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Abstract. Regular model checking is being developed for algorithmic
verification of several classes of infinite-state systems whose configura-
tions can be modeled as words over a finite alphabet. Examples include
parameterized systems consisting of an arbitrary number of homogeneous
finite-state processes connected in a linear or ring-formed topology, and
systems that operate on queues, stacks, integers, and other linear data
structures. The main idea is to use regular languages as the represen-
tation of sets of configurations, and finite-state transducers to describe
transition relations. In general, the verification problems considered are
all undecidable, so the work has consisted in developing semi-algorithms,
and decidability results for restricted cases. This paper provides a survey
of the work that has been performed so far, and some of its applications.

1 Introduction

A significant research effort is currently being devoted to extending the appli-
cability of algorithmic verification to parameterized and infinite-state systems,
using approaches based on abstraction, deductive techniques, decision proce-
dures, etc. One major approach is to extend the paradigm of symbolic model
checking [BCMD92] to new classes of models by an appropriate symbolic repre-
sentation; examples include timed automata, systems with unbounded commu-
nication channels, Petri nets, and systems that operate on integers and reals.

Regular model checking is such an extension, in which sets of states and tran-
sition relations are represented by regular sets, typically over finite or infinite
words or tree structures. Most work has considered models whose configurations
can be represented as finite words of arbitrary length over a finite alphabet.
This includes parameterized systems consisting of an arbitrary number of homo-
geneous finite-state processes connected in a linear or ring-formed topology, and
systems that operate on queues, stacks, integers, and other linear data struc-
tures. Regular model checking was advocated by Kesten et al. [KMM+01] and
by Boigelot and Wolper [WB98], as a uniform framework for analyzing several
classes of parameterized and infinite-state systems. The idea is that regular sets
will provide an efficient representation of infinite state spaces, and play a role
similar to that played by Binary Decision Diagrams (BDDs) for symbolic model
checking of finite-state systems. One can also exploit automata-theoretic algo-
rithms for manipulating regular sets. Such algorithms have been successfully
implemented, e.g., in the Mona [HJJ+96] system.
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A generic task in symbolic model checking is to compute properties of the set
of reachable states, in order to verify safety properties. For finite-state systems
this is typically done by state-space exploration, but for infinite-state systems
this procedure terminates only if there is a bound on the distance (in number
of transitions) from the initial configurations to any reachable configuration. An
analogous observation holds if we perform a reachability analysis backwards, by
iteration-based methods [CES86,QS82] from a set of “unsafe” configurations. A
parameterized or infinite-state system does not have such a bound, and any non-
trivial model checking problem is undecidable. In contrast to deductive applica-
tion of systems like Mona [BK98], the goal in regular model checking is to verify
system properties algorithmically. An important challenge is therefore to devise
so-called acceleration techniques, which calculate the effect of arbitrarily long se-
quences of transitions. This problem has been addressed in regular model check-
ing [JN00,BJNT00,AJNd02]. In general, the effect of acceleration is not com-
putable. However, computability have been obtained for certain classes [JN00].
Analogous techniques for computing accelerations have successfully been devel-
oped for several classes of parameterized and infinite-state systems, e.g., systems
with unbounded FIFO channels [BG96,BGWW97,BH97,ABJ98], systems with
stacks [BEM97,Cau92,FWW97,ES01], and systems with counters [BW94,CJ98].

In this paper, we survey the available work on regular model-checking. The
use of regular sets to model and specify systems is discussed in Section 2. Tech-
niques for computing invariants and reachable loops are surveyed in Section 3.
Finally, some extensions of the paradigm are discussed in Section 4.

2 Framework

Model checking is concerned with automated analysis of transition systems, each
consisting of

– a set of configurations (or states), some of which are initial, and
– a transition relation, which is a binary relation on the set of configurations.

The configurations represent possible “snapshots” of the system state, and the
transition relation describes how these can evolve over time. Most work on model
checking assumes that the set of configurations is finite, but significant effort
is underway to develop model checking techniques for transition systems with
infinite sets of configurations.

In its simplest form, the regular model checking framework represents a tran-
sition system as follows.

– A configuration (state) of the system is a word over a finite alphabet Σ.
– The set of initial configurations is a regular set over Σ.
– The transition relation is a regular and length-preserving relation on Σ∗. It

is represented by a finite-state transducer over (Σ × Σ), which accepts all
words (a1, a

′

1) · · · (an, a′

n
) such that (a1 · · · an , a′

1 · · · a
′

n
) is in the transition

relation. Sometimes, the transition relation is given as a union of a finite
number of relations, each of which is called an action.
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Given a transducer T , we often abuse notation and use T also to denote the
relation defined by the transducer. For a set S of configurations and a binary
relation R on configurations, let S ◦ R denote the set of configurations w such
that w′ R w for some w′ ∈ S, let R+ denote the transitive closure of R and
R∗ denote the reflexive transitive closure of R. Let S2 denote the set of pairs of
elements in S.

In the regular model checking framework it is possible to model parameterized
systems with linear or ring-shaped topologies, e.g., by letting each position in
the word model the state of a system component. It is also possible to model pro-
grams that operate on linear unbounded data structures such as queues, stacks,
integers, etc. For instance, a stack can be modeled by letting each position in
the word represent a position in the stack. The restriction to length-preserving
transducers implies that we cannot dynamically “create” new stack positions.
Therefore the stack should initially contain an arbitrary but bounded number of
empty stack positions, which are “statically allocated”. We can then faithfully
model all finite computations of the system, by initially allocating sufficiently
many empty stack positions. However, it may not be possible to model faithfully
all infinite computations of the system. Thus, the restriction to length-preserving
transducers introduces no limitations for analyzing safety properties, but may in-
cur restrictions on the ability to specify and verify liveness properties of systems
with dynamically allocated data structures.

2.1 Examples

1

n

0
t

(a) Automaton for I

2

(n,n)

0

(n,n)

1
(t,n) (n,t)

(b) Transducer T

Fig. 1. Initial set of states and transition relation

In Figure 1 we consider a token passing protocol: a simple parameterized sys-
tem consisting of an arbitrary (but finite) number of processes organized in a
linear fashion. Initially, the left-most process has the token. In each step, the
process currently having the token passes it to the right. A configuration of the
system is a word over the alphabet {t, n}, where t represents that the process has
the token, and n represents not having it. For instance, the word nntnn repre-
sents a configuration of a system with five processes where the third process has
the token. The set of initial states is given by the regular expression tn∗ (Fig-
ure 1(a)). The transition relation is represented by the transducer in Figure 1(b).
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For instance, the transducer accepts the word (n, n)(n, n)(t, n)(n, t)(n, n), rep-
resenting the pair (nntnn, nnntn) of configurations where the token is passed
from the third to the fourth process.

As a second example, we consider a system consisting of a finite-state process
operating on one unbounded FIFO channel. Let Q be the set of control states of
the process, and let M be the (finite) set of messages which can reside inside the
channel. A configuration of the system is a word over the alphabet Q∪M ∪{e},
where the padding symbol e represents an empty position in the channel. For
instance the word q1em3m1ee corresponds to a configuration where the process
is in state q1 and the channel (of length four) contains the messages m3 and m1

in this order. The set of configurations of the system can thus be described by
the regular expression Qe∗M∗e∗.

By allowing arbitrarily many padding symbols e, one can model channels
of arbitrary but bounded length. As an example, the action where the process
sends the message m to the channel and changes state from q1 to q2 is modeled
by the transducer in Figure 2. In the figure, “M” is used to denote any message
in M .

3

(e,e)

0 1
(q1,q2)

(e,m)

(e,e)

2

(M,M)
(e,m)(M,M)

Fig. 2. Transducer for sending a message m to the channel

2.2 Verification Problems

We will consider two types of verification problems in this paper.
The first problem is verification of safety properties. A safety property is of

form “bad things do not happen during system execution”. A safety property can
be verified by solving a reachability problem. Formulated in the regular model
checking framework, the corresponding problem is the following: given a set
of initial configurations I, a regular set of bad configurations B and a transition
relation specified by a transducer T , does there exist a path from I to B through
the transition relation T ? This amounts to checking whether (I ◦ T ∗) ∩ B = ∅.
The problem can be solved by computing the set Inv = I ◦ T ∗ and checking
whether it intersects B.

The second problem is verification of liveness properties. A liveness property
is of form “a good thing happens during system execution”. Often, liveness prop-
erties are verified using fairness requirements on the model, which can state that
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certain actions must infinitely often be either disabled or executed. Since, by the
restriction to length-preserving transducers, any infinite system execution can
only visit a finite set of configurations, the verification of a liveness property can
be reduced to a repeated reachability problem. The repeated reachability prob-
lem asks, given a set of initial configurations I, a set of accepting configurations

F and a transition relation T , whether there exist an infinite computation from
I through T that visits F infinitely often? By letting F be the configurations
where the fairness requirement is satisfied, and by excluding states where the
“good thing” happens from T , the liveness property is satisfied if and only if the
repeated reachability problem is answered negatively.

Since the transition relation is length-preserving, and hence each execution
can visit only a finite set of configurations, the repeated reachability problem
can be solved by checking whether there exists a reachable loop containing some
configuration from F . This can be checked by computing (Inv ∩ F )2 ∩ Id and
checking whether this relation intersects T +. Here Id is the identity relation on
the set of configurations, and Inv = I ◦ T ∗ as before.

Sets like I ◦ T ∗ and relations like T + are in general not regular or even
computable (note that T could model the computation steps of a Turing ma-
chine). Even if they are regular, they are sometimes not effectively computable.
In these cases, the above verification problems cannot be solved by the proposed
techniques. Therefore, a main challenge in regular model checking is to design
semi-algorithms which successfully compute such sets and relations for as many
examples as possible. In Section 3, we briefly survey some techniques that have
been developed for this purpose.

2.3 A Specification Logic

The translation from a problem of verifying liveness under fairness requirements
to a repeated reachability problem can be rather tricky. One way to make the
task easier is to provide an intuitive syntax for modeling and specification, which
can be automatically translated to repeated reachability problems, in analogy
with the way that linear-time temporal logic formulas are translated to Büchi
automata [VW86].

A logic LTL(MSO) was proposed for regular model checking in [AJN+04].
It uses a MSO (monadic second-order logic) over finite words to specify regular
sets, and LTL to specify temporal properties. The problem of model checking a
formula in LTL(MSO) can be automatically translated into a repeated reacha-
bility problem [AJN+04].

The logic LTL(MSO) combines (under certain restrictions) temporal opera-
tors of LTL [KPR98], including 2 (always) and 3 (eventually), and MSO quan-
tification over positions (first-order) and sets of positions (second-order). Models
of LTL(MSO) formulas are sequences of configurations (i.e., words), where the
first-order position variables denote positions in configurations, and the second-
order variables denote sets of positions. For instance, if ϕ(i) is a formula which
specifies a temporal property at position i in the word, then the formula ∀i3ϕ(i)
specifies that ϕ(i) eventually holds at each position in the word.
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In LTL(MSO), one can represent the configuration of a system by configura-

tion predicates, which can be seen as Boolean arrays indexed by positions. For
instance, in the token passing example, we can introduce a configuration predi-
cate t, where the atomic formula t[i] is interpreted as “the process at position i
has the token”, and t′[i] as “the process at position i will have the token in the
next time step”.

Example Our running example, token passing, is modeled in LTL(MSO) below
following the style of TLA [Lam94], where the system and the property of interest
are both specified by formulas. The local states of processes are represented by
a configuration predicate t – for every i, we have that t[i] is true if and only if
process i has the token. The set of initial states is modeled by initial, where only
the first process has the token. The transition relation where the token is passed
from position i to position i+1 is modeled by pass(i). Finally, the entire system
model is specified by system. The system actions are “one process passes the
token, or all processes idle”. Models of this formula correspond to runs of the
system.

initial = ∀i (t[i] ↔ i = 0)
idle(i) = t[i] ↔ t′[i]
pass(i) = (t[i] ∧ ¬t′[i]) ∧ (¬t[i + 1] ∧ t′[i + 1]) ∧

∀k ((k 6= i + 1 ∧ k 6= i) → idle(k))
system = initial ∧ 2(∃i pass(i) ∨ ∀i idle(i))

An example of a safety property for this system is “two different processes may
not have the token at the same time”:

safety = 2¬ ∃i, j (i 6= j ∧ t[i] ∧ t[j])

In order to specify termination (“the last process eventually gets the to-
ken”) we add a fairness constraint for the token passing action. For an action
α, let enabled(α) represent the set of states where the action α can be taken.
enabled(α) can be expressed in the logic, using an existential quantification of
the primed configuration predicates in α.

fairness = ∀i 23(pass(i) ∨ ¬enabled(pass(i)))
termination = 3∃i (t[i] ∧ ∀j ¬(j = i + 1))

To check that the algorithm satisfies the safety property, we translate the prop-
erty system ∧ ¬safety to a reachability problem. To check that the algorithm
satisfies the liveness property, we translate the property system ∧ fairness ∧
¬termination to a repeated reachability problem.

3 Algorithms

In Section 2, we stated a verification problem as that of computing a representa-
tion of I◦T ∗ (or T +) for some transition relation T and some set of configurations
I. In some cases we also have a set of bad configurations B and we want to check
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whether I◦T ∗ ∩ B 6= ∅. Algorithms for regular model checking are usually based
on starting from I and repeatedly applying T . As a running illustration, we will
consider the problem of computing the transitive closure T + for the transducer
in Figure 1(b). A first attempt is to compute T n, the composition of T with
itself n times for n = 1, 2, 3, · · · . For example, T 3 is the transition relation where
the token gets passed three positions to the right. Its transducer is given below.

4

(n,n)

0

(n,n)

1
(t,n)

2
(n,n)

3
(n,n) (n,t)

A transducer for T + is one where the token gets passed an arbitrary number
of times, given below.

2

(n,n)

0

(n,n)

1
(t,n) (n,t)

(n,n)

The challenge is to derive the above transducer algorithmically. Obviously,
it cannot be done naively by simply computing the approximations T n for n =
1, 2, 3, · · · , since this will not converge. Some acceleration or widening techniques
must be developed that compute a representation of T + by other means. In this
section, we present some techniques developed in the literature for that purpose.

3.1 Quotienting

Several techniques in the literature are based on suitable quotienting of trans-
ducers that represent approximations of T n for some value(s) of n. This involves
finding an equivalence relation ≃ on the states of approximations, and to merge
equivalent states, obtaining a quotient transducer. For instance, in the transducer
that represents T 3 above, we can define the states 1, 2, and 3 to be equivalent. By
merging them, we obtain the transducer T 3/ ≃ which in this example happens
to be equivalent to T +.

One problem is that quotienting in general increases the language accepted
by a transducer: L(T n) ⊆ L(T n/ ≃), usually with strict inclusion. This problem
was resolved in [AJNd02,BJNT00,DLS01,AJMd02] by characterizing equivalence
relations ≃ such that T + is equivalent to (T/ ≃)+ for any transducer T , i.e.,
the quotienting does not increase the transitive closure of the transducer. To
explain the idea, let us first build explicitly a transducer for T + as the union of
transducers T n for n = 1, 2, 3, · · · . Each state of T n is labeled with a sequence of
states from T , resulting from the product construction using n copies of T . The
result is called the history transducer. The history transducer corresponding to
Figure 1(b) is shown below.
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2

(n,n)

22

(n,n)

222

(n,n)

0

00

000

(n,n)

1
(t,n)

(n,n)

10
(t,n)

(n,n)

100
(t,n)

210
(n,n)

221
(n,n) (n,t)

21
(n,n) (n,t)

(n,t)

...

Recall minimization algorithms for automata. They are based on building
a forward bisimulation ≃F on the states, and then carry out minimization by
quotienting. For instance, in the above history transducer, all states with names
of form 2i1 for any i ≥ 0 are forward bisimilar. Analogously, we can find a
backward bisimulation ≃B. For instance, all states with names of form 10i,
i ≥ 0, are backward bisimilar. Dams et al. [DLS01] showed how to combine a
forward ≃F and a backward bisimulation ≃B into an equivalence relation ≃
which preserves the transitive closure of the transducer. In [AJNd03], this result
was generalized to consider simulations instead of bisimulations. The simulations
can be obtained by computing properties of the original automaton T (as in
[AJNd02,AJNd03]), or on successive approximations of T n (as in [DLS01]).

From the results in [AJNd03] it follows for the above history transducer that
the states with names in 2i1 can be merged for i ≥ 1, and the same holds for
10i. The equivalence classes for that transducer would be 2+, 0+, 10+, 2+1 and
2+10+. Hence, it can be quotiented to the following transducer, which can be
minimized to the three-state representation shown earlier.

2+

(n,n)

0+

(n,n)
10+(t,n)

1

(t,n)

2+1

(n,n)

2+10+
(n,n)

(n,t)

(n,t)
(n,n)

(n,n)

3.2 Abstraction

In recent work, Bouajjani et al. [BHV04] apply abstraction techniques to au-
tomata that arise in the iterative computation of I ◦ T ∗. When computing the
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sequence I, I ◦ T, I ◦ T 2, I ◦ T 3, · · · the automata that arise in the computa-
tion may all be different or may be very large and contain information that
is not relevant for checking whether I ◦ T ∗ has a nonempty intersection with
the set of bad configurations B. Therefore, each iterate I ◦ T n is abstracted by
quotienting under some equivalence relation ≃. In contrast to the techniques of
[AJNd02,BJNT00,DLS01,AJMd02], the abstraction does not need to preserve
the language accepted, i.e., (I ◦T n)/ ≃ can be any over-approximation of I ◦T n

or even of I ◦ T ∗. The procedure calculates the sequence of approximations of
form (((I ◦ T )/ ≃) ◦ T )/ ≃ · · · . Convergence to a limit T lim can be ensured by
choosing ≃ to have finite index.

If now T lim ∩ B = ∅, we can conclude (by L((I ◦ T ∗)) ⊆ L(T lim)) that
I ◦ T ∗ has an empty intersection with B. Otherwise, we try to trace back the
computation from B to I. If this succeeds, a counterexample has been found,
otherwise the abstraction must be refined by using a finer equivalence relation,
from which a more exact approximation T lim can be calculated, etc.

10
t

n

(a) Automaton for B

2

n

0 1
n t

(b) An automaton A

2

n

0,1
t

n

(c) The abstract version of A

Fig. 3. Applying abstraction

The technique relies on defining suitable equivalence relations. One way is
to use the automaton for B. We illustrate this on the token passing example.
Suppose that B is given by the automaton in Fig 3(a), denoting that the last
process has the token. Each state q in an automaton A has a post language

L(A, q) which is the set of words accepted starting from that state. For example,
in the automaton for B we have L(B, 0) = n∗t and L(B, 1) = {ǫ}. The post
languages are used to define ≃, such that q ≃ q′ holds if for all states r of B
we have L(A, q) ∩ L(B, r) = ∅ exactly when L(A, q′) ∩ L(B, r) = ∅. Each
equivalence class of ≃ can be represented by a Boolean vector indexed by states
of B, which is true on position s exactly when the equivalence class members
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have nonempty intersection with L(B, s). This is one way to get a finite index
equivalence relation.

We show an example of an automaton A in Fig 3(b) with its corresponding
abstract version in Fig 3(c). Considering the states of A, we observe that the
post languages of states 0 and 1 both have a nonempty intersection with the
post language n∗t and an empty intersection with the post language containing
the empty string. The post language of state 2 have an empty intersection with
n∗t and an nonempty intersection with the post language containing the empty
string.

If a spurious counterexample is found, i.e. a counterexample occurring when
quotienting with an equivalence ≃, but not in the original system, we need
to refine the equivalence and start again. Automata representing parts of the
counterexample can be used, in the same way as the automaton B above, to
define an equivalence. In [BHV04], the equivalence is refined by using both B
and automata representing parts of the counterexample. This prevents the same
counterexample from occurring twice. Using abstraction can potentially greatly
reduce the execution time, since we only need to verify that we cannot reach B
and therefore it may be that less information about the structure of I ◦T ∗ needs
to be stored.

3.3 Extrapolation

Another technique for calculating I ◦T ∗ is to speed up the iterative computation
by extrapolation techniques that try to guess the limit. The idea is to detect a
repeating pattern – a regular growth – in the iterations, from which one guesses
the effect of arbitrarily many iterations. The guess may be exactly the limit, or
an approximation of it.

In [BJNT00,Tou01], the extrapolation is formulated in terms of rules for
guessing I ◦ T ∗ from observed growth patterns among the approximations I, I ◦
T, I ◦ T 2, · · · . Following Bouajjani et al. [BJNT00], if I is a regular expression ρ
which is a concatenation of form ρ = ρ1 ·ρ2, and in the successive approximations
we observe a growth of form (ρ1 · ρ2) ◦T = ρ1 ·Λ · ρ2 for some regular expression
Λ, then the guess for the limit ρ ◦ T ∗ is ρ1 · Λ∗ · ρ2. Touili [Tou01] extends this
approach to more general situations. One of these is when ρ is a concatenation
of form ρ1 · . . . · ρn and

(ρ1 · . . . · ρn) ◦ T =

n−1⋃

i=1

ρ1 · . . . · ρi · Λi · ρi+1 · . . . · ρn

The guess for the limit ρ ◦ T ∗ is in this case

ρ1 · Λ
∗

1 · ρ2 · Λ
∗

2 · . . . · Λ
∗

n−1 · ρn

For example, if ρ = a∗ba∗ and T is a relation which changes an a to a c, then
ρ ◦T is a∗ca∗ba∗ ∪a∗ba∗ca∗ (i.e., each step adds either ca∗ to the left of b or a∗c
to the right). The above rule guesses the limit ρ ◦ T ∗ to be a∗(ca∗)∗b(a∗c)∗a∗.
Touili also suggests other, more general, rules.



11

Having formed a guess ρ′ for the limit, we apply a convergence test which
checks whether ρ′ = (ρ′ ◦T )∪ρ. If it succeeds, we can conclude that ρ ◦T ∗ ⊆ ρ′.
The work in [BJNT00] and [Tou01] also provide results which state that under
some additional conditions, we can in fact conclude that ρ ◦ T ∗ = ρ′, i.e., that
ρ′ is the exact limit.

Boigelot et al. [BLW03] extend the above techniques by considering growth
patterns for subsequences of I, I ◦ T, I ◦ T 2, · · · , consisting of infinite sequences
of sample points, noting that the union of the approximations in any such sub-
sequence is equal to the union of the approximations in the full sequence. They
apply this idea to iterate a special case of relations, arithmetic transducers, which
operate on binary encodings of integers, and give a sufficient criterion for exact
extrapolation.

We illustrate these approaches, using our token passing example. From the
initial set ρI = tn∗, we get ρI ◦T = ntn∗, ρI ◦T 2 = nntn∗, ρI ◦T 3 = nnntn∗, and
so on. The methods above detect the growth ρI ◦ T = n · ρI , and guess that the
limit is n∗tn∗. In this case, the completeness results of [BJNT00,Tou01] allow to
conclude that the guessed limit is exact.

1

n

0
t

(a) Automaton for ρI

2

n

0 1
n t

(b) Automaton for ρI ◦ T

1

n

0
t

n

(c) Extrapolated automaton

Fig. 4. Extrapolating token passing

4 Further Directions

In previous sections, we have presented main techniques in regular model check-
ing for the case where system configurations are modeled as finite words, and
transition relations are modeled as length-preserving transducers. In this section,
we briefly mention some work where these restrictions are lifted.
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Non-Length-Preserving Transducers. Lifting the restriction of length-preserv-
ation from transducers allows to model more easily dynamic data structures
and parameterized systems of processes with dynamic process creation. The
techniques have been extended, see, e.g., [DLS01,BLW03].

Infinite Words. The natural extension to modeling systems by infinite words has
been considered by Boigelot et al. [BLW04], having the application to real arith-
metic in mind. Regular sets and transducers must then be represented by Büchi
automata. To avoid the high complexity of some operations on Büchi automata,
the approach is restricted to sets that can be defined by weak deterministic Büchi
automata.

Finite Trees. Regular sets of trees can in principle be analyzed in the same way
as regular sets of words, as was observed also in [KMM+01]. With some compli-
cations, similar techniques can be used for symbolic verification [AJMd02,BT02].
Some techniques have been implemented and used to verify simple token-passing
algorithms [AJMd02], or to perform data-flow analysis for parallel programs with
procedures [BT02].

Context Free Languages. Fisman and Pnueli [FP01] use representations of con-
text-free languages to verify parameterized algorithms, whose symbolic verifica-
tion require computation of invariants that are non-regular sets of finite words.
The motivating example is the Peterson algorithm for mutual exclusion among
n processes [PS81].
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