liveness, fairness, and nondeterminism; and quantitative features such asperiodicity, bounded response, and timing delays.We study timed automata from the perspective of formal language theory. We considerboth deterministic and nondeterministic varieties, and for acceptance criteria we considerboth B�uchi and Muller conditions. We show that nondeterministic timed automata areclosed under union and intersection, but surprisingly, not under complementation. Theclosure properties for the deterministic classes are similar to their untimed counterparts:deterministic timed Muller automata are closed under all Boolean operations, whereasdeterministic timedB�uchi automata are closed under only the positive Boolean operations.These results imply that, unlike the untimed case, deterministic timed Muller automataare strictly less expressive than their nondeterministic counterparts.We study a variety of decision problems for the di�erent types of timed automata. The2

main positive result is an untiming construction for timed automata. Due to the real-valued clock variables, the state space of a timed automaton is in�nite, and the untimingalgorithm constructs a �nite quotient of this space. This is used to prove that the setof untimed words consistent with the timing constraints of a timed automaton forms an!-regular set. It also leads to a PSPACE decision procedure for testing emptiness of thelanguage of a timed automaton. We also show that the dual problem of testing whethera timed automaton accepts all timed words (i.e., the universality question) is undecidable(�11-hard) for nondeterministic automata. This also implies the undecidability of thelanguage inclusion problem. However, both these problems can be solved in PSPACE forthe deterministic versions.Finally, we show how to apply the theory of timed automata to prove correctness of�nite-state real-time systems. We give a PSPACE veri�cation algorithm to test whethera system modeled as a product of timed automata satis�es its speci�cation given as adeterministic timed Muller automaton.Related workDi�erent ways of incorporating timing constraints in the qualitative models of a systemhave been proposed recently, however, no attempt has been made to develop a theoryof timed languages and no algorithms for checking real-time properties in the dense-timemodel have been developed.Perhaps the most standard way of introducing timing information in a process modelis by associating lower and upper bounds with transitions. Examples of these includetimed Petri nets [38], timed transition systems [35, 21], timed I/O automata [31], andModecharts [25]. In a timed automaton, unlike these other models, a bound on the timetaken to traverse a path in the automaton, not just the time interval between the successivetransitions, can be directly expressed. Our model is based on an earlier model proposedby Dill that employs timers [13]. A model similar to Dill's was independently proposedand studied by Lewis [30]. He de�nes state-diagrams, and gives a way of translating acircuit description to a state-diagram. A state-diagram is a �nite-state machine whereevery edge is annotated with a matrix of intervals constraining various delays. Lewis alsodevelops an algorithm for checking consistency of the timing information for a specialclass of state-diagrams; the ones for which there exists a constant K such that at most Ktransitions can happen in a time interval of unit length. Our untiming construction doesnot need the latter assumption, and has a better worst-case complexity. We note that thedecidability and lower bound results presented here carry over to his formalism also.There have been a few attempts to extend temporal logics with quantitative time[6, 24, 26, 35, 17, 5, 20]. Most of these logics employ the discrete-time or the �ctitious-clock semantics. In the case of the dense-time model the only previously known result isan undecidability result: in [5] it is shown that the satis�ability problem for a real-timeextension of the linear-time temporal logic PTL is undecidable (�11-hard) in the dense-timemodel. 3

a

a

a,b

0S 1SFigure 1: B�uchi automaton accepting (a+ b)�a!2 !-automataIn this section we will brie
y review the relevant aspects of the theory of !-regular lan-guages.The more familiar de�nition of a formal language is as a set of �nite words over somegiven (�nite) alphabet (see, for example, [23]). As opposed to this, an !-language consistsof in�nite words. Thus an !-language over a �nite alphabet � is a subset of �! | the setof all in�nite words over �. !-automata provide a �nite representation for certain typesof !-languages. An !-automaton is essentially the same as a nondeterministic �nite-stateautomaton, but with the acceptance condition modi�ed suitably so as to handle in�niteinput words. Various types of !-automata have been studied in the literature [7, 33, 9, 42].We will mainly consider two types of !-automata: B�uchi automata and Muller automata.A transition table A is a tuple h�;S;S0;Ei, where � is an input alphabet, S is a �niteset of automaton states, S0 � S is a set of start states, and E � S � S � � is a set ofedges. The automaton starts in an initial state, and if hs; s0; ai 2 E then the automatoncan change its state from s to s0 reading the input symbol a.For a word � = �1�2 : : : over the alphabet �, we say thatr : s0 �1�! s1 �2�! s2 �3�! � � �is a run of A over �, provided s0 2 S0, and hsi�1; si; �ii 2 E for all i � 1. For such a run,the set inf (r) consists of the states s 2 S such that s = si for in�nitely many i � 0.Di�erent types of !-automata are de�ned by adding an acceptance condition to thede�nition of the transition tables. A B�uchi automaton A is a transition table h�;S;S0;Eiwith an additional set F � S of accepting states. A run r of A over a word � 2 �! is anaccepting run i� inf (r) \ F 6= ;. In other words, a run r is accepting i� some state fromthe set F repeats in�nitely often along r. The language L(A) accepted by A consists ofthe words � 2 �! such that A has an accepting run over �.Example 2.1 Consider the 2-state automaton of Figure 1 over the alphabet fa; bg. Thestate s0 is the start state and s1 is the accepting state. Every accepting run of theautomaton has the formr : s0 �1�! s0 �2�! � � � �n�! s0 a�! s1 a�! s1 a�! � � �with �i 2 fa; bg for 1 � i � n for some n � 1. The automaton accepts all words withonly a �nite number of b's; that is, the language L0 = (a+ b)�a!.4

a

a

b

b

0S 1SFigure 2: Deterministic Muller automaton accepting (a+ b)�a!An !-language is called !-regular i� it is accepted by some B�uchi automaton. Thusthe language L0 of Example 2.1 is an !-regular language.The class of !-regular languages is closed under all the Boolean operations. Languageintersection is implemented by a product construction for B�uchi automata [9, 47]. Thereare known constructions for complementing B�uchi automata [41, 40].When B�uchi automata are used for modeling �nite-state concurrent processes, theveri�cation problem reduces to that of language inclusion. The inclusion problem for!-regular languages is decidable. To test whether the language of one automaton iscontained in the other, we check for emptiness of the intersection of the �rst automatonwith the complement of the second. Testing for emptiness is easy; we only need to searchfor a cycle that is reachable from a start state and includes at least one accepting state.In general, complementing a B�uchi automaton involves an exponential blow-up in thenumber of states, and the language inclusion problem is known to be PSPACE-complete[41]. However, checking whether the language of one automaton is contained in thelanguage of a deterministic automaton can be done in polynomial time [27].A transition table A = h�;S;S0;Ei is deterministic i� (i) there is a single start state,that is, jS0j = 1, and (ii) the number of a-labeled edges starting at s is at most onefor all states s 2 S and for all symbols a 2 �. Thus, for a deterministic transitiontable, the current state and the next input symbol determine the next state uniquely.Consequently, a deterministic automaton has at most one run over a given word. Unlikethe automata on �nite words, the class of languages accepted by deterministic B�uchiautomata is strictly smaller than the class of !-regular languages. For instance, there isno deterministic B�uchi automaton which accepts the language L0 of Example 2.1. Mullerautomata (de�ned below) avoid this problem at the cost of a more powerful acceptancecondition.A Muller automaton A is a transition table h�;S;S0;Ei with an acceptance familyF � 2S. A run r of A over a word � 2 �! is an accepting run i� inf (r) 2 F . That is, arun r is accepting i� the set of states repeating in�nitely often along r equals some set inF . The language accepted by A is de�ned as in case of B�uchi automata.The class of languages accepted by Muller automata is the same as that accepted byB�uchi automata, and also equals that accepted by deterministic Muller automata.Example 2.2 The deterministic Muller automaton of Figure 2 accepts the language L0consisting of all words over fa; bg with only a �nite number of b's. The Muller acceptancefamily is ffs1gg. Thus every accepting run can visit the state s0 only �nitely often.5

Thus deterministicMuller automata form a strong candidate for representing !-regularlanguages: they are as expressive as their nondeterministic counterpart, and they can becomplemented in polynomial time. Algorithms for constructing the intersection of twoMuller automata and for checking language inclusion are known [10].3 Timed automataIn this section we de�ne timed words by coupling a real-valued time with each symbol ina word. Then we augment the de�nition of !-automata so that they accept timed words,and use them to develop a theory of timed regular languages analogous to the theory of!-regular languages.3.1 Timed languagesWe de�ne timed words so that a behavior of a real-time system corresponds to a timedword over the alphabet of events. As in the case of the dense-time model, the set ofnonnegative real numbers, R, is chosen as the time domain. A word � is coupled with atime sequence � as de�ned below:De�nition 3.1 A time sequence � = �1�2 � � � is an in�nite sequence of time values �i 2 Rwith �i > 0, satisfying the following constraints:1. Monotonicity: � increases strictly monotonically; that is, �i < �i+1 for all i � 1.2. Progress: For every t 2 R, there is some i � 1 such that �i > t.A timed word over an alphabet � is a pair (�; �) where � = �1�2 : : : is an in�nite wordover � and � is a time sequence. A timed language over � is a set of timed words over �.If a timed word (�; �) is viewed as an input to an automaton, it presents the symbol�i at time �i. If each symbol �i is interpreted to denote an event occurrence then thecorresponding component �i is interpreted as the time of occurrence of �i. Under certaincircumstances it may be appropriate to allow the same time value to be associated withmany consecutive events in the sequence. To accommodate this possibility one could usea slightly di�erent de�nition of timed words by requiring a time sequence to increase onlymonotonically (i.e., require �i � �i+1 for all i � 1). All our results continue to hold in thisalternative model also.Let us consider some examples of timed languages.Example 3.2 Let the alphabet be fa; bg. De�ne a timed language L1 to consist of alltimed words (�; �) such that there is no b after time 5:6. Thus the language L1 is givenby L1 = f(�; �) j 8i: ((�i > 5:6) ! (�i = a))g:Another example is the language L2 consisting of timed words in which a and b alter-nate, and for the successive pairs of a and b, the time di�erence between a and b keepsincreasing. The language L2 is given asL2 = f((ab)!; �) j 8i: ((�2i� �2i�1) < (�2i+2 � �2i+1))g:6

a, x:=0

b, (x<2)?

0S 1SFigure 3: Example of a timed transition tableThe language-theoretic operations such as intersection, union, complementation arede�ned for timed languages as usual. In addition we de�ne the Untime operation whichdiscards the time values associated with the symbols, that is, it considers the projectionof a timed trace (�; �) on the �rst component.De�nition 3.3 For a timed language L over �, Untime(L) is the !-language consistingof � 2 �! such that (�; �) 2 L for some time sequence � .For instance, referring to Example 3.2, Untime(L1) is the !-language (a+ b)�a!, andUntime(L2) consists of a single word (ab)!.3.2 Transition tables with timing constraintsNow we extend transition tables to timed transition tables so that they can read timedwords. When an automaton makes a state-transition, the choice of the next state dependsupon the input symbol read. In case of a timed transition table, we want this choice todepend also upon the time of the input symbol relative to the times of the previouslyread symbols. For this purpose, we associate a �nite set of (real-valued) clocks with eachtransition table. A clock can be set to zero simultaneously with any transition. At anyinstant, the reading of a clock equals the time elapsed since the last time it was reset.With each transition we associate a clock constraint, and require that the transition maybe taken only if the current values of the clocks satisfy this constraint. Before we de�nethe timed transition tables formally, let us consider some examples.Example 3.4 Consider the timed transition table of Figure 3. The start state is s0.There is a single clock x. An annotation of the form x := 0 on an edge corresponds tothe action of resetting the clock x when the edge is traversed. Similarly an annotation ofthe form (x < 2)? on an edge gives the clock constraint associated with the edge.The automaton starts in state s0, and moves to state s1 reading the input symbol a.The clock x gets set to 0 along with this transition. While in state s1, the value of theclock x shows the time elapsed since the occurrence of the last a symbol. The transitionfrom state s1 to s0 is enabled only if this value is less than 2. The whole cycle repeatswhen the automaton moves back to state s0. Thus the timing constraint expressed bythis transition table is that the delay between a and the following b is always less than 2;more formally, the language isf((ab)!; �) j 8i: (�2i < �2i�1 + 2)g:7

a b c

(x<1)?

d, (y>2)?

x:=0 y:=0
0S 1S 2S 3SFigure 4: Timed transition table with 2 clocksThus to constrain the delay between two transitions e1 and e2, we require a particularclock to be reset on e1, and associate an appropriate clock constraint with e2. Note thatclocks can be set asynchronously of each other. This means that di�erent clocks canbe restarted at di�erent times, and there is no lower bound on the di�erence betweentheir readings. Having multiple clocks allows multiple concurrent delays, as in the nextexample.Example 3.5 The timed transition table of Figure 4 uses two clocks x and y, and acceptsthe languageL3 = f((abcd)!; �) j 8j: ((�4j+3 < �4j+1 + 1) ^ (�4j+4 > �4j+2 + 2))g:The automaton cycles among the states s0, s1, s2 and s3. The clock x gets set to0 each time it moves from s0 to s1 reading a. The check (x < 1)? associated with thec-transition from s2 to s3 ensures that c happens within time 1 of the preceding a. Asimilar mechanism of resetting another independent clock y while reading b and checkingits value while reading d, ensures that the delay between b and the following d is alwaysgreater than 2.Notice that in the above example, to constrain the delay between a and c and betweenb and d the automaton does not put any explicit bounds on the time di�erence betweena and the following b, or c and the following d. This is an important advantage of havingmultiple clocks which can be set independently of each other. The above language L3 isthe intersection of the two languages L13 and L23 de�ned asL13 = f((abcd)!; �) j 8j: (�4j+3 < �4j+1 + 1)g;L23 = f((abcd)!; �) j 8j: (�4j+4 > �4j+2 + 2)g:Each of the languages L13 and L23 can be expressed by an automaton which uses just oneclock; however to express their intersection we need two clocks.We remark that the clocks of the automaton do not correspond to the local clocksof di�erent components in a distributed system. All the clocks increase at the uniformrate counting time with respect to a �xed global time frame. They are �ctitious clocksinvented to express the timing properties of the system. Alternatively, we can considerthe automaton to be equipped with a �nite number of stop-watches which can be startedand checked independently of one another, but all stop-watches refer to the same clock.8

3.3 Clock constraints and clock interpretationsTo de�ne timed automata formally, we need to say what type of clock constraints areallowed on the edges. The simplest form of a constraint compares a clock value with atime constant. We allow only the Boolean combinations of such simple constraints. Anyvalue from Q, the set of nonnegative rationals, can be used as a time constant. Later, inSection 5.5, we will show that allowing more complex constraints, such as those involvingaddition of clock values, leads to undecidability.De�nition 3.6 For a set X of clock variables, the set �(X) of clock constraints � isde�ned inductively by � := x � c j c � x j :� j �1 ^ �2;where x is a clock in X and c is a constant in Q.Observe that constraints such as true, (x = c), x 2 [2; 5) can be de�ned as abbrevia-tions.A clock interpretation � for a set X of clocks assigns a real value to each clock; thatis, it is a mapping from X to R. We say that a clock interpretation � for X satis�es aclock constraint � over X i� � evaluates to true using the values given by �.For t 2 R, �+ t denotes the clock interpretation which maps every clock x to the value�(x) + t, and the clock interpretation t�� assigns to each clock x the value t��(x). ForY � X, [Y 7! t]� denotes the clock interpretation for X which assigns t to each x 2 Y ,and agrees with � over the rest of the clocks.3.4 Timed transition tablesNow we give the precise de�nition of timed transition tables.De�nition 3.7 A timed transition table A is a tuple h�;S;S0;C;Ei, where� � is a �nite alphabet,� S is a �nite set of states,� S0 � S is a set of start states,� C is a �nite set of clocks, and� E � S�S���2C��(C) gives the set of transitions. An edge hs; s0; a; �; �irepresents a transition from state s to state s0 on input symbol a. The set� � C gives the clocks to be reset with this transition, and � is a clockconstraint over C.Given a timed word (�; �), the timed transition table A starts in one of its start statesat time 0 with all its clocks initialized to 0. As time advances, the values of all clockschange, re
ecting the elapsed time. At time �i, A changes state from s to s0 using sometransition of the form hs; s0; �i; �; �i reading the input �i, if the current values of clockssatisfy �. With this transition the clocks in � are reset to 0, and thus start counting timewith respect to the time of occurrence of this transition. This behavior is captured byde�ning runs of timed transition tables. A run records the state and the values of all theclocks at the transition points. For a time sequence � = �1�2 : : : we de�ne �0 = 0.9

De�nition 3.8 A run r, denoted by (s; �), of a timed transition table h�;S;S0;C;Ei overa timed word (�; �) is an in�nite sequence of the formr : hs0; �0i �1�!�1 hs1; �1i �2�!�2 hs2; �2i �3�!�3 � � �with si 2 S and �i 2 [C ! R], for all i � 0, satisfying the following requirements:� Initiation: s0 2 S0, and �0(x) = 0 for all x 2 C.� Consecution: for all i � 1, there is an edge in E of the form hsi�1; si; �i; �i; �ii suchthat (�i�1 + �i � �i�1) satis�es �i and �i equals [�i 7! 0](�i�1 + �i � �i�1).The set inf (r) consists of those states s 2 S such that s = si for in�nitely many i � 0.Example 3.9 Consider the timed transition table of Example 3.5. Consider a timedword (a; 2) ! (b; 2:7) ! (c; 2:8) ! (d; 5) ! � � �Below we give the initial segment of the run. A clock interpretation is represented bylisting the values [x; y].hs0; [0; 0]i a�!2 hs1; [0; 2]i b�!2:7 hs2; [0:7; 0]i c�!2:8 hs3; [0:8; 0:1]i d�!5 hs0; [3; 2:3]i � � �Along a run r = (s; �) over (�; �), the values of the clocks at time t between �i and�i+1 are given by the interpretation (�i+ t� �i). When the transition from state si to si+1occurs, we use the value (�i + �i+1 � �i) to check the clock constraint; however, at time�i+1, the value of a clock that gets reset is de�ned to be 0.Note that a transition tableA = h�;S;S0;Ei can be considered to be a timed transitiontable A0. We choose the set of clocks to be the empty set, and replace every edge hs; s0; aiby hs; s0; a; ;; truei. The runs of A0 are in an obvious correspondence with the runs of A.3.5 Timed regular languagesWe can couple acceptance criteria with timed transition tables, and use them to de�netimed languages.De�nition 3.10 A timed B�uchi automaton (in short TBA) is a tuple h�;S;S0;C;E;Fi,where h�;S;S0;C;Ei is a timed transition table, and F � S is a set of accepting states.A run r = (s; �) of a TBA over a timed word (�; �) is called an accepting run i�inf (r) \ F 6= ;.For a TBA A, the language L(A) of timed words it accepts is de�ned to be the setf(�; �) j A has an accepting run over (�; �)g.In analogy with the class of languages accepted by B�uchi automata, we call the classof timed languages accepted by TBAs timed regular languages.10

b

a

b,(x<2)?

a, x:=0

a, x:=0
1S 0S

2
S 3

SFigure 5: Timed B�uchi automaton accepting LcrtDe�nition 3.11 A timed language L is a timed regular language i� L = L(A) for someTBA A.Example 3.12 The language L3 of Example 3.5 is a timed regular language. The timedtransition table of Figure 4 is coupled with the acceptance set consisting of all the states.For every !-regular language L over �, the timed language f(�; �) j � 2 Lg is regular.A typical example of a nonregular timed language is the language L2 of Example 3.2. Itrequires that the time di�erence between the successive pairs of a and b form an increasingsequence.Another nonregular language is f(a!; �) j 8i: (�i = 2i)g.The automaton of Example 3.13 combines the B�uchi acceptance condition with thetiming constraints to specify an interesting convergent response property:Example 3.13 The automaton of Figure 5 accepts the timed language Lcrt over thealphabet fa; bg. Lcrt = f((ab)!; �) j 9i:8j � i: (�2j < �2j�1 + 2)g:The start state is s0, the accepting state is s2, and there is a single clock x. Theautomaton starts in state s0, and cycles between the states s0 and s1 for a while. Then,nondeterministically, it moves to state s2 setting its clock x to 0. While in the cyclebetween the states s2 and s3, the automaton resets its clock while reading a, and ensuresthat the next b is within 2 time units. Interpreting the symbol b as a response to a requestdenoted by the symbol a, the automaton models a system with a convergent response time;the response time is \eventually" always less than 2 time units.The next example shows that timed automata can specify periodic behavior also.Example 3.14 The automaton of Figure 6 accepts the following language over the al-phabet fa; bg. f(�; �) j 8i:9j: (�j = 3i ^ �j = a)gThe automaton has a single state s0, and a single clock x. The clock gets reset atregular intervals of period 3 time units. The automaton requires that whenever the clockequals 3 there is an a symbol. Thus it expresses the property that a happens at all timevalues that are multiples of 3. 11

a,b,(x<3)?

a,(x=3)?,x:=0

S0Figure 6: Timed automaton specifying periodic behavior3.6 Properties of timed regular languagesThe next theorem considers some closure properties of timed regular languages.Theorem 3.15 The class of timed regular languages is closed under (�nite) union andintersection.Proof. Consider TBAs Ai = h�;Si;Si0;Ci;Ei;Fii, i = 1; 2; : : : n. Assume withoutloss of generality that the clock sets Ci are disjoint. We construct TBAs accepting theunion and intersection of L(Ai).Since TBAs are nondeterministic the case of union is easy. The required TBA is simplythe disjoint union of all the automata.Intersection can be implemented by a trivial modi�cation of the standard productconstruction for B�uchi automata [9]. The set of clocks for the product automaton A is[iCi. The states ofA are of the form hs1; : : : sn; ki, where each si 2 Si, and 1 � k � n. Thei-th component of the tuple keeps track of the state of Ai, and the last component is usedas a counter for cycling through the accepting conditions of all the individual automata.Initially the counter value is 1, and it is incremented from k to (k+ 1) (modulo n) i� thecurrent state of the k-th automaton is an accepting state. Note that we choose the valueof n mod n to be n.The initial states of A are of the form hs1; : : : sn; 1i where each si is a start state ofAi. A transition of A is obtained by coupling the transitions of the individual automatahaving the same label. Let fhsi; s0i; a; �i; �ii 2 Ei j i = 1; : : : ng be a set of transitions, oneper each automaton, with the same label a. Corresponding to this set, there is a jointtransition of A out of each state of the form hs1; : : : sn; ki labeled with a. The new stateis hs01; : : : s0n; ji with j = (k + 1) mod n if sk 2 Fk, and j = k otherwise. The set of clocksto be reset with this transition is [i�i, and the associated clock constraint is ^i�i.The counter value cycles through the whole range 1; : : : n in�nitely often i� the ac-cepting conditions of all the automata are met. Consequently, we de�ne the accepting setfor A to consist of states of the form hs1; : : : sn; ni, where sn 2 Fn.In the above product construction, the number of states of the resulting automatonis n��ijSij. The number of clocks is �ijCij, and the size of the edge set is n��ijEij. Notethat jEj includes the length of the clock constraints assuming binary encoding for theconstants. 12

b

(x=1)?

a,x:=0

y:=0

a,(x=1)?,x:=0

b,(y<1)?,y:=0

S0 S1 S2 S3Figure 7: Timed automaton accepting LconvergeObserve that even for the timed regular languages arbitrarily many symbols can occurin a �nite interval of time. Furthermore, the symbols can be arbitrarily close to eachother. Consider the following example.Example 3.16 The language accepted by the automaton in Figure 7 isLconverge = f((ab)!; �) j 8i: (�2i�1 = i ^ (�2i � �2i�1 > �2i+2 � �2i+1))g:Every word accepted by this automaton has the property that the sequence of timedi�erences between a and the following b is strictly decreasing. A sample word acceptedby the automaton is(a; 1) ! (b; 1:5) ! (a; 2) ! (b; 2:25) ! (a; 3) ! (b; 3:125) ! � � �This example illustrates that the model of reals is indeed di�erent from the discrete-time model. If we require all the time values �i to be multiples of some �xed constant �,however small, the language accepted by the automaton of Figure 7 will be empty.On the other hand, timed automata do not distinguish between the set of reals R andthe set of rationals Q. Only the denseness of the underlying domain plays a crucial role.In particular, Theorem 3.17 shows that if we require all the time values in time sequencesto be rational numbers, the untimed language Untime [L(A)] of a timed automaton Astays unchanged.Theorem 3.17 Let L be a timed regular language. For every word �, � 2 Untime(L) i�there exists a time sequence � such that �i 2 Q for all i � 1, and (�; �) 2 L.Proof. Consider a timed automaton A, and a word �. If there exists a time sequence� with all rational time values such that (�; �) 2 L(A), then clearly, � 2 Untime [L(A)].Now suppose for an arbitrary time sequence � , (�; �) 2 L(A). Let � 2 Q be such thatevery constant appearing in the clock constraints of A is an integral multiple of �. Let� 00 = 0, and �0 = 0. If �i = �j +n� for some 0 � j < i and n 2 N, then choose � 0i = � 0j+n�.Otherwise choose � 0i 2 Q such that for all 0 � j < i, for all n 2 N, (� 0i � � 0j) < n� i�(�i � �j) < n�. Note that because of the denseness of Q such a choice of � 0i is alwayspossible.Consider an accepting run r = (s; �) of A over (�; �). Because of the construction of� 0, if a clock x is reset at the i-th transition point, then its possible values at the j-th13

a,(x<5)? a,(x<2)?

b,x:=0 c,x:=0

1S 0
S

2
SFigure 8: Timed Muller automatontransition point along the two time sequences, namely, (�j � �i) and (� 0j � � 0i), satisfy thesame set of clock constraints. Consequently it is possible to construct an accepting runr0 = (s; � 0) over (�; � 0) which follows the same sequence of edges as r. In particular, choose�00 = �0, and if the i-th transition along r is according to the edge hsi�1; si; �i; �i; �ii, thenset � 0i = [�i 7! 0](� 0i�1 + � 0i � � 0i�1). Consequently, A accepts (�; � 0).3.7 Timed Muller automataWe can de�ne timed automata with Muller acceptance conditions also.De�nition 3.18 A timed Muller automaton (TMA) is a tuple h�;S;S0;C;E;Fi, whereh�;S;S0;C;Ei is a timed transition table, and F � 2S speci�es an acceptance family.A run r = (s; �) of the automaton over a timed word (�; �) is an accepting run i�inf (r) 2 F .For a TMA A, the language L(A) of timed words it accepts is de�ned to be the setf(�; �) j A has an accepting run over (�; �)g.Example 3.19 Consider the automaton of Figure 8 over the alphabet fa; b; cg. Thestart state is s0, and the Muller acceptance family consists of a single set fs0; s2g. So anyaccepting run should cycle between states s0 and s1 only �nitely many times, and betweenstates s0 and s2 in�nitely many times. Every word (�; �) accepted by the automatonsatis�es: (1) � 2 (a(b+ c))�(ac)!, and (2) for all i � 1, the di�erence (�2i�1� �2i�2) is lessthan 2 if the (2i)-th symbol is c, and less than 5 otherwise.Recall that untimed B�uchi automata and Muller automata have the same expressivepower. The following theorem states that the same holds true for TBAs and TMAs. Thusthe class of timed languages accepted by TMAs is the same as the class of timed regularlanguages. The proof of the following theorem closely follows the standard argument thatan !-regular language is accepted by a B�uchi automaton i� it is accepted by some Mullerautomaton.Theorem 3.20 A timed language is accepted by some timed B�uchi automaton i� it isaccepted by some timed Muller automaton.Proof. Let A = h�;S;S0;C;E;Fi be a TBA. Consider the TMA A0 with the sametimed transition table as that of A, and with the acceptance family F = fS0 � S : S0\F 6=;g. It is easy to check that L(A) = L(A0). This proves the \only if" part of the claim.14

In the other direction, given a TMA, we can construct a TBA accepting the samelanguage using the simulation of Muller acceptance condition by B�uchi automata. LetA be a TMA given as h�;S;S0;C;E;Fi. First note that L(A) = [F2FL(AF) whereAF = h�;S;S0;C;E; fFgi, so it su�ces to construct, for each acceptance set F, a TBAA0F which accepts the language L(AF). Assume F = fs1; : : : skg. The automaton A0Fuses nondeterminism to guess when the set F is entered forever, and then uses a counterto make sure that every state in F is visited in�nitely often. States of A0F are of theform hs; ii, where s 2 S and i 2 f0; 1; : : : kg. The set of initial states is S0 � f0g. Theautomaton simulates the transitions of A, and at some point nondeterministically setsthe second component to 1. For every transition hs; s0; a; �; �i of A, the automaton A0Fhas a transition hhs; 0i; hs0; 0i; a; �; �i, and, in addition, if s0 2 F it also has a transitionhhs; 0i; hs0; 1i; a; �; �i.While the second component is nonzero, the automaton is required to stay within theset F. For every A-transition hs; s0; a; �; �i with both s and s0 in F, for each 1 � i � k,there is an A0F-transition hhs; ii; hs0; ji; a; �; �i where j = (i+1) mod k, if s equals si, elsej = i. The only accepting state is hsk; ki.4 Checking emptinessIn this section we develop an algorithm for checking the emptiness of the language of atimed automaton. The existence of an in�nite accepting path in the underlying transitiontable is clearly a necessary condition for the language of an automaton to be nonempty.However, the timing constraints of the automaton rule out certain additional behaviors.We will show that a B�uchi automaton can be constructed that accepts exactly the set ofuntimed words that are consistent with the timed words accepted by a timed automaton.4.1 Restriction to integer constantsRecall that our de�nition of timed automata allows clock constraints which involve com-parisons with rational constants. The following lemma shows that, for checking emptiness,we can restrict ourselves to timed automata whose clock constraints involve only integerconstants. For a timed sequence � and t 2 Q, let t�� denote the timed sequence obtainedby multiplying all �i by t.Lemma 4.1 Consider a timed transition table A, a timed word (�; �), and t 2 Q. (s; �)is a run of A over (�; �) i� (s; t ��) is a run of At over (�; t ��), where At is the timedtransition table obtained by replacing each constant d in each clock constraint labelingthe edges of A by t�d.Proof. The lemma can be proved easily from the de�nitions using induction.Thus there is an isomorphism between the runs of A and the runs of At. If we chooset to be the least common multiple of denominators of all the constants appearing in theclock constraints of A, then the clock constraints for At use only integer constants. In thistranslation, the values of the individual constants grow at most with the product of thedenominators of all the original constants. We assume binary encoding for the constants.15

Let us denote the length of the clock constraints of A by j�(A)j. It is easy to prove thatj�(At)j is bounded by j�(A)j2. Observe that this result depends crucially on the fact thatwe encode constants in binary notation; if we use unary encoding then j�(At)j can beexponential in j�(A)j.Observe that L(A) is empty i� L[At] is empty. Hence, to decide the emptiness ofL(A) we consider At. Also Untime [L(A)] equals Untime [L(At)]. In the remainder of thesection we assume that the clock constraints use only integer constants.4.2 Clock regionsAt every point in time the future behavior of a timed transition table is determined byits state and the values of all its clocks. This motivates the following de�nition:De�nition 4.2 For a timed transition table h�;S;S0;C;Ei, an extended state is a pairhs; �i where s 2 S and � is a clock interpretation for C.Since the number of such extended states is in�nite (in fact, uncountable), we cannotpossibly build an automaton whose states are the extended states of A. But if twoextended states with the same A-state agree on the integral parts of all clock values, andalso on the ordering of the fractional parts of all clock values, then the runs starting fromthe two extended states are very similar. The integral parts of the clock values are neededto determine whether or not a particular clock constraint is met, whereas the ordering ofthe fractional parts is needed to decide which clock will change its integral part �rst. Forexample, if two clocks x and y are between 0 and 1 in an extended state, then a transitionwith clock constraint (x = 1) can be followed by a transition with clock constraint (y = 1),depending on whether or not the current clock values satisfy (x < y).The integral parts of clock values can get arbitrarily large. But if a clock x is nevercompared with a constant greater than c, then its actual value, once it exceeds c, is of noconsequence in deciding the allowed paths.Now we formalize this notion. For any t 2 R, fract(t) denotes the fractional part of t,and btc denotes the integral part of t; that is, t = btc + fract(t). We assume that everyclock in C appears in some clock constraint.De�nition 4.3 Let A = h�;S;S0;C;Ei be a timed transition table. For each x 2 C, letcx be the largest integer c such that (x � c) or (c � x) is a subformula of some clockconstraint appearing in E.The equivalence relation � is de�ned over the set of all clock interpretations for C;��� 0 i� all the following conditions hold:1. For all x 2 C, either b�(x)c and b� 0(x)c are the same, or both �(x) and � 0(x) aregreater than cx.2. For all x; y 2 C with �(x) � cx and �(y) � cy, fract(�(x)) � fract(�(y)) i�fract(� 0(x)) � fract(� 0(y)).3. For all x 2 C with �(x) � cx, fract(�(x)) = 0 i� fract(� 0(x)) = 0.A clock region for A is an equivalence class of clock interpretations induced by �.16

6 -����0 1 21y x 6 Corner points: e.g. [(0,1)]14 Open line segments: e.g. [0 < x = y < 1]8 Open regions: e.g. [0 < x < y < 1]Figure 9: Clock regionsWe will use [�] to denote the clock region to which � belongs. Each region can beuniquely characterized by a (�nite) set of clock constraints it satis�es. For example,consider a clock interpretation � over two clocks with �(x) = 0:3 and �(y) = 0:7. Everyclock interpretation in [�] satis�es the constraint (0 < x < y < 1), and we will representthis region by [0 < x < y < 1]. The nature of the equivalence classes can be bestunderstood through an example.Example 4.4 Consider a timed transition table with two clocks x and y with cx = 2 andcy = 1. The clock regions are shown in Figure 9.Note that there are only a �nite number of regions. Also note that for a clock constraint� of A, if ��� 0 then � satis�es � i� � 0 satis�es �. We say that a clock region � satis�es aclock constraint � i� every � 2 � satis�es �. Each region can be represented by specifying(1) for every clock x, one clock constraint from the setfx = c j c = 0; 1; : : : cxg [fc� 1 < x < c j c = 1; : : : cxg [fx > cxg;(2) for every pair of clocks x and y such that c� 1 < x < c and d� 1 < y < dappear in (1) for some c; d, whether fract(x) is less than, equal to, orgreater than fract(y).By counting the number of possible combinations of equations of the above form, we getthe upper bound in the following lemma.Lemma 4.5 The number of clock regions is bounded by [jCj! � 2jCj ��x2C(2cx + 2)].Remember that j�(A)j stands for the length of the clock constraints of A assumingbinary encoding, and hence the product �x2C(2cx + 2) is O[2j�(A)j]. Since the numberof clocks jCj is bounded by j�(A)j, henceforth, we assume that the number of regions isO[2j�(A)j]. Note that if we increase �(A) without increasing the number of clocks or thesize of the largest constants the clocks are compared with, then the number of regionsdoes not grow with j�(A)j. Also observe that a region can be represented in space linearin j�(A)j. 17

4.3 The region automatonThe �rst step in the decision procedure for checking emptiness is to construct a transitiontable whose paths mimic the runs of A in a certain way. We will denote the desiredtransition table by R(A), the region automaton of A. A state of R(A) records the stateof the timed transition table A, and the equivalence class of the current values of theclocks. It is of the form hs; �i with s 2 S and � being a clock region. The intendedinterpretation is that whenever the extended state of A is hs; �i, the state of R(A) ishs; [�]i. The region automaton starts in some state hs0; [�0]i where s0 is a start state of A,and the clock interpretation �0 assigns 0 to every clock. The transition relation of R(A)is de�ned so that the intended simulation is obeyed. It has an edge from hs; �i to hs0; �0ilabeled with a i� A in state s with the clock values � 2 � can make a transition on a tothe extended state hs0; � 0i for some � 0 2 �0.The edge relation can be conveniently de�ned using a time-successor relation over theclock regions. The time-successors of a clock region � are all the clock regions that willbe visited by a clock interpretation � 2 � as time progresses.De�nition 4.6 A clock region �0 is a time-successor of a clock region � i� for each � 2 �,there exists a positive t 2 R such that � + t 2 �0.Example 4.7 Consider the clock regions shown in Figure 9 again. The time-successorsof a region � are the regions that can be reached by moving along a line drawn from somepoint in � in the diagonally upwards direction (parallel to the line x = y). For example,the region [(1 < x < 2); (0 < y < x � 1)] has, other than itself, the following regions astime-successors: [(x = 2); (0 < y < 1)], [(x > 2); (0 < y < 1)], [(x > 2); (y = 1)] and[(x > 2); (y > 1)].Now let us see how to construct all the time-successors of a clock region. Recall that aclock region � is speci�ed by giving (1) for every clock x, a constraint of the form (x = c)or (c�1 < x < c) or (x > cx), and (2) for every pair x and y such that (c�1 < x < c) and(d � 1 < y < d) appear in (1), the ordering relationship between fract(x) and fract(y).To compute all the time-successors of � we proceed as follows. First observe that thetime-successor relation is a transitive relation. We consider di�erent cases.First suppose that � satis�es the constraint (x > cx) for every clock x. The onlytime-successor of � is itself. This is the case for the region [(x > 2); (y > 1)] in Figure 9.Now suppose that the set C0 consisting of clocks x such that � satis�es the constraint(x = c) for some c � cx, is nonempty. In this case, as time progresses the fractionalparts of the clocks in C0 become nonzero, and the clock region changes immediately. Thetime-successors of � are same as the time-successors of the clock region � speci�ed asbelow:(1) For x 2 C0, if � satis�es (x = cx) then � satis�es (x > cx), otherwise if �satis�es (x = c) then � satis�es (c < x < c+1). For x 62 C0, the constraintin � is the same as that in �.(2) For clocks x and y such that x < cx and y < cy holds in �, the orderingrelationship in � between their fractional parts is the same as in �.18

For instance, in Figure 9, the time-successors of [(x = 0); (0 < y < 1)] are same as thetime-successors of [0 < x < y < 1].If both the above cases do not apply, then let C0 be the set of clocks x for which �does not satisfy (x > cx) and which have the maximal fractional part; that is, for allclocks y for which � does not satisfy (y > cy), fract(y) � fract(x) is a constraint of �. Inthis case, as time progresses, the clocks in C0 assume integer values. Let � be the clockregion speci�ed by(1) For x 2 C0, if � satis�es (c � 1 < x < c) then � satis�es (x = c). Forx 62 C0, the constraint in � is same as that in �.(2) For clocks x and y such that (c� 1 < x < c) and (d � 1 < y < d) appearin (1), the ordering relationship in � between their fractional parts is sameas in �.In this case, the time-successors of � include �, �, and all the time-successors of �. Forinstance, in Figure 9, time-successors of [0 < x < y < 1] include itself, [(0 < x < 1); (y =1)], and all the time-successors of [(0 < x < 1); (y = 1)].Now we are ready to de�ne the region automaton.De�nition 4.8 For a timed transition table A = h�;S;S0;C;Ei, the corresponding re-gion automaton R(A) is a transition table over the alphabet �.� The states of R(A) are of the form hs; �i where s 2 S and � is a clock region.� The initial states are of the form hs0; [�0]i where s0 2 S0 and �0(x) = 0 for all x 2 C.� R(A) has an edge hhs; �i; hs0; �0i; ai i� there is an edge hs; s0; a; �; �i 2 E and a region�00 such that (1) �00 is a time-successor of �, (2) �00 satis�es �, and (3) �0 = [� 7! 0]�00.Example 4.9 Consider the timed automaton A0 shown in Figure 10. The alphabetis fa; b; c; dg. Every state of the automaton is an accepting state. The correspondingregion automaton R(A0) is also shown. Only the regions reachable from the initial regionhs0; [x = y = 0]i are shown. Note that cx = 1 and cy = 1. The timing constraints of theautomaton ensure that the transition from s2 to s3 is never taken. The only reachableregion with state component s2 satis�es the constraints [y = 1; x > 1], and this region hasno outgoing edges. Thus the region automaton helps us in concluding that no transitionscan follow a b-transition.From the bound on the number of regions, it follows that the number of states in R(A)is O[jSj�2j�(A)j]. An inspection of the de�nition of the time-successor relation shows thatevery region has at most �x2C[2cx + 2] successor regions. The region automaton has atmost one edge out of hs; �i for every edge out of s and every time-successor of �. It followsthat the number of edges in R(A) is O[jEj�2j�(A)j]. Note that computing the time-successorrelation is easy, and can be done in time linear in the length of the representation of theregion. Constructing the edge relation for the region automaton is also relatively easy; inaddition to computing the time-successors, we also need to determine whether the clock19

0 1

2

a
3

y:=0

b,(y=1)? c,(x<1)?

d,(x>1)?c,(x<1)?

S S

S

S

a,(y<1)?,y:=0

0S

x=y=0

3S

0<y<x<1
3S

0<y<1<x
3S

1=y<x
3S

x>1,y>1

2S

1=y<x
1S

0=y<x<1

1S

y=0,x=1
1S

y=0,x>1

a
a

a

b

b

b

d
d

d

d
d

c a a a
a

d

d

dFigure 10: Automaton A0 and its region automatonconstraint labeling a particular A-transition is satis�ed by a clock region. The regiongraph can be constructed in time O[(jSj+ jEj)�2j�(A)j].Now we proceed to establish a correspondence between the runs of A and the runs ofR(A).De�nition 4.10 For a run r = (s; �) of A of the formr : hs0; �0i �1�!�1 hs1; �1i �2�!�2 hs2; �2i �3�!�3 � � �de�ne its projection [r] = (s; [�]) to be the sequence[r] : hs0; [�0]i �1�! hs1; [�1]i �2�! hs2; [�2]i �3�! � � �20

From the de�nition of the edge relation for R(A), it follows that [r] is a run of R(A)over �. Since time progresses without bound along r, every clock x 2 C is either resetin�nitely often, or from a certain time onwards it increases without bound. Hence, forall x 2 C, for in�nitely many i � 0, [�i] satis�es [(x = 0) _ (x > cx)]. This prompts thefollowing de�nition:De�nition 4.11 A run r = (s; �) of the region automaton R(A) of the formr : hs0; �0i �1�! hs1; �1i �2�! hs2; �2i �3�! � � �is progressive i� for each clock x 2 C, there are in�nitely many i � 0 such that �i satis�es[(x = 0) _ (x > cx)].Thus for a run r of A over (�; �), [r] is a progressive run of R(A) over �. The followingLemma 4.13 implies that progressive runs of R(A) precisely correspond to the projectedruns of A. Before we prove the lemma let us consider the region automaton of Example 4.9again.Example 4.12 Consider the region automaton R(A0) of Figure 10. Every run r ofR(A0) has a su�x of one of the following three forms: (i) the automaton cycles betweenthe regions hs1; [y = 0 < x < 1]i and hs3; [0 < y < x < 1]i, (ii) the automaton stays in theregion hs3; [0 < y < 1 < x]i using the self-loop, or (iii) the automaton stays in the regionhs3; [x > 1; y > 1]i.Only the case (iii) corresponds to the progressive runs. For runs of type (i), eventhough y gets reset in�nitely often, the value of x is always less than 1. For runs of type(ii), even though the value of x is not bounded, the clock y is reset only �nitely often,and yet, its value is bounded. Thus every progressive run of A0 corresponds to a run ofR(A0) of type (iii).Lemma 4.13 If r is a progressive run of R(A) over � then there exists a time sequence� and a run r0 of A over (�; �) such that r equals [r0].Proof. Consider a progressive run r = (s; �) of R(A) over �. We construct the runr0 and the time sequence � step by step. As usual, r0 starts with hs0; �0i. Now supposethat the extended state of A is hsi; �ii at time �i with �i 2 �i. There is an edge in R(A)from hsi; �ii to hsi+1; �i+1i labeled with �i+1. From the de�nition of the region automatonit follows that there is an edge hsi; si+1; �i+1; �i+1; �i+1i 2 E and a time-successor �0i+1 of�i such that �0i+1 satis�es �i+1 and �i+1 = [�i+1 7! 0]�0i+1. From the de�nition of time-successor, there exists a time �i+1 such that (�i + �i+1 � �i) 2 �0i+1. Now it is clear thenext transition of A can be at time �i+1 to an extended state hsi+1; �i+1i with �i+1 2 �i+1.Using this construction repeatedly we get a run r0 = (s; �) over (�; �) with [r0] = r.The only problem with the above construction is that � may not satisfy the progresscondition. Suppose that � is a converging sequence. We use the fact that r is a progressiverun to construct another time sequence � 0 satisfying the progress requirement and showthat the automaton can follow the same sequence of transitions as r0 but at times � 0i .Let C0 be the set of clocks reset in�nitely often along r. Since � is a convergingsequence, after a certain position onwards, every clock in C0 gets reset before it reachesthe value 1. Since r is progressive, every clock x not in C0, after a certain position21

onwards, never gets reset, and continuously satis�es x > cx. This ensures that thereexists j � 0 such that (1) after the j-th transition point each clock x 62 C0 continuouslysatis�es (x > cx), and each clock x 2 C0 continuously satis�es (x < 1), and (2) for eachk > j, (�k � �j) is less than 0:5.Let j < k1 < k2; : : : be an in�nite sequence of integers such that each clock x in C0is reset at least once between the ki-th and ki+1-th transition points along r. Now weconstruct another sequence r00 = (s; � 0) with the sequence of transition times � 0 as follows.The sequence of transitions along r00 is same as that along r0. If i 62 fk1; k2 : : :g thenwe require the (i + 1)-th transition to happen after a delay of (�i+1 � �i), otherwise werequire the delay to be 0:5. Observe that along r00 the delay between the ki-th and ki+1-thtransition points is less than 1. Consequently, in spite of the additional delays, the valueof every clock in C0 remains less than 1 after the j-th transition point. So the truth ofall the clock constraints and the clock regions at the transition points remain unchanged(as compared to r0). From this we conclude that r00 satis�es the consecution requirement,and is a run of A. Furthermore, [r00] = [r0] = r.Since � 0 has in�nitely many jumps each of duration 0:5, it satis�es the progress re-quirement. Hence r00 is the run required by the lemma.4.4 The untiming constructionFor a timed automaton A, its region automaton can be used to recognize Untime [L(A)].The following theorem is stated for TBAs, but it also holds for TMAs.Theorem 4.14 Given a TBA A = h�;S;S0;C;E;Fi, there exists a B�uchi automatonover � which accepts Untime [L(A)].Proof. We construct a B�uchi automaton A0 as follows. Its transition table is R(A),the region automaton corresponding to the timed transition table h�;S;S0;C;Ei. Theaccepting set of A0 is F0 = fhs; �i j s 2 Fg.If r is an accepting run of A over (�; �), then [r] is a progressive and accepting run ofA0 over �. The converse follows from Lemma 4.13. Given a progressive run r of A0 over�, the lemma gives a time sequence � and a run r0 of A over (�; �) such that r equals [r0].If r is an accepting run, so is r0. It follows that � 2 Untime [L(A)] i� A0 has a progressive,accepting run over it.For x 2 C, let Fx = fhs; �i j � j= [(x = 0) _ (x > cx)]g. Recall that a run of A0 isprogressive i� some state from each Fx repeats in�nitely often. It is straightforward toconstruct another B�uchi automaton A00 such that A0 has a progressive and accepting runover � i� A00 has an accepting run over �.The automaton A00 is the desired automaton; L(A00) equals Untime [L(A)].Example 4.15 Let us consider the region automaton R(A0) of Example 4.9 again. Sinceall states of A0 are accepting, from the description of the progressive runs in Example 4.12it follows that the transition table R(A0) can be changed to a B�uchi automaton by choos-ing the accepting set to consist of a single region hs3; [x > 1; y > 1]i. ConsequentlyUntime [L(A0)] = L[R(A0)] = ac (ac)� d!:22

Theorem 4.14 says that the timing information in a timed automaton is \regular"in character; its consistency can be checked by a �nite-state automaton. An equivalentformulation of the theorem isIf a timed language L is timed regular then Untime(L) is !-regular.Furthermore, to check whether the language of a given TBA is empty, we can checkfor the emptiness of the language of the corresponding B�uchi automaton constructed bythe proof of Theorem 4.14. The next theorem follows.Theorem 4.16 Given a timed B�uchi automaton A = h�;S;S0;C;E;Fi the emptiness ofL(A) can be checked in time O[(jSj+ jEj)�2j�(A)j].Proof. Let A0 be the B�uchi automaton constructed as outlined in the proof of The-orem 4.14. Recall that in Section 4.3 we had shown that the number of states in A0 isO[jSj�2j�(A)j], the number of edges is O[jEj�2j�(A)j].The language L(A) is nonempty i� there is a cycle C in A0 such that C is accessiblefrom some start state of A0 and C contains at least one state each from the set F0 and eachof the sets Fx. This can be checked in time linear in the size of A0 [41]. The complexitybound of the theorem follows.Recall that if we start with an automaton A whose clock constraints involve rationalconstants, we need to apply the above decision procedure on At for the least commondenominator t of all the rational constants (see Section 4.1). This involves a blow-up inthe size of the clock constraints; we have �[At] = O[�(A)2].The above method can be used even if we change the acceptance condition for timedautomata. In particular, given a timed Muller automaton A we can e�ectively constructa Muller (or, B�uchi) automaton which accepts Untime [L(A)], and use it to check for theemptiness of L(A).4.5 Complexity of checking emptinessThe complexity of the algorithm for deciding emptiness of a TBA is exponential in thenumber of clocks and the length of the constants in the timing constraints. This blow-upin complexity seems unavoidable; we reduce the acceptance problem for linear boundedautomata, a known PSPACE-complete problem [23], to the emptiness question for TBAsto prove the PSPACE lower bound for the emptiness problem. We also show the problemto be PSPACE-complete by arguing that the algorithm of Section 4.4 can be implementedin polynomial space.Theorem 4.17 The problem of deciding the emptiness of the language of a given timedautomaton A, is PSPACE-complete.Proof. [PSPACE-membership] Since the number of states of the region automatonis exponential in the number of clocks of A, we cannot construct the entire transitiontable. But it is possible to (nondeterministically) check for nonemptiness of the regionautomaton by guessing a path of the desired form using only polynomial space. This is afairly standard trick, and hence we omit the details.23

[PSPACE-hardness] The question of deciding whether a given linear bounded automa-ton accepts a given input string is PSPACE-complete [23]. A linear bounded automatonM is a nondeterministic Turing machine whose tape head cannot go beyond the end ofthe input markers. We construct a TBA A such that its language is nonempty i� themachine M halts on a given input.Let � be the tape alphabet of M and let Q be its states. Let � = � [(� � Q), andlet a1; a2; : : : ak denote the elements of �. A con�guration of M in which the tape reads
1
2 : : :
n, and the machine is in state q reading the i-th tape symbol, is represented bythe string �1; : : : �n over � such that �j =
j if j 6= i and �i = h
i; qi.The acceptance corresponds to a special state qf ; after which the con�guration staysunchanged. The alphabet of A includes �, and in addition, has a symbol a0. A compu-tation of M is encoded by the word�11a0 : : : �1na0�21a0 : : : �2na0 : : : �j1a0 : : : �jna0 : : :such that �j1 : : : �jn encodes the j-th con�guration according to the above scheme. Thetime sequence associated with this word also encodes the computation: we require thetime di�erence between successive a0's to be k+1, and if �ji = al then we require its timeto be l greater than the time of the previous a0. The encoding in the time sequence isused to enforce the consecution requirement.We want to construct A which accepts precisely the timed words encoding the haltingcomputations of M according to the above scheme. We only sketch the construction.A uses 2n + 1 clocks. The clock x is reset with each a0. While reading a0 we require(x = k + 1) to hold, and while reading ai we require (x = i) to hold. These conditionsensure that the encoding in the time sequence is consistent with the word. For each tapecell i, we have two clocks xi and yi. The clock xi is reset with �ji , for odd values of j,and the clock yi is reset with �ji , for even values of j. Assume that the automaton hasread the �rst j con�gurations, with j odd. The value of the clock xi represents the i-thcell of the j-th con�guration. Consequently, the possible choices for the values of �j+1i aredetermined by examining the values of xi�1, xi and xi+1 according to the transition rulesfor M . While reading the (j + 1)-th con�guration, the y-clocks get set to appropriatevalues; these values are examined while reading the (j+2)-th con�guration. This ensuresproper consecution of con�gurations. Proper initialization and halting can be enforced ina straightforward way. The size of A is polynomial in n and the size of M .Note that the source of this complexity is not the choice of R to model time. ThePSPACE-hardness result can be proved if we leave the syntax of timed automata un-changed, but use the discrete domain N to model time. Also this complexity is insensitiveto the encoding of the constants; the problem is PSPACE-complete even if we encode allconstants in unary.5 Intractable problemsIn this section we show the universality problem for timed automata to be undecidable.The universality problem is to decide whether the language of a given automaton over24

� comprises all the timed words over �. Speci�cally, we show that the problem is �11-hard by reducing a �11-hard problem of 2-counter machines. The class �11 consists ofhighly undecidable problems, including some nonarithmetical sets (for an exposition ofthe analytical hierarchy consult, for instance, [39]). Note that the universality problemis same as deciding emptiness of the complement of the language of the automaton.The undecidability of this problem has several implications such as nonclosure undercomplement and undecidability of testing for language inclusion.5.1 A �11-complete problemA nondeterministic 2-counter machine M consists of two counters C and D, and a se-quence of n instructions. Each instruction may increment or decrement one of the coun-ters, or jump, conditionally upon one of the counters being zero. After the executionof a nonjump instruction, M proceeds nondeterministically to one of the two speci�edinstructions.We represent a con�guration of M by a triple hi; c; di, where 1 � i � n, c � 0, andd � 0 give the values of the location counter and the two counters C and D, respectively.The consecution relation on con�gurations is de�ned in the obvious way. A computation ofM is an in�nite sequence of related con�gurations, starting with the initial con�gurationh1; 0; 0i. It is called recurring i� it contains in�nitely many con�gurations in which thelocation counter has the value 1.The problem of deciding whether a nondeterministic Turing machine has, over theempty tape, a computation in which the starting state is visited in�nitely often, is knownto be �11-complete [19]. Along the same lines we obtain the following result.Lemma 5.1 The problem of deciding whether a given nondeterministic 2-counter ma-chine has a recurring computation, is �11-hard.5.2 Undecidability of the universality problemNow we proceed to encode the computations of 2-counter machines using timed automata,and use the encoding to prove the undecidability result.Theorem 5.2 Given a timed automaton over an alphabet � the problem of decidingwhether it accepts all timed words over � is �11-hard.Proof. We encode the computations of a given 2-counter machineM with n instruc-tions using timed words over the alphabet fb1; : : : bn; a1; a2g. A con�guration hi; c; di isrepresented by the sequence biac1ad2. We encode a computation by concatenating the se-quences representing the individual con�gurations. We use the time sequence associatedwith a timed word � to express that the successive con�gurations are related as per therequirements of the program instructions. We require that the subsequence of � corre-sponding to the time interval [j; j+1) encodes the j-th con�guration of the computation.Note that the denseness of the underlying time domain allows the counter values to getarbitrarily large. To enforce a requirement such as the number of a1 symbols in two in-tervals encoding the successive con�gurations is the same we require that every a1 in the�rst interval has a matching a1 at distance 1 and vice versa.De�ne a timed language Lundec as follows. (�; �) is in Lundec i�25

� � = bi1ac11 ad12 bi2ac21 ad22 � � � such that hi1; c1; d1i; hi2; c2; d2i � � � is a recurring computa-tion of M .� For all j � 1, the time of bij is j.� For all j � 1,{ if cj+1 = cj then for every a1 at time t in the interval (j; j + 1) there is an a1at time t+ 1.{ if cj+1 = cj + 1 then for every a1 at time t in the interval (j + 1; j + 2) exceptthe last one, there is an a1 at time t� 1.{ if cj+1 = cj � 1 then for every a1 at time t in the interval (j; j + 1) except thelast one, there is an a1 at time t+ 1.Similar requirements hold for a2's.Clearly, Lundec is nonempty i� M has a recurring computation. We will construct a timedautomaton Aundec which accepts the complement of Lundec . Hence Aundec accepts everytimed word i� M does not have a recurring computation. The theorem follows fromLemma 5.1.The desired automaton Aundec is a disjunction of several TBAs.Let A0 be the TBA which accepts (�; �) i� for some integer j � 1, either there is no bsymbol at time j, or the subsequence of � in the time interval (j; j +1) is not of the forma�1a�2. It is easy to construct such a timed automaton.A timed word (�; �) in Lundec should encode the initial con�guration over the interval[1; 2). Let Ainit be the TBA which requires that the subsequence of � corresponding tothe interval [1; 2) is not b1; it accepts the language f(�; �) j (�1 6= b1)_(�1 6= 1)_(�2 < 2)g.For each instruction 1 � i � n we construct a TBA Ai. Ai accepts (�; �) i� the timedword has bi at some time t, and the con�guration corresponding to the subsequence in[t+ 1; t + 2) does not follow from the con�guration corresponding to the subsequence in[t; t+1) by executing the instruction i. We give the construction for a sample instruction,say, \increment the counter D and jump nondeterministically to instruction 3 or 5". Theautomaton Ai is the disjunction of the following six TBAs A1i ; : : :A6i .Let A1i be the automaton which accepts (�; �) i� for some j � 1, �j = bi, and at time�j + 1 there is neither b3 nor b5. It is easy to construct this automaton.Let A2i be the following TBA:
b
i 1a

x:=0

,x:=0

x<1?

1a ,x=1?

0
S

1S
2S x 1= ?In this �gure, an edge without a label means that the transition can be taken on everyinput symbol. While in state s2, the automaton cannot accept a symbol a1 if the condition(x = 1) holds. Thus A2i accepts (�; �) i� there is some bi at time t followed by an a1 attime t0 < (t+ 1) such that there is no matching a1 at time (t0 + 1).26

Similarly we can construct A3i which accepts (�; �) i� there is some bi at time t, andfor some t0 < (t + 1) there is no a1 at time t0 but there is an a1 at time (t0 + 1). Thecomplements of A2i and A3i together ensure proper matching of a1's.Along similar lines we ensure proper matching of a2 symbols. LetA4i be the automatonwhich requires that for some bi at time t, there is an a2 at some t0 < (t+1) with no matchat (t0 + 1). Let A5i be the automaton which says that for some bi at time t there are twoa2's in (t+1; t+2) without matches in (t; t+1). Let A6i be the automaton which requiresthat for some bi at time t the last a2 in the interval (t + 1; t + 2) has a matching a2 in(t; t+ 1). Now consider a word (�; �) such that there is bi at some time t such that theencoding of a2's in the intervals (t; t + 1) and (t + 1; t + 2) do not match according tothe desired scheme. Let the number of a2's in (t; t + 1) and in (t + 1; t + 2) be k and lrespectively. If k > l then the word is accepted by A4i . If k = l, then either there is nomatch for some a2 in (t; t+ 1), or every a2 in (t; t+ 1) has a match in (t + 1; t + 2). Inthe former case the word is accepted by A4i , and in the latter case it is accepted by A6i .If k < l the word is accepted by A5i .The requirement that the computation be not recurring translates to the requirementthat b1 appears only �nitely many times in �. Let Arecur be the B�uchi automaton whichexpresses this constraint.Putting all the pieces together we claim that the language of the disjunction of A0,Ainit , Arecur , and each of Ai, is the complement of Lundec .It is shown in [5] that the satis�ability problem for a real-time extension of the propo-sitional linear temporal logic PTL becomes undecidable if a dense domain is chosen tomodel time. Thus our undecidability result is not unusual for formalisms reasoning aboutdense real-time. Obviously, the universality problem for TMAs is also undecidable. Wehave not been able to show that the universality problem is �11-complete, an interest-ing problem is to locate its exact position in the analytical hierarchy. In the followingsubsections we consider various implications of the above undecidability result.5.3 Inclusion and equivalenceRecall that the language inclusion problem for B�uchi automata can be solved in PSPACE.However, it follows from Theorem 5.2 that there is no decision procedure to check whetherthe language of one TBA is a subset of the other. This result is an obstacle in using timedautomata as a speci�cation language for automatic veri�cation of �nite-state real-timesystems.Corollary 5.3 Given two TBAs A1 and A2 over an alphabet �, the problem of checkingL(A1) � L(A2) is �11-hard.Proof. We reduce the universality problem for a given timed automaton A over � tothe language inclusion problem. Let Auniv be an automaton which accepts every timedword over �. The automaton A is universal i� L(Auniv) � L(A).Now we consider the problem of testing equivalence of two automata. A naturalde�nition for equivalence of two automata uses equality of the languages accepted by thetwo. However alternative de�nitions exist. We will explore one such notion.27

De�nition 5.4 For timed B�uchi automata A1 and A2 over an alphabet �, de�neA1�1A2 i� L(A1) = L(A2). De�ne A1�2A2 i� for all timed automata A over �,L(A) \ L(A1) is empty precisely when L(A) \ L(A2) is empty.For a class of automata closed under complement the above two de�nitions of equiv-alence coincide. However, these two equivalence relations di�er for the class of timedregular languages because of the nonclosure under complement (to be proved shortly). Infact, the second notion is a weaker notion: A1�1A2 impliesA1�2A2, but not vice versa.The motivation behind the second de�nition is that two automata (modeling two �nite-state systems) should be considered di�erent only when a third automaton (modeling theobserver or the environment) composed with them gives di�erent behaviors: in one casethe composite language is empty, and in the other case there is a possible joint execution.The proof of Theorem 5.2 can be used to show undecidability of this equivalence also.Note that the problems of deciding the two types of equivalences lie at di�erent levels ofthe hierarchy of undecidable problems.Theorem 5.5 For timed B�uchi automata A1 and A2 over an alphabet �,1. The problem of deciding whether A1�1A2 is �11-hard.2. The problem of deciding whether A1�2A2 is complete for the co-r.e. class.Proof. The language of a given TBA A is universal i� A�1Auniv . Hence the �11-hardness of the universality problem implies �11-hardness of the �rst type of equivalence.Now we show that the problem of deciding nonequivalence, by the second de�nition,is recursively enumerable. If the two automata are inequivalent then there exists anautomaton A over � such that only one of L(A) \ L(A1) and L(A) \ L(A2) is empty.Consider the following procedure P : P enumerates all the TBAs over � one by one.For each TBA A, it checks for the emptiness of L(A) \ L(A1) and the emptiness ofL(A) \ L(A2). If P ever �nds di�erent answers in the two cases, it halts saying that A1and A2 are not equivalent.Finally we prove that the problem of deciding the second type of equivalence is unsolv-able. We use the encoding scheme used in the proof of Theorem 5.2. The only di�erenceis that we use the halting problem of a deterministic 2-counter machineM instead of therecurring computations of a nondeterministic machine. Recall that the halting problemfor deterministic 2-counter machines is undecidable. Assume that the n-th instructionis the halting instruction. We obtain A0undec by replacing the disjunct Arecur by an au-tomaton which accepts (�; �) i� bn does not appear in �. The complement of L(A0undec)consists of the timed words encoding the halting computation.We claim that Auniv �2A0undec i� the machine M does not halt. If M does not haltthen A0undec accepts all timed words, and hence, its language is the same as that of Auniv .If M halts, then we can construct a timed automaton Ahalt which accepts a particulartimed word encoding the halting computation of M . If M halts in k steps, then Ahaltuses k clocks to ensure proper matching of the counter values in successive con�gurations.The details are very similar to the PSPACE-hardness proof of Theorem 4.17. L(Ahalt) \L(Auniv) is nonempty whereas L(Ahalt) \ L(A0undec) is empty, and thus Auniv and A0undecare inequivalent in this case. This completes the proof.28

a a a

a a

x=1?x:=0
0S 1S 2SFigure 11: Noncomplementable automaton5.4 Nonclosure under complementThe �11-hardness of the inclusion problem implies that the class of TBAs is not closedunder complement.Corollary 5.6 The class of timed regular languages is not closed under complementation.Proof. Given TBAsA1 andA2 over an alphabet �, L(A1) � L(A2) i� the intersectionof L(A1) and the complement of L(A2) is empty. Assume that TBAs are closed undercomplement. Consequently, L(A1) 6� L(A2) i� there is a TBA A such that L(A1)\L(A)is nonempty, but L(A2) \ L(A) is empty. That is, L(A1) 6� L(A2) i� A1 and A2 areinequivalent according to �2. From Theorem 5.5 it follows that the complement of theinclusion problem is recursively enumerable. This contradicts the �11-hardness of theinclusion problem.The following example provides some insight regarding the nonclosure under comple-mentation.Example 5.7 The language accepted by the automaton of Figure 11 over fag isf(a!; �) j 9i � 1:9j > i: (�j = �i + 1)g:The complement of this language cannot be characterized using a TBA. The comple-ment needs to make sure that no pair of a's is separated by distance 1. Since there is nobound on the number of a's that can happen in a time period of length 1, keeping track ofthe times of all the a's within the past 1 time unit, would require an unbounded numberof clocks.5.5 Choice of the clock constraintsIn this section we consider some of the ways to modify our de�nition of clock constraintsand indicate how these decisions a�ect the expressiveness and complexity of di�erentproblems. Recall that our de�nition of the clock constraints allows Boolean combinationsof atomic formulas which compare clock values with (rational) constants. With thisvocabulary, timed automata can express only constant bounds on the delays betweentransitions.First suppose we extend the de�nition of clock constraints to allow subformulas involv-ing two clocks such as (x � y+c). In particular, in De�nition 3.6 of the set �(X) of clock29

2x=3y

c

b,y:=0a,x:=0

1S

2S0SFigure 12: Automaton with clock constraints using +constraints, we allow, as atomic constraints, the conditions (x � y+c) and (x+c � y), forx; y 2 X and c 2 Q. Thus the allowed clock constraints are quanti�er-free formulas usingthe primitives of comparison (�) and addition by rational constants (+c). The untimingconstruction can handle this extension very easily. We need to re�ne the equivalencerelation on clock interpretations. Now, in addition to the previous conditions, we requirethat two equivalent clock interpretations agree on all the subformulas appearing in theclock constraints. Also it is easy to prove that this extension of clock constraints does notadd to the expressiveness of timed automata.Next let us allow the primitive of addition in the clock constraints. Now we can writeclock constraints such as (x+ y � x0+ y0) which allow the automaton to compare variousdelays. This greatly increases the expressiveness of the formalism. The language of theautomaton in the following example is not timed regular.Example 5.8 Consider the automaton of Figure 12 with the alphabet fa; b; cg. It ex-presses the property that the symbols a, b, and c occur cyclically, and the delay betweenb and c is always twice the delay between the last pair of a and b. The language is de�nedby f((abc)!; �) j 8j: [(�3j � �3j�1) = 2(�3j�1 � �3j�2)]g:Intuitively, the constraints involving addition are too powerful and cannot be imple-mented by �nite-state systems. Even if we constrain all events to occur at integer timevalues (i.e., discrete-time model), to check that the delay between �rst two symbols issame as the delay between the next two symbols, an automaton would need an unboundedmemory. Thus with �nite resources, an automaton can compare delays with constants,but cannot remember delays. In fact, we can show that introducing addition in the syntaxof clock constraints makes the emptiness problem for timed automata undecidable.Theorem 5.9 Allowing the addition primitive in the syntax of clock constraints makesthe emptiness problem for timed automata �11-hard.Proof. As in the proof of Theorem 5.2 we reduce the problem of recurring compu-tations of nondeterministic 2-counter machines to the emptiness problem for time au-tomata using the primitive +. The alphabet is fa; b1; : : : bng. We say that a timed30

word (�; �) encodes a computation hi1; c1; d1i; hi2; c2; d2i � � � of the 2-counter machine i�� = bi1abi2abi3 � � � with �2j � �2j�1 = cj, and �2j+1 � �2j = dj for all j � 1. Thus the delaybetween b and the following a encodes the value of the counter C, and the delay betweena and the following b encodes the value of D. We construct a timed automaton whichaccepts precisely the timed words encoding the recurring computations of the machine.The primitive of + is used to express a consecution requirement such as the value of thecounter C remains unchanged. The details of the proof are quite straightforward.6 Deterministic timed automataThe results of Section 5 show that the class of timed automata is not closed under com-plement, and one cannot automatically compare the languages of two automata. In thissection we de�ne deterministic timed automata, and show that the class of languages ac-cepted by deterministic timed Muller automata (DTMA) is closed under all the Booleanoperations.6.1 De�nitionRecall that in the untimed case a deterministic transition table has a single start state,and from each state, given the next input symbol, the next state is uniquely determined.We want a similar criterion for determinism for the timed automata: given an extendedstate and the next input symbol along with its time of occurrence, the extended stateafter the next transition should be uniquely determined. So we allow multiple transitionsstarting at the same state with the same label, but require their clock constraints to bemutually exclusive so that at any time only one of these transitions is enabled.De�nition 6.1 A timed transition table h�;S;S0;C;Ei is called deterministic i�1. it has only one start state, jS0j = 1, and2. for all s 2 S, for all a 2 �, for every pair of edges of the form hs;�; a;�; �1i andhs;�; a;�; �2i, the clock constraints �1 and �2 are mutually exclusive (i.e., �1 ^ �2 isunsatis�able).A timed automaton is deterministic i� its timed transition table is deterministic.Note that in absence of clocks the above de�nition matches with the de�nition ofdeterminism for transition tables. Thus every deterministic transition table is also adeterministic timed transition table. Let us consider an example of a DTMA.Example 6.2 The DTMA of Figure 13 accepts the language Lcrt of Example 3.13:Lcrt = f((ab)!; �) j 9i:8j � i: (�2j < �2j�1 + 2)g:The Muller acceptance family is given by ffs1; s2gg. The state s1 has two mutuallyexclusive outgoing transitions on b. The acceptance condition requires that the transitionwith the clock constraint (x � 2) is taken only �nitely often.31

b,(x>2)?

b,(x<2)?

−
a,x:=0

a,x:=0

1S0S 2SFigure 13: Deterministic timed Muller automatonDeterministic timed automata can be easily complemented because of the followingproperty:Lemma 6.3 A deterministic timed transition table has at most one run over a giventimed word.Proof. Consider a deterministic timed transition table A, and a timed word (�; �).The run starts at time 0 with the extended state hs0; �0i where s0 is the unique start state.Suppose the extended state of A at time �j�1 is hs; �i, and the run has been constructedup to (j � 1) steps. By the deterministic property of A, at time �j there is at most onetransition hs; s0; �j; �; �i such that the clock interpretation at time �j , �+�j��j�1, satis�es�. If such a transition does not exist then A has no run over (�; �). Otherwise, this choiceof transition uniquely extends the run to the j-th step, and determines the extended stateat time �j. The lemma follows by induction.6.2 Closure propertiesNow we consider the closure properties for deterministic timed automata. Like in theuntimed case, the class of languages accepted by deterministic timed Muller automata isclosed under all Boolean operations.Theorem 6.4 The class of timed languages accepted by deterministic timed Muller au-tomata is closed under union, intersection, and complementation.Proof. We de�ne a transformation on DTMAs to make the proofs easier; for everyDTMA A = h�;S; s0;C;E;Fi we construct another DTMA A� by completing A as fol-lows. First we add a dummy state q to the automaton. From each state s (includingq), for each symbol a, we add an a-labeled edge from s to q. The clock constraint forthis edge is the negation of the disjunction of the clock constraints of all the a-labelededges starting at s. We leave the acceptance condition unchanged. This constructionpreserves determinism as well as the set of accepted timed words. The new automatonA� has the property that for each state s and each input symbol a, the disjunction of theclock constraints of the a-labeled edges starting at s is a valid formula. Observe that A�has precisely one run over any timed word. We call such an automaton complete. In theremainder of the proof we assume each DTMA to be complete.Let Ai = h�;Si; s0i;Ci;Ei;F ii, for i = 1; 2, be two complete DTMAs with disjoint setsof clocks. First we construct a timed transition table A using a product construction.The set of states of A is S1 � S2. Its start state is hs01 ; s02i. The set of clocks is C1 [C2.32

The transitions of A are de�ned by coupling the transitions of the two automata havingthe same label. Corresponding to an A1-transition hs1; t1; a; �1; �1i and an A2-transitionhs2; t2; a; �2; �2i, A has a transition hhs1; s2i; ht1; t2i; a; �1 [�2; �1 ^ �2i. It is easy to checkthat A is also deterministic. A has a unique run over each (�; �), and this run can beobtained by putting together the unique runs of Ai over (�; �).Let F1 consist of the sets F � S1 � S2 such that the projection of F onto the �rstcomponent is an accepting set of A1; that is,F1 = fF � S1 � S2 j fs 2 S1 j 9s0 2 S2: hs; s0i 2 Fg 2 F1g:Hence a run r of A is an accepting run for A1 i� inf (r) 2 F1. Similarly de�ne F2 toconsist of the sets F such that fs0 j 9s 2 S1: hs; s0i 2 Fg is in F2. Now coupling A withthe Muller acceptance family F1 [F2 gives a DTMA accepting L(A1) [L(A2), whereasusing the acceptance family F1 \ F2 gives a DTMA accepting L(A1) \ L(A2).Finally consider complementation. Let A be a complete DTMA h�;S; s0;C;E;Fi. Ahas exactly one run over a given timed word. Hence, (�; �) is in the complement of L(A) i�the run ofA over it does not meet the acceptance criterion ofA. The complement languageis, therefore, accepted by a DTMA which has the same underlying timed transition tableas A, but its acceptance condition is given by 2S �F.Now let us consider the closure properties of DTBAs. Recall that deterministic B�uchiautomata (DBA) are not closed under complement. The property that \there are in�nitelymany a's" is speci�able by a DBA, however, the complement property, \there are only�nitely many a's" cannot be expressed by a DBA. Consequently we do not expect theclass of DTBAs to be closed under complementation. However, since every DTBA can beviewed as a DTMA, the complement of a DTBA-language is accepted by a DTMA. Thenext theorem states the closure properties.Theorem 6.5 The class of timed languages accepted by DTBAs is closed under unionand intersection, but not closed under complement. The complement of a DTBA languageis accepted by some DTMA.Proof. For the case of union, we construct the product transition table as in case ofDTMAs (see proof of Theorem 6.4). The accepting set is fhs; s0i j s 2 F1 _ s0 2 F2g.A careful inspection of the product construction for TBAs (see proof of Theorem 3.15)shows that it preserves determinism. The closure under intersection for DTBAs follows.The nonclosure of deterministic B�uchi automata under complement leads to the non-closure for DTBAs under complement. The language f(�; �) j � 2 (b�a)!g is speci�able bya DBA. Its complement language f(�; �) j � 2 (a+ b)�b!g is not speci�able by a DTBA.This claim follows from Lemma 6.7 (to be proved shortly), and the fact that the language(a+ b)�b! is not speci�able by a DBA.Let A = h�;S; s0;C;E;Fi be a complete deterministic automaton. (�; �) is in thecomplement of L(A) i� the (unique) run of A over it does not meet the acceptancecriterion of A. The complement language is, therefore, accepted by a DTMA with thesame underlying timed transition table as A, and the acceptance family 2S�F.33

6.3 Decision problemsIn this section we examine the complexity of the emptiness problem and the languageinclusion problem for deterministic timed automata.The emptiness of a timed automaton does not depend on the symbols labeling itsedges. Consequently, checking emptiness of deterministic automata is no simpler; it isPSPACE-complete.Since deterministic automata can be complemented, checking for language inclusionis decidable. In fact, while checking L(A1) � L(A2), only A2 need be deterministic, A1can be nondeterministic. The problem can be solved in PSPACE:Theorem 6.6 For a timed automaton A1 and a deterministic timed automaton A2, theproblem of deciding whether L(A1) is contained in L(A2) is PSPACE-complete.Proof. PSPACE-hardness follows, even when A1 is deterministic, from the fact thatchecking for the emptiness of the language of a deterministic timed automaton is PSPACE-hard. Let Aempty be a deterministic automaton which accepts the empty language. Nowfor a deterministic timed automaton A, L(A) is empty i� L(A) � L(Aempty).Observe that L(A1) � L(A2) i� the intersection of L(A1) with the complement ofL(A2) is empty. Recall that complementing the language of a deterministic automatoncorresponds to complementing the acceptance condition. First we construct a timedtransition table A from the timed transition tables of A1 and A2 using the productconstruction (see proof of Theorem 6.4). The size of A is proportional to the product ofthe sizes of Ai. Then we construct the region automaton R(A). L(A1) 6� L(A2) i� R(A)has a cycle which is accessible from its start state, meets the progressiveness requirement,the acceptance criterion for A1, and the complement of the acceptance criterion for A2.The existence of such a cycle can be checked in space polynomial in the size of A, as inthe proof of PSPACE-solvability of emptiness (Theorem 4.17).6.4 ExpressivenessIn this section we compare the expressive power of the various types of timed automata.Every DTBA can be expressed as a DTMA simply by rewriting its acceptance condi-tion. However the converse does not hold. First observe that every !-regular languageis expressible as a DMA, and hence as a DTMA. On the other hand, since deterministicB�uchi automata are strictly less expressive than deterministic Muller automata, certain!-regular languages are not speci�able by DBAs. The next lemma shows that such lan-guages cannot be expressed using DTBAs either. It follows that DTBAs are strictly lessexpressive than DTMAs. In fact, DTMAs are closed under complement, whereas DTBAsare not.Lemma 6.7 For an !-language L, the timed language f(�; �) j � 2 Lg is accepted bysome DTBA i� L is accepted by some DBA.Proof. Clearly if L is accepted by a DBA, then f(�; �) j � 2 Lg is accepted by thesame automaton considered as a timed automaton.Now suppose that the language f(�; �) j � 2 Lg is accepted by some DTBA A. Weconstruct another DTBA A0 such that L(A0) = f(�; �) j (� 2 L) ^ 8i: (�i = i)g. A034

Class of timed languages Operations closed underTMA = TBA union, intersection[DTMA union, intersection, complement[DTBA union, intersectionFigure 14: Classes of timed automatarequires time to increase by 1 at each transition. The automaton A0 can be obtained fromA by introducing an extra clock x. We add the conjunct x = 1 to the clock constraint ofevery edge in A and require it to be reset on every edge. A0 is also deterministic.The next step is the untiming construction for A0. Observe that Untime(L(A0)) = L.While constructing R(A0) we need to consider only those clock regions which have allclocks with zero fractional parts. Since the time increase at every step is predetermined,and A0 is deterministic, it follows that R(A0) is a deterministic transition table. We neednot check the progressiveness condition also. It follows that the automaton constructedby the untiming procedure is a DBA accepting L.From the above discussion one may conjecture that a DTMA language L is a DTBAlanguage if Untime(L) is a DBA language. To answer this let us consider the convergentresponse property Lcrt speci�able using a DTMA (see Example 6.2). This language in-volves a combination of liveness and timing. We conjecture that no DTBA can specifythis property (even though Untime(Lcrt) can be trivially speci�ed by a DBA).Along the lines of the above proof we can also show that for an !-language L, thetimed language f(�; �) j � 2 Lg is accepted by some DTMA (or TMA, or TBA) i� L isaccepted by some DMA (or MA, or BA, respectively).Since DTMAs are closed under complement, whereas TMAs are not, it follows that theclass of languages accepted by DTMAs is strictly smaller than that accepted by TMAs.In particular, the language of Example 5.7, (\some pair of a's is distance 1 apart") is notrepresentable as a DTMA; it relies on nondeterminism in a crucial way.We summarize the discussion on various types of automata in the table of Figure 14which shows the inclusions among various classes and the closure properties of variousclasses. Compare this with the corresponding results for the various classes of !-automatashown in Figure 15.7 Veri�cationIn this section we discuss how to use the theory of timed automata to prove correctnessof �nite-state real-time systems. We have chosen a simple formulation of the veri�cationproblem, but it su�ces to illustrate the application of timed automata to veri�cationproblems. We start by introducing time in linear trace semantics for concurrent processes.35

Class of !-languages Operations closed underMA = BA = DMA union, intersection, complement[DBA union, intersectionFigure 15: Classes of !-automata7.1 Trace semanticsIn trace semantics, we associate a set of observable events with each process, and modelthe process by the set of all its traces. A trace is a (linear) sequence of events that maybe observed when the process runs. For example, an event may denote an assignment of avalue to a variable, or pressing a button on the control panel, or arrival of a message. Allevents are assumed to occur instantaneously. Actions with duration are modeled usingevents marking the beginning and the end of the action. Hoare originally proposed sucha model for CSP [22].In our model, a trace will be a sequence of sets of events. Thus if two events a and bhappen simultaneously, the corresponding trace will have a set fa; bg in our model. In theusual interleaving models, this set will be replaced by all possible sequences, namely, afollowed by b and b followed by a. Also we consider only in�nite sequences, which modelnonterminating interaction of reactive systems with their environments.Formally, given a set A of events, a trace � = �1�2 : : : is an in�nite word over P+(A)| the set of nonempty subsets of A. An untimed process is a pair (A;X) comprising ofthe set A of its observable events and the set X of its possible traces.Example 7.1 Consider a channel P connecting two components. Let a represent thearrival of a message at one end of P , and let b stand for the delivery of the message at theother end of the channel. The channel cannot receive a new message until the previousone has reached the other end. Consequently the two events a and b alternate. Assumingthat the messages keep arriving, the only possible trace is�P : fag ! fbg ! fag ! fbg ! � � � :Often we will denote the singleton set fag by the symbol a. The process P is representedby (fa; bg; (ab)!).Various operations can be de�ned on processes; these are useful for describing com-plex systems using the simpler ones. We will consider only the most important of theseoperations, namely, parallel composition. The parallel composition of a set of processesdescribes the joint behavior of all the processes running concurrently.The parallel composition operator can be conveniently de�ned using the projectionoperation. The projection of � 2 P+(A)! onto B � A (written �dB) is formed byintersecting each event set in � with B and deleting all the empty sets from the sequence.For instance, in Example 7.1 �P dfag is the trace a!. Notice that the projection operation36

may result in a �nite sequence; but for our purpose it su�ces to consider the projectionof a trace � onto B only when �i \B is nonempty for in�nitely many i.For a set of processes fPi = (Ai;Xi) j i = 1; 2; : : : ng, their parallel composition ki Piis a process with the event set [iAi and the trace setf� 2 P+([iAi)! j ^i �dAi 2 Xig:Thus � is a trace of ki Pi i� �dAi is a trace of Pi for each i = 1; : : : n. When there areno common events the above de�nition corresponds to the unconstrained interleavings ofall the traces. On the other hand, if all event sets are identical then the trace set of thecomposition process is simply the set-theoretic intersection of all the component tracesets.Example 7.2 Consider another channel Q connected to the channel P of Example 7.1.The event of message arrival for Q is same as the event b. Let c denote the delivery ofthe message at the other end of Q. The process Q is given by (fb; cg; (bc)!).When P and Q are composed we require them to synchronize on the common eventb, and between every pair of b's we allow the possibility of the event a happening beforethe event c, the event c happening before a, and both occurring simultaneously. Thus[P k Q] has the event set fa; b; cg, and has an in�nite number of traces.In this framework, the veri�cation question is presented as an inclusion problem. Boththe implementation and the speci�cation are given as untimed processes. The implemen-tation process is typically a composition of several smaller component processes. Wesay that an implementation (A;XI) is correct with respect to a speci�cation (A;XS) i�XI � XS .Example 7.3 Consider the channels of Example 7.2. The implementation process is[P k Q]. The speci�cation is given as the process S = (fa; b; cg; (abc)!). Thus thespeci�cation requires the message to reach the other end of Q before the next messagearrives at P . In this case, [P k Q] does not meet the speci�cation S, for it has too manyother traces, speci�cally, the trace ab(acb)!.Notice that according to the above de�nition of the veri�cation problem, an imple-mentation with XI = ; is correct with respect to every speci�cation. To overcome thisproblem, one needs to distinguish between output events (the events controlled by thesystem), and the input events (the events controlled by its environment), and requirethat the implementation should not prevent its environment from executing the inputevents [14]. We believe that distinguishing between input and output events and intro-ducing timing are two orthogonal issues, and our goal in this paper is to indicate how toaddress the latter problem.7.2 Adding timing to tracesAn untimed process models the sequencing of events but not the actual times at whichthe events occur. Thus the description of the channel in Example 7.1 gives only thesequencing of the events a and b, and not the delays between them. Timing can be added37

to a trace by coupling it with a sequence of time values. We choose the set of reals tomodel time.Recall that a time sequence � = �1�2 : : : is an in�nite sequence of time values �i 2 Rsatisfying the strict monotonicity and progress constraints. A timed trace over a set ofevents A is a pair (�; �) where � is a trace over A, and � is a time sequence. Note that,since di�erent events happening simultaneously appear in a single element in a trace,there is no reason to allow the possibility of the adjacent elements in a trace having thesame associated time value.In a timed trace (�; �), each �i gives the time at which the events in �i occur. Inparticular, �1 gives the time of the �rst observable event; we always assume �1 > 0, andde�ne �0 = 0. Observe that the progress condition implies that only a �nite number ofevents can happen in a bounded interval of time. In particular, it rules out convergent timesequences such as 1=2; 3=4; 7=8; : : : representing the possibility that the system participatesin in�nitely many events before time 1.A timed process is a pair (A;L) where A is a �nite set of events, and L is a set oftimed traces over A.Example 7.4 Consider the channel P of Example 7.1 again. Assume that the �rstmessage arrives at time 1, and the subsequent messages arrive at �xed intervals of length3 time units. Furthermore, it takes 1 time unit for every message to traverse the channel.The process has a single timed trace�P = (a; 1) ! (b; 2) ! (a; 4) ! (b; 5) ! � � �and it is represented as a timed process P T = (fa; bg; f�Pg).The operations on untimed processes are extended in the obvious way to timed pro-cesses. To get the projection of (�; �) onto B � A, we �rst intersect each event set in� with B and then delete all the empty sets along with the associated time values. Thede�nition of parallel composition remains unchanged, except that it uses the projectionfor timed traces. Thus in parallel composition of two processes, we require that both theprocesses should participate in the common events at the same time. This rules out thepossibility of interleaving: parallel composition of two timed traces is either a single timedtrace or is empty.Example 7.5 As in Example 7.2 consider another channel Q connected to P . For Q,as before, the only possible trace is �Q = (bc)!. In addition, the timing speci�cation ofQ says that the time taken by a message for traversing the channel, that is, the delaybetween b and the following c, is some real value between 1 and 2. The timed process QThas in�nitely many timed traces, and it is given by[fb; cg; f(�Q; �) j 8i: (�2i�1+ 1 < �2i < �2i�1 + 2)g]:The description of [P T k QT] is obtained by composing �P with each timed trace of QT .The composition process has uncountably many timed traces. An example trace is(a; 1) ! (b; 2) ! (c; 3:8) ! (a; 4) ! (b; 5) ! (c; 6:02) ! � � �38

The time values associated with the events can be discarded by the Untime operation.For a timed process P = (A;L), Untime [(A;L)] is the untimed process with the event setA and the trace set consisting of traces � such that (�; �) 2 L for some time sequence � .Note that Untime(P1 k P2) � Untime(P1) k Untime(P2):However, as Example 7.6 shows, the two sides are not necessarily equal. In other words,the timing information retained in the timed traces constrains the set of possible traceswhen two processes are composed.Example 7.6 Consider the channels of Example 7.5. Observe that Untime(P T) = P andUntime(QT) = Q. [P T k QT] has a unique untimed trace (abc)!. On the other hand,[P k Q] has in�nitely many traces; between every pair of b events all possible orderingsof an event a and an event c are admissible.The veri�cation problem is again posed as an inclusion problem. Now the implemen-tation is given as a composition of several timed processes, and the speci�cation is alsogiven as a timed process.Example 7.7 Consider the veri�cation problem of Example 7.3 again. If we model theimplementation as the timed process [P T k QT] then it meets the speci�cation S. Thespeci�cation S is now a timed process (fa; b; cg; f((abc)!; �)g). Observe that, though thespeci�cation S constrains only the sequencing of events, the correctness of [P T k QT]with respect to S crucially depends on the timing constraints of the two channels.7.3 !-automata and veri�cationWe start with an overview of the application of B�uchi automata to verify untimed pro-cesses [45, 44]. Observe that for an untimed process (A;X), X is an !-language over thealphabet P+(A). If it is a regular language it can be represented by a B�uchi automaton.We model a �nite-state (untimed) process P with event set A using a B�uchi automatonAP over the alphabet P+(A). The states of the automaton correspond to the internalstates of the process. The automaton AP has a transition hs; s0; ai, with a � A, if theprocess can change its state from s to s0 participating in the events from a. The acceptanceconditions of the automaton correspond to the fairness constraints on the process. Theautomaton AP accepts (or generates) precisely the traces of P ; that is, the process P isgiven by (A;L(AP)). Such a process P is called an !-regular process.The user describes a system consisting of various components by specifying each in-dividual component as a B�uchi automaton. In particular, consider a system I com-prising of n components, where each component is modeled as an !-regular processPi = (Ai; L(Ai)). The implementation process is [ki Pi]. We can automatically con-struct the automaton for I using the construction for language intersection for B�uchiautomata. Since the event sets of various components may be di�erent, before we applythe product construction, we need to make the alphabets of various automata identical.Let A = [iAi. From each Ai, we construct an automaton A0i over the alphabet P+(A)such that L(A0i) = f� 2 P+(A)! j �dAi 2 L(Ai)g. Now the desired automaton AI is theproduct of the automata A0i. 39

The speci�cation is given as an !-regular language S over P+(A). The implementationmeets the speci�cation i� L(AI) � S. The property S can presented as a B�uchi automatonAS. In this case, the veri�cation problem reduces to checking emptiness of L(AI)\L(AS)c.The veri�cation problem is PSPACE-complete. The size of AI is exponential in thedescription of its individual components. If AS is nondeterministic, taking the comple-ment involves an exponential blow-up, and thus the complexity of veri�cation problem isexponential in the size of the speci�cation also. However, if AS is deterministic, then thecomplexity is only polynomial in the size of the speci�cation.Even if the size of the speci�cation and the sizes of the automata for the individualcomponents are small, the number of components in most systems of interest is large,and in the above method the complexity is exponential in this number. Thus the productautomaton AI has a prohibitively large number of states, and this limits the applicabilityof this approach. Alternative methods which avoid enumeration of all the states in AIhave been proposed, and shown to be applicable to veri�cation of some moderately sizedsystems [8, 18].7.4 Veri�cation using timed automataFor a timed process (A;L), L is a timed language over P+(A). A timed regular process isone for which the set L is a timed regular language, and can be represented by a timedautomaton.Finite-state systems are modeled by TBAs. The underlying transition table gives thestate-transition graph of the system. We have already seen how the clocks can be usedto represent the timing delays of various physical components. As before, the acceptanceconditions correspond to the fairness conditions. Notice that the progress requirementimposes certain fairness requirements implicitly. Thus, with a �nite-state process P , weassociate a TBA AP such that L(AP) consists of precisely the timed traces of P .Typically, an implementation is described as a composition of several components.Each component should be modeled as a timed regular process Pi = (Ai; L(Ai)). It ispossible to construct a TBA AI which represents the composite process [ki Pi]. To dothis, �rst we need to make the alphabets of various automata identical, and then take theintersection. However, in the veri�cation procedure we are about to outline, we will notexplicitly construct the implementation automaton AI .The speci�cation of the system is given as another timed regular language S over thealphabet P+(A), where A = [iAi. The system is correct i� L(AI) � S. If S is given as aTBA, then in general, it is undecidable to test for correctness. However, if S is given asa DTMA AS , then we can solve this as outlined in Section 6.3.Putting together all the pieces, we conclude:Theorem 7.8 Given timed regular processes Pi = (Ai; L(Ai)), i = 1; : : : n, modeledby timed automata Ai, and a speci�cation as a deterministic timed automaton AS , theinclusion of the trace set of [ki Pi] in L(AS) can be checked in PSPACE.Proof. Consider TBAs Ai = hP+(Ai);Si;Si0;Ci;Ei;Fii, i = 1; : : : n, and the DTMAAS = hP+(A);S0;S00;C0;E0;Fi. Assume without loss of generality that the clock setsCi, i = 0; : : : n, are disjoint. 40

The veri�cation algorithm constructs the transition table of the region automatoncorresponding to the product A of the timed transition tables of Ai with AS . The set ofclocks of A is C = [iCi. The states of A are of the form hs0; : : : sni with each si 2 Si.The initial states of A are of the form hs0; : : : sni with each si 2 Si0. A transition of A isobtained by coupling the transitions of the individual automata labeled with consistentevent sets. A state s = hs0; : : : sni has a transition to state s0 = hs00; : : : s0ni labeledwith event set a 2 P+(A), clock constraint ^i�i, and the set [i�i of clocks, i� for each0 � i � n, either there is a transition hsi; s0i; a\Ai; �i; �ii 2 Ei, or the automaton Ai doesnot participate in this transition: s0i = si, a \Ai = ;, �i = ;, and �i = true.The region automaton R(A) is de�ned from the product table A as described inSection 4. To test the desired inclusion, the algorithm searches for a cycle in the regionautomaton such that (1) it is accessible from the initial state of R(A), (2) it satis�esthe progessiveness condition: for each clock x 2 C, the cycle contains at least one regionsatisfying [(x = 0) _ (x > cx)], (3) since our de�nition of the composition requires thatwe consider only those in�nite runs in which each automaton participates in�nitely manytimes, we require that, for each 1 � i � n, the cycle contains a transition in which theautomaton Ai participates, (4) the fairness requirements of all implementation automataAi are met: for each 1 � i � n, the cycle contains some state whose i-th componentbelongs to the accepting set Fi, (5) the fairness condition of the speci�cation is not met:the projection of the states in the cycle onto the component of AS does not belong to theacceptance family F . The desired inclusion does not hold i� a cycle with all the aboveconditions can be found.Each state of the region automaton can be represented in space polynomial in thedescription of the input automata. It follows that the inclusion test can be performed inPSPACE.The number of vertices in the region automaton is O[jASj��ijAij�2j�(AS)j+�i j�(Ai)j], andthe time complexity of the above algorithm is linear in this number. There are mainlythree sources of exponential blow-up:1. The complexity is proportional to the number of states in the global timed automa-ton describing the implementation [ki Pi]. This is exponential in the number ofcomponents.2. The complexity is proportional to the product of the constants cx, the largest con-stant x is compared with, over all the clocks x involved.3. The complexity is proportional to the number of permutations over the set of allclocks.The �rst factor is present in the simplest of veri�cation problems, even in the untimedcase. Since the number of components is typically large, this exponential factor has beena major obstacle in implementing model-checking algorithms.The second factor is typical of any formalism to reason about quantitative time. Theblow-up by actual constants is observed even for simpler, discrete models. Note that ifthe bounds on the delays of di�erent components are relatively prime then this factorleads to a major blow-up in the complexity.41

in

out

approach

exit

(x>2)?

id T

x:=0
0S 1S

2S
3

S

(x<5)? Figure 16: TRAINLastly, in the untiming construction, we need to account for all the possible orderingsof the fractional parts of di�erent clocks, and this is the source of the third factor. Weremark that switching to a simpler, say discrete-time, model will avoid this blow-up incomplexity. However since the total number of clocks is linear in the number of indepen-dent components, this blow-up is the same as that contributed by the �rst factor, namely,exponential in the number of components.7.5 Veri�cation exampleWe consider an example of an automatic controller that opens and closes a gate at arailroad crossing [29]. The system is composed of three components: TRAIN, GATE andCONTROLLER.The automaton modeling the train is shown in Figure 16. The event set is fapproach,exit, in, out, idTg. The train starts in state s0. The event idT represents its idling event;the train is not required to enter the gate. The train communicates with the controllerwith two events approach and exit . The events in and out mark the events of entryand exit of the train from the railroad crossing. The train is required to send the signalapproach at least 2 minutes before it enters the crossing. Thus the minimumdelay betweenapproach and in is 2 minutes. Furthermore, we know that the maximum delay betweenthe signals approach and exit is 5 minutes. This is a liveness requirement on the train.Both the timing requirements are expressed using a single clock x.The automaton modeling the gate component is shown in Figure 17. The event setis fraise, lower, up, down, idGg. The gate is open in state s0 and closed in state s2. Itcommunicates with the controller through the signals lower and raise. The events up anddown denote the opening and the closing of the gate. The gate responds to the signallower by closing within 1 minute, and responds to the signal raise within 1 to 2 minutes.The gate can take its idling transition idG in states s0 or s2 forever.Finally, Figure 18 shows the automaton modeling the controller. The event set is42

id
G

id
G

lower

raise

downup

(y<1)?(y>1) > (y<2)?

y:=0

y:=0

3
S

0
S

1
S

2SFigure 17: GATE
id

C

approach

lower

exit

raise

(z=1)?(z<1)?

z:=0

z:=0

0S 1S

2S
3

S Figure 18: CONTROLLER43

out,~up

in,~updown,~in

~in,~down

up,~in

~in,~up

0S 1S 2SFigure 19: Safety propertyfapproach, exit, raise, lower, idCg. The controller idle state is s0. Whenever it receivesthe signal approach from the train, it responds by sending the signal lower to the gate.The response time is 1 minute. Whenever it receives the signal exit , it responds with asignal raise to the gate within 1 minute.The entire system is then[TRAIN k GATE k CONTROLLER]:The event set is the union of the event sets of all the three components. In this example,all the automata are particularly simple; they are deterministic, and do not have anyfairness constraints (every run is an accepting run). The timed automaton AI specifyingthe entire system is obtained by composing the above three automata.The correctness requirements for the system are the following:1. Safety: Whenever the train is inside the gate, the gate should be closed.2. Real-time Liveness: The gate is never closed at a stretch for more than 10 minutes.The speci�cation refers to only the events in, out, up, down. The safety propertyis speci�ed by the automaton of Figure 19. An edge label in stands for any event setcontaining in, and an edge label \in, :out" means any event set not containing out , butcontaining in. The automaton disallows in before down, and up before out . All the statesare accepting states.The real-time liveness property is speci�ed by the timed automaton of Figure 20. Theautomaton requires that every down be followed by up within 10 minutes.Note that the automaton is deterministic, and hence can be complemented. Further-more, observe that the acceptance condition is not necessary; we can include state s1also in the acceptance set. This is because the progress of time ensures that the self-loop on state s1 with the clock constraint (x < 10) cannot be taken inde�nitely, and theautomaton will eventually visit state s0.The correctness of AI against the two speci�cations can be checked separately asoutlined in Section 7. Observe that though the safety property is purely a qualitativeproperty, it does not hold if we discard the timing requirements.44

~down

up,(x<10)?

(x<10)?

1S0S

down, x:=0Figure 20: Real-time liveness property8 New results on timed automataTimed automata provide a natural way of expressing timing delays of a real-time system.In this presentation, we have studied them from the perspective of formal language theory.Now we brie
y review other results about timed automata. The precise formulation oftimed automata is di�erent in di�erent papers, but the underlying idea remains the same.Timed automata are useful for developing a decision procedure for the logic MITL, areal-time extension of the linear temporal logic PTL [4]. The decision procedure constructsa timed automaton A� from a given MITL-formula �, such that A� accepts precisely thesatisfying models of �; thereby reducing the satis�ability question for � to the emptinessquestion for A�. This construction can also be used to check the correctness of a systemmodeled as a product of timed automata against MITL-speci�cation.The untiming construction for timed automata forms the basis for veri�cation algo-rithms in the branching-time model also. In [1], we develop a model-checking algorithmfor speci�cations written in TCTL | a real-time extension of the branching-time tempo-ral logic CTL of [16]. In [43], a notion of timed bisimulation is de�ned for timed automata,and an algorithm for deciding whether two timed automata are bisimilar, is given.Timed automata is a fairly low-level representation, and automatic translations frommore structured representations such as process algebras, timed Petri nets, or high-levelreal-time programming languages, should exist. Recently, Sifakis et al. have shown howto translate a term of the real-time process algebra ATP to a timed automaton [34].One promising direction of extending the process model discussed here is to incorpo-rate probabilistic information. This is particularly relevant for systems that control andinteract with physical processes. We add probabilities to timed automata by associat-ing �xed distributions with the delays. This extension makes our processes generalizedsemi-Markov processes (GSMPs). Surprisingly, the untiming construction used to testfor emptiness of a timed automaton can be used to analyze the behavior of GSMPs also.In [2], we present an algorithm that combines model-checking for TCTL with model-checking for discrete-time Markov chains. The method can also be adopted to checkproperties speci�ed using deterministic timed automata [3].Questions other than veri�cation can also be studied using timed automata. Forexample, Wong-Toi and Ho�mann study the problem of supervisory control of discreteevent systems when the plant and speci�cation behaviors are represented by timed au-tomata [48]. The problem of synthesizing schedulers from timed automata speci�cations45

is addressed in [15]. Courcoubetis and Yannakakis use timed automata to solve certainminimum and maximum delay problems for real-time systems [12]. For instance, theyshow how to compute the earliest and the latest time a target state can appear along theruns of an automaton from a given initial state.References[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. InProceedings of the Fifth IEEE Symposium on Logic in Computer Science, pages 414{425, 1990.[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-timesystems. In Automata, Languages and Programming: Proceedings of the 18th ICALP,Lecture Notes in Computer Science 510, 1991.[3] R. Alur, C. Courcoubetis, and D. Dill. Verifying automata speci�cations of prob-abilistic real-time systems. In Proceedings of REX workshop \Real-time: theory inpractice", Lecture Notes in Computer Science 600, pages 28{44. Springer-Verlag,1991.[4] R. Alur, T. Feder, and T. Henzinger. The bene�ts of relaxing punctuality. In Proceed-ings of the Tenth ACM Symposium on Principles of Distributed Computing, pages139{152, 1991.[5] R. Alur and T. Henzinger. A really temporal logic. In Proceedings of the 30th IEEESymposium on Foundations of Computer Science, pages 164{169, 1989.[6] A. Bernstein and P. Harter. Proving real-time properties of programs with temporallogic. In Proceedings of the Eighth ACM Symposium on Operating System Principles,pages 164{176, 1981.[7] R. B�uchi. On a decision method in restricted second-order arithmetic. In Proceedingsof the International Congress on Logic, Methodology, and Philosophy of Science 1960,pages 1{12. Stanford University Press, 1962.[8] J. Burch, E. Clarke, D. Dill, L. Hwang, and K. L. McMillan. Symbolic model check-ing: 1020 states and beyond. Information and Computation, 98(2):142{170, 1992.[9] Y. Choueka. Theories of automata on !-tapes: a simpli�ed approach. Journal ofComputer and System Sciences, 8:117{141, 1974.[10] E. Clarke, I. Draghicescu, and R. Kurshan. A uni�ed approach for showing languagecontainment and equivalence between various types of !-automata. Technical report,Carnegie Mellon University, 1989.[11] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-stateconcurrent systems using temporal-logic speci�cations. ACM Transactions on Pro-gramming Languages and Systems, 8(2):244{263, 1986.46

[12] C. Courcoubetis and M. Yannakakis. Minimumand maximumdelay problems in real-time systems. In Proceedings of the Third Workshop on Computer-Aided Veri�cation,Lecture Notes in Computer Science 575, pages 399{409, 1991.[13] D. Dill. Timing assumptions and veri�cation of �nite-state concurrent systems. InJ. Sifakis, editor, Automatic Veri�cation Methods for Finite State Systems, LectureNotes in Computer Science 407, pages 197{212. Springer{Verlag, 1989.[14] D. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-independentCircuits. MIT Press, 1989.[15] D. Dill and H. Wong-Toi. Synthesizing processes and schedulers from temporal spec-i�cations. In Proceedings of the Second Workshop on Computer-Aided Veri�cation,Lecture Notes in Computer Science 531, pages 272{281, 1990.[16] E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to synthesizesynchronization skeletons. Science of Computer Programming, 2:241{266, 1982.[17] E. A. Emerson, A. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporalreasoning. In Proceedings of the Second Workshop on Computer-Aided Veri�cation,Lecture Notes in Computer Science 531, pages 136{145, 1990.[18] P. Godefroid and P. Wolper. A partial approach to model-checking. In Proceedingsof the Sixth IEEE Symposium on Logic in Computer Science, pages 406{415, 1991.[19] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of regular programs.Journal of Computer and System Sciences, 26:222{243, 1983.[20] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic. In Proceedingsof the Fifth IEEE Symposium on Logic in Computer Science, pages 402{413, 1990.[21] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for real-timesystems. In Proceedings of the 18th ACM Symposium on Principles of ProgrammingLanguages, pages 353{366, 1991.[22] C. Hoare. Communicating sequential processes. Communications of the ACM,21(8):666{677, 1978.[23] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-putation. Addison-Wesley, 1979.[24] F. Jahanian and A. Mok. Safety analysis of timing properties in real-time systems.IEEE Transactions on Software Engineering, SE{12(9):890{904, 1986.[25] F. Jahanian and A. Mok. A graph-theoretic approach for timing analysis and itsimplementation. IEEE Transactions on Computers, C-36(8):961{975, 1987.[26] R. Koymans. Specifying real-time properties with metric temporal logic. Journal ofReal-Time Systems, 2:255{299, 1990. 47

[27] R. Kurshan. Complementing deterministicB�uchi automata in polynomial time. Jour-nal of Computer and System Sciences, 35:59{71, 1987.[28] L. Lamport. What good is temporal logic? In R. Mason, editor, InformationProcessing 83: Proceedings of the Ninth IFIP World Computer Congress, pages 657{668. Elsevier Science Publishers, 1983.[29] N. Leveson and J. Stolzy. Analyzing safety and fault tolerance using timed Petrinets. In Proceedings of International Joint Conference on Theory and Practice of Soft-ware Development, Lecture Notes in Computer Science 186, pages 339{355. Springer-Verlag, 1985.[30] H. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal un-certainty. Technical Report TR-15-89, Harvard University, 1989.[31] N. Lynch and H. Attiya. Using mappings to prove timing properties. In Proceedings ofthe Ninth ACM Symposium on Principles of Distributed Computing, pages 265{280,1990.[32] Z. Manna and A. Pnueli. The temporal framework for concurrent programs. InR. Boyer and J. Moore, editors, The Correctness Problem in Computer Science,pages 215{274. Academic Press, 1981.[33] R. McNaughton. Testing and generating in�nite sequences by a �nite automaton.Information and Control, 9:521{530, 1966.[34] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems.In Proceedings of REX workshop \Real-time: theory in practice", Lecture Notes inComputer Science 600, pages 549{572. Springer-Verlag, 1991.[35] J. Ostro�. Temporal Logic of Real-time Systems. Research Studies Press, 1990.[36] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-sium on Foundations of Computer Science, pages 46{77, 1977.[37] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation ofreactive systems: a survey of current trends. In Current Trends in Concurrency,Lecture Notes in Computer Science 224, pages 510{584. Springer-Verlag, 1986.[38] C. Ramchandani. Analysis of asynchronous concurrent systems by Petri nets. Tech-nical Report MAC TR-120, Massachusetts Institute of Technology, 1974.[39] H. Rogers. Theory of Recursive Functions and E�ective Computability. McGraw-Hill,1967.[40] S. Safra. On the complexity of !-automata. In Proceedings of the 29th IEEE Sym-posium on Foundations of Computer Science, pages 319{327, 1988.[41] A. P. Sistla, M. Vardi, and P. Wolper. The complementation problem for B�uchiautomata with applications to temporal logic. Theoretical Computer Science, 49:217{237, 1987. 48

[42] W. Thomas. Automata on in�nite objects. In J. van Leeuwen, editor, Handbook ofTheoretical Computer Science, volume B, pages 133{191. Elsevier Science Publishers,1990.[43] K. �Cer�ans. Decidability of bisimulation equivalence for parallel timer processes. InProceedings of the Fourth Workshop on Computer-Aided Veri�ction, Lecture Notesin Computer Science, 1992. To appear.[44] M. Vardi. Veri�cation of concurrent programs { the automata-theoretic framework.In Proceedings of the Second IEEE Symposium on Logic in Computer Science, pages167{176, 1987.[45] M. Vardi and P. Wolper. An automata-theoretic approach to automatic programveri�cation. In Proceedings of the First IEEE Symposium on Logic in ComputerScience, pages 332{344, 1986.[46] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72{99, 1983.[47] P. Wolper, M. Vardi, and A. P. Sistla. Reasoning about in�nite computation paths.In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science,pages 185{194, 1983.[48] H. Wong-Toi and G. Ho�mann. The control of dense real-time discrete event systems.In Proceedings of the 30th IEEE Conference on Decision and Control, pages 1527{1528, 1991.

49

