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Abstract: Burrows, Abadi, and Needham have pro-

posed a logic for the analysis of authentication proto-

cols. It is a logic of belief, with special constructs for

expressing some of the central concepts used in au-

thentication. The logic has revealed many subt Ieties

and serious errors in published protocols. Unfortu-

nately, it has also created some confusion.

In this paper, we provide a new semantics for

the logic, our attempt to clarify its meaning. In

the search for a sound semantics, we have identified

many sources of the past confusion. Identifying these

sources has helped us improve the logic’s syntax and

inference rules, and extend its applicability. One of

the greatest differences between our semantics and

the original semantics is our treatment of belief as a

form of resource-bounded, defensible knowledge.

1 Introduction

Authentication is the act of determining the identity

of a principal (such as a person, computer, or server)

in a computer system. Authentication usually plays

an important role in secure systems, since a principal

controlling a resource must have some way of iden-
tifying principals requesting access to the resource.

Authentication typically depends on secrets, such as

passwords or encryption keys, that one principal can

reveal or somehow use to prove its identity to oth-

ers. Before these secrets can be used, however, they

must be distributed to the principals in some way. An

authentication protocol is a description of how these

secrets are distributed to principals, and how these

secrets are used to determine principals’ identities.
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Figure 1: An authentication protocol.

A simple authentication protocol is given as an ex-

ample in Figure 1. (This is actually a very incomplete

description of the Kerberos key distribution proto-

col [M NSS87, KNS90].) The three principals involved

are a server S trusted to generate good encryption

keys, and two principals A and B. The goal of this

protocol is for A and B to acquire a key that they

can use in their communication. Principal A begins

by aending a request for a key to the server S. The

server responds with a message containing a times-

tamp T,, the new key K.b for A and B, and an en-

crypted submessage. The entire message is encrypted

with the key Ka$ known only to A and S, so after

decrypting the message, A believes the message must

have come from S. Moreover, since A trusts S to gen-

erate good keys, A believes that Kab was a good key

when S sent the message. Since the message contains

a recent timestamp T~, A believes that S sent the

message recently, and hence that Kab is still a good

key for uae with B. Principal A then forwards to B

the encrypted submessage it received in the message
from 5. This submessage contains the timestamp T.,
the key K.b, and A’s name, all encrypted with the

key Kb. known only to B and S. Consequently, B—

just like A—believes the message was recently con-
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strutted by S, and hence that Kah is a good key to

use with A.

This informal line of reasoning suggests one possi-

ble specification satisfied by the protocol: if A and B

. initially believe that Ka~ and Kb~, respectively, are

good keys for use with S, then they will believe

that K.b is a good key for use with each other at the

end of the protocol’s execution. Informal arguments

about authentication protocols, however, are notori-

ously error-prone, in part because their correctness is

dependent on subtle assumptions being made about

the system. Furthermore, a great number of proto-

cols have been proposed, and many of them differ

from each other in subtle ways, both in the assump-

tions they make and in the specifications they satisfy.

Burrows, Abadi, and Needham [BAN89] have pro-

posed a logic specifically tailored to the analysis of

authentication protocols. The purpose of the logic is

to formalize our informal reasoning about authenti-

cation protocols, and to explain these protocols and

their differences. The logic provides a language for

describing the beliefs of the parties involved in a

protocol, and a set of inference rules that describe

how these beliefs evolve as the result of communi-

cantion. It includes special constructs for expressing

many of the central concepts used in authentication.

Some of these concepts are illustrated in the proto-

col above: good keys are used to determine who has

sent the various messages, a trusted autho~ity (the

server) is trusted to generate good encryption keys,

and timestamps are used to prove that messages are

fresh, meaning that they have not been sent before

the start of the current authentication. Many im-

portant aspects of authentication are deliberately ig-

nored by the logic. For example, it sheds no light on

the secrecy of message contents, but it does explain

the beliefs a message recipient has about the identity

of the sender.

To use the logic to analyze a protocol, one first

writes down a list of formulas describing the as-

sumptions being made about the system, annotates

the protocol with formulas holding at various points

in the protocol’s execution, and uses the inference

rules to derive the formula stating the protocol’s ex-

pected correctness condition. One’s inability to do
so often indicates an error in the protocol. In part

because the logic has helped uncover serious errors

in published protocols [BAN89, Rac89] ~ it has re-

ceived a great deal of attention [ABKL90, AM90,

Bie89, Boy90, CG90, DS90, Eng90, GKSG91, Gro90,

GNY90, GS90, KG91, Sne91, Syv91]. It has also

helped identify subtle differences between similar pro-

tocols [BAN89].

On the other hand, a number of questions have

been asked about the logic itself. what does “belief”

mean? What is a “good key>’? What kinds of proper-

ties of authentication protocols is the logic designed

to study? And after a complete, formal proof of a

protocol’s correctness, no error has been discovered,

but what exactly is it that has been proven? One

reason for these questions is that the semantics given

in [BAN89] is hard to relate to standard models of

computation and belief. For example, in that model,

part of a principal’s state is an explicit set of the for-

mulas it believes, and a principal is said to believe a

formula if that formula is included in its set.

The main goal of this paper is to find a natural se-

mantic model for the logic of authentication. We be-

gin by trying to model the concepts the logic is trying

to capture. For example, we give a possible-worlds

definition of belief as a form of resource-bounded, de-

fensible knowledge (which is an interesting topic in

itself ). The process of constructing our model illu-

minates some of the intrinsic properties of these con-

cepts. This insight enables us to reformulate the logic

slightly without losing any of its essential features

(protocols are analyzed with the reformulated logic
in much the same way as they are with the original

logic), and to give a sensible model of computation

and semantics for this simplified logic.

We reformulate the logic in several ways. We re-

move some unnecessary mixing of semantic and im-

plementation details in the original definitions and

inference rules, clarifying the semantic properties re-

quired for the logic’s soundness. We also introduce

more dhect definitions for several logical constructs,

enabling us to dispense with an implicit assumption

of honesty (that principals believe the messages they

send are true), which is not well-defined in general.

We substantially simplify the inference rules, so that

all concepts are defined independently rather than

jointly with other concepts. We also elaborate the set

of inference rules, guided by our new semantics, and

reformulate them as an axiomatization with modus

ponens and necessitation as the only inference rules.

The result is a simpler, more natural formulation of

the logic with an easily understood semantics, and a

potentially wider range of applications.

It should be noted that in thk paper we are study-

ing the relatively simple use of encryption in ac-
tual systems, and not the powerful tools of mod-
ern cryptography such as oblivious transfer and zero-

knowledge proof systems, Until these tools become

practical, it is important to have a tractable model

for analysis of the protocols being implemented today.

As in [BAN89], we make the simplifying assumption

of perfect encryption, by which we mean that a princi-

pal must possess a key K in order to use K to encrypt

or decrypt a message, or to obtain any information

whatsoever about a message encrypted with K. The
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intention is to study authentication protocols at a

level of abstraction where the encryption technology

being used does not matter. Many authentication.

protocols are subtle enough without considering the

additional subtleties that arise when cryptography is

introduced. Once authentication protocols are under-

stood in the context of perfect encryption, an obvious

next step is to relax this assumption and extend the

logic and semantics to consider the effects of crypto-

graphic insecurities on authentication protocols.

The rest of this paper is organized as follows. In

Section 2, we review the logic of [BAN89]. We con-

sider some of the possible improvements to the logic

in Section 3, and reformulate it in Section 4. Our

model appears in Section 5, and our semantics ap-

pears in Section 6. Finally, in Section 7 we continue

a discussion of the definition of belief proposed in Sec-

tion 6.

2 The Logic of Authentication

We now review the syntax and inference rules of the

logic of authentication as it appears in [BAN89], al-

though we use a more readable notation appearing in

later presentations such as [BAN90]. Our reformu-

lation of the logic in Sections 4-6 will simplify and

clarify the logic’s syntax and semantics.

2.1 Syntax and informal semantics

We begin with the language itself. The language as-

sumes the existence of sets of constants to denote

principals, encryption keys, and other things used in

authentication protocols. The letters P, Q, R, and S

are used to denote principals, the letter K is used

to denote encryption keys, and the letters X and Y

are used to denote formulas or statements in the lan-

guage. The logic includes the following constructs:

P believes X: P believes X is true. X may be true

or false, but P acts as though X is true.

P sees X: P has received X in a message. P can

read the contents of X (possibly after decryp-

tion, assuming P has the needed keys), and

can include X in messages to other principals.

P said X: P has sent X in a message. P believed

that X was true when it sent the message.

P contTois x: “P has @isdiciion over X.” P is a

trusted authority on the truth of X. 1

f?’esh(x): “x is fTesh.” Time is divided into two

epochs, the past and the pTesenfi the present

1We use the phrase “controls” here in order to remain con-
sistent with notation used in later versions of [BAN89]. For
the same reason, we denote “P believes X’z by P believes X

instead of Bp X as many papers do.

begins with the start of the current execution

of the current protocol. X is fresh if it is not

contained in any message sent in the past. Ver-

ifying the freshness of messages guards against

the replay of old messages.

P & Q: “K is a shared key for P and Q.” K is a se-

cure key for communication between P and Q,

and it will never be discovered by any princi-

pal except P or Q, or a principal trusted ll,y

either P or Q.

P S Q: “X is a shared secret between P and Q.”

The expression X is a secret (such as a pass-

word) known only to P and Q, and possibly

to principals trusted by them. P and Q can

use X to prove their identities to one another.

{X}K: “X encrypted undeT K.” {X}~ represents thle

(X)y:

message X encrypted using the key K. This is

a shorthand for {XP}~, where P is a fTom field

denoting the principal (usually clear from corl-

text) sending the message. z The mention of P

is used only in implementing an assumption

that each principal can recognize and ignore

its own messages.

“X combined with Y.” (X)Y represents the

message X combined in some way with Y, usu-

ally by concatenation. Y is intended to be a

secret of some kind whose presence in the mes-

sage proves the identity of the sender, just as

the key used to encrypt a message can be used

to prove the identity of the sender. The simi-

larity of the roles played by keys and secrets in

authentication motivates the similar notation.

In addition to these constructs, the conjunction

and concatenation of two statements X and Y are

denoted with a comma (X, Y). In the full paper, we

also consider public key encryption as in [BAN89],

but we have omitted it here since its treatment is

similar to the treatment of shared keys.

2.2 Inference Rules

More information about the meaning of logical con-

structs can be deduced from a collection of inference

rules in [BAN89], As in [BAN89], we group these in-

ference rules according to their function in the logic.

Message-meaning The message-meaning rules
tell us how to deduce the identity of a message’s

sender from the encryption key or secret used: if

P#R,

P believes (Q & P), P sees {XR}~

P believes (Q said X)

2In [BAN89], the notation is {X}~ from P.
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P believes (Q ~ P), P sees (X)Y

P believes (Q said X)

The first rule says that if P believes that P and Q

share a key K and P sees a message encrypted with

K (presumably known only to P and Q), then P

believes that Q sent the message. However, P must

be certain that it did not simply send the message to

itself, and the side condition that P # R reflects the

assumption that a principal can detect and ignore its

own messages. The second rule is a similar rule for

shared secrets.

Nonce-verification The nonce-verification rule

P believes (f~esh(X)), P believes (Q said X)

P believes (Q believes X)

says that if P believes a message is fresh and that Q

sent the message, then P believes that Q sent the

message recently, and still believes the contents of the

message. The name ‘{nonce-verification” comes from

the fact that the freshness of X is typically proven

by including a nonce in the message X. A nonce is

an expression (such as a timestamp) invented for the

purpose of being fresh, and included in messages to

prove their freshness.

Jurisdiction The jurisdiction rule

P believes (Q controls X), P believes (Q beiieves X)

P believes X

captures what it means for Q to be a trusted author-

ity on the truth of X.

Belief The belief rules

P believes X, P believes Y P believes (X, Y)

P believes (X, Y) P believes X

P believes (Q believes (X, Y))

P believes (Q believes X)

simply reflect an assumption that a principal believes

a collection of statements iff it believes each of the

statements individually.

Saying The saying rule

P believes (Q said (X, Y))

P believes (Q said X)

reflects the assumption that a principal is considered

to have said each component of any message it has

sent.

Seeing The seeing rules say that a principal sees

all components of every message it sees, assuming it

believes the necessary decryption key is a good key.

These rules are

P sees (X, Y) P sees (X)Y

P sees X P sees X

P believes (Q & P), P sees $X~~

P sees X

In the original logic, a condition on from fields guar-

antees that principals recognize and ignore their own

messages.

Freshness The freshness rule

P believes (fresh(X))

P believes (f~esh((X, Y)))

says that any message with a fresh component is also

fresh.

Shared keys and secrets Finally, the shared key

rules

P believes (R & R’)

P believes (R’ & R)

P believes (Q believes (R ~ R’))

P believes (Q believes (R’ & R))

and the shared secret rules

P believes (R ~ R’)

P believes (R’ & R)

P believes (Q believes (R ~ R’))

P believes (Q believes (R’ ~ R))

say that shared keys and secrets are used in the same

way in each direction.

2.3 Using the Logic

In [BAN89], protocols are written in a special ideal-

ized form. In most of the literature, an authentica-

tion protocol is described as a sequence of steps of the

form “P --+ Q : X“ intended to denote the fact that P
sends X to Q during this step (and that Q receives

it). For example, the third step of the protocol in Fig-

ure 1 would be described by A --+ B : {T~, K.b, A]~b,.

The expression {T,, K.b, A}x,, is intended to repre-

sent the actual bit string (the encrypted message)

sent from A to B during the protocol’s execution.

It is only in the context of our understanding of the

entire protocol that we know this blt string is to be in-

terpreted as an encryption of the statement that K.b

is a good key for A and B.
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The many possible interpretations of this bit string

introduce an ambiguity that makes formal analysis

of authentication protocols difficult. Consequently,

instead ofanalyzing the informal descriptions of these

protocols as they appear in the literature, we analyze

protocols written in an idealized form. An idealized

protocol in [BAN89] is a sequence of steps of the form

“P + Q : X“ where X is an expression in the logical

language. For example, the idealized version of the

protocol illustrated in Figure 1 might be:

A+ S:A, B

S + A : {T., A ‘Gb B, {T., A ‘Ab B} Kb~jK=,

A + B : {T,, A ‘d’ B] K,,

In fact, the first step would probably be omitted since

it serves only to indicate the beginning of the proto-

col, and does not contribute anything of interest to

the beliefs of the principals taking part in the proto-

col. Translating an actual protocol into an idealized

protocol is usually quite easy, but the results of an

analysis in this logic depend on the particular ideal-

ization of the protocol chosen.

To analyze a protocol, each step of the protocol

is annot&ted with a formula in the logic. First, a

formula called the initial assumption is written before

the first statement. It is intended to describe the

state of affairs at the beginning of an execution of

the protocol. For example, in the case of Figure 1,

the initial assumption might include

A believes (AK~ S) A B believes (BK& S).

Next, a formula is written after each statement to

describe the state of affairs after that step has been

taken. These formulas are obtained in three ways:

1. Q$ees Xcanbeasserted after astepofthe form

P+ Q:X;

2. an assertion labeling one statement can be used

to label any later statement; and

3. new assertions for a statement can be derived

from old assertions via the inference rules.

The assertion annotating the final statement de-

scribes the outcome of the protocol. The goal of the

analysis is typically to be able to derive an assertion

for the last statement that expresses the protocol’s

expected correctness condition.

The soundness of this proof system—in particular,

the soundness of step 2—depends on the fact that

formulasin the logic are stable. A formulap is said
to be stable if it remains true once it becomes true.

This means that, in every execution of the protocol,

if pis true after step k, then pistrue after every step

k’>k. Stability isthejustification forstep2 stating

that formulas labeling one statement of a protocol can

be used to label any later statement. The soundness

of the nonce-verification rule stated in the preceding

section also depends on stability, since once Q comes

to believe X, it must continue to believe X. In our

reformulation of the logic, formulas will no longer be

guaranteed to be stable, and this will have a minor

impact on the proof system just described (see Se~c-

tion 4.3).

3 Observations on the Logic

The main goal of this paper is to construct a simple

semantic model for the logic in [BAN89]. In this sec-

tion, we discuss some of the problems that can ari$ie

when constructing such a model, and we discuss how

these problems can be resolved. In later sections, we

will reformulate the logic along these lines, and pro-

vide a model and a semantics for this reformulated

logic. Gong, Needham, and Yahalom [GNY90] have

made some similar observations, but they were led to

a more complicated logic, perhaps for lack of a suit-

able semantic basis. An early draft of Grove’s work

[Gro90] also suggests some similar ideas.

3.1 Implementation versus Semantics

Looking through the inference rules, we find confusion

resulting from an unnecessary mixing of implementa-

tion and semantic issues.

An important instance of thk mixing of issues con-

cerns the role of secrecy in the definition of a good en-

cryption key, and this point has created some control-

versy [Nes90, BAN90, Sne91, Syv91]. In [BAN89]–-

as in Section 2. l—a key K is defined to be a goo(d

shared key for P and Q if the only principals that dis-

cover K are P and Q and principals “trusted” by P

or Q. This definition, howeverl is much stronger than

is required for the soundness of the inference rules in

Section 2.2. The only inference rule that really con-

cerns good keys is the message-meaning rule. (We

will consider the seeing rules in a moment. ) It states

that if P believes K is a good key for P and Q and

if P receives a message encrypted with K, then P

believes the message came from Q. The soundness of

this rule does not depend on the secrecy of K, but

on the property that P and Q are the only princi-

pals encrypting messages with K. Who discovers K

is irrelevant: keeping K a secret is just one way of

implementing this property. The formal semantics

in [BAN89] defines a good key K in terms of who

sends messages encrypt ed with K, and not in terms

of keeping the key secret. In fact, this definition il~
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still too strong. In Section 6, we will define a good

key K in terms of who actually uses K to encrypt

messages. As long as P and Q are the only ones en-

crypting messages with K, other principals can send

copies of these messages without violating the sound-

ness of the message-meaning rule.

A second instance of the mixing of implementation

and semantic issues concerns the message-meaning

and the seeing rules. For example, the seeing rules

say that if P believes K is a shared key for P and Q

and P sees a message encrypted with K, then P sees

the contents of this message. In this rule, it is implicit

that if P believes K is a good key, then it actually

possesses K and can use K to decrypt messages it

receives. While some definitions of belief might have

the property that “believing” a key is a good key

implies “awareness)’ of the key, this is not true in

general (for example, consider information-theoretic

definitions of belief [FH88]). In Section 4.1, we will

introduce a new construct P has K to denote the fact

that P actually possesses the key K. In our model, P

must hold K in order to use it to encrypt or decrypt

messages (see axiom A8, Section 4.2). Now, possess-

ing a key is a concept distinct from holding any beliefs

about the quality of the key. This decoupling seems

essential for obtaining a sound semantic basis. It also

increases the power of the logic, as it becomes easy

to analyze the Yahalom protocol [BAN89] and similar

protocols.

3.2 Honesty

One of the assumptions made in [BAN89] is that all of

the principals taking part in a protocol are honest, in

the sense that each principal believes in the truth of

each message it sends. This assumption is fundamen-

tal to the soundness of the nonce-verification rule, the

rule stating that if P believes X is fresh and that Q

has said X, then P believes Q believes X. We argue

that honesty is not a reasonable assumption to make.

Fortunately, we can remove the need for honesty by

clarifying the meaning and intention of some of the

logical constructs and inference rules.

Some reasonable protocols fail to satisfy the hon-

est y assumption, such as those requiring a principal

to forward a message it does not necessarily believe to

be true. Since it might be appropriate to require that

a principal believes in the truth of messages it isn’t

simply forwarding, in Section 4.1, we will introduce

a new construct ‘X’, read “forwarded X ,“ for distin-

guishing forwarded messages from newly constructed

messages. We don’t make this requirement ourselves

in this paper, but the forwarding syntax seems to be

convenient notation to introduce.

A more fundamental problem is that honesty is not

a well-defined concept. Honesty is not just a syntac-

tic or (thinking of protocols as state transition func-

tions) functional restriction on protocols. Whether

a protocol satisfies the honesty restriction depends

on context; it may be an honest protocol in one en-

vironment but not in another. Fagin and Halpern

[FH87] give a convincing definition of honesty they

call trusting’. They show that this definition can be

viewed as the fixed point of a certain equation, but

that a fixed point of this equation is not guaranteed

to exist, and may not be unique even if it does. In

this sense, they, too, conclude that honesty is not a

well-defined not ion. Even under conditions guaran-

teeing that honesty is well-defined, the difficulty of

determining whether a protocol is in any sense hon-

est seems to decrease the range of obviously legitimate

applications of the logic. It might be quite appropri-

ate to base an analysis in this logic on the initial as-

sumption that principals believe other principals are

honest, but it does not seem to be a good idea to

accept honesty as a basic principle.

Ultimately, the best question to ask is where the

logic depends on honesty. Honesty is a way of pro-

moting saying to believing: if Q says X, then Q be-

lieves X. This promotion is used only in the nonce-

verification and j urisdict ion rules. As we now show,

it is possible to do away with the honesty assumption

alt oget her by clarifying the intent of these rules.

The nonce-verification rule concerns both honesty

and freshness: if Q says X, then Q believes X; so

if Q said X and X is fresh, then Q must have just

said X and hence still believe X. We want to ex-

plain the concept of freshness in isolation. The logic

has a construct P said X for stating that P sent X,

but no construct for stating that P sent X in the

present. In Section 4.1, we will int reduce a new con-

struct P says X to denote the fact that P has sent X

in the present.3 This construct will let us get to the

heart of the meaning of freshness with a single axiom

stating that if X is fresh and Q has said X, then Q

has recently said X (see axiom A20, Section 4.2).

Returning to the honesty component of the nonce-

verification rule, we notice that honesty is used only

to promote Q’s saying X to Q’s believing X so that

we can then apply the jurisdiction rule: roughly

speaking, the n~nce-verification rule says that if Q
says X and X is fresh, then Q believes X; and the

jurisdiction rule says that if Q believes X and Q is a

trusted authority on X, then X must be true. In

practice, however, if Q wants to convince another

principal P that X is true, then Q must send a mes-

sage to P saying that X is true (since Q can’t con-

vince P simply by believing X is true and saying

3The potential utility of a construct like P saysX has been
noted in [BAN89] in other contexts.
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nothing). This intuition leads us to a much more

direct axiomatization of jurisdiction: if Q has juris-

diction over X and Q has recently said X, then X is

true (see axiom A15, Section 4.2). This more natural

definition of jurisdiction obviates the need for honesty

altogether, and potentially increases the practical ap-

plicability of the logic.4

3.3 Syntax and Inference Rules

In addition to changes to the logic motivated by the

semantic issues discussed above, we improve the for-

mulation of the syntax and inference rules in several

other ways.

We start by giving a new syntax. In [BAN89], there

is no distinction between the arbitrary expressions

one can include in messages and formulas (expressions

to which we can assign a truth value). For example, it

is possible to prove that a principal believes a nonce,

which doesn’t make much sense. We make this dis-

tinction bet ween arbitrary expressions and formulas.

We introduce all the propositional connective (the

original logic did not have negation, disjunct ion, or

implication), making it possible to rewrite the infer-

ence rules of [BAN89] as axioms. This is aesthetically

appealing, since it enables us to express the concepts

the inference rules are meant to convey with formu-

las in the logic itself instead of using meta-linguistic

tools like inference rules, and it also helps in com-

paring the logic to previous logics. We note that one

reason negation was not allowed in [BAN89] was that

the soundness of the nonce-verification rule depended

on the stability of formulas (see Section 2.3). With

the redefinition of jurisdiction, however, this is no

longer a problem. On the other hand, the soundness

of the annotation procedure does still depend on the

stability of formulas used to annotate protocols, so

we must use a restricted language when annotating

protocols (see Section 4.3).

Finally, we state axioms that define the concepts

in the logic independent 1y and no longer in conj unc-

tion with each other, resulting in a noticeably sim-

pler, more elegant proof system. In particular, most

axioms no longer involve belief. Removing belief from

the treatment of many concepts is an important sim-

plification. (Independently, Grove [Gro90] and Gong,

Needham, and Yahalom [GNY90] seem to have made

a similar observation that the concept of belief is or-

thogonal to the other concepts in the logic.)

4There are also technical reasons for wanting to avoid the
use of belief in the definition of jurisdiction. We discuss this in
the full paper.

4 The Reformulated Logic

We now present our reformulation of the logic of au-

thentication. Having already discussed the intuition

behind the logical constructs and inference rules from

[BAN89], as well as those we add ourselves, we will

be brief.

4.1 Syntax

We begin with a definition of the language. Remem-

ber that in this paper we are analyzing idealized pro-

tocols in which the messages principals send to each

other are not bit strings but are expressions in a par-

ticular language. We define a language MT of mess-

ages in which these idealized messages are written.

Some of the statements in this language represent as-

sertions such as P & Q, and some of these statements

simply represent data such as the constant 5 or the

nonce T~. Thus, some of the things that can be ex-

pressed in this language represent assertions to which

it makes sense to assign a truth value, and some do

not. We therefore identify a sublanguage & of MT

that we call the language of fomudas, those expres-

sions to which we can assign truth values. Since for-

mulas are a sublanguage of messages, idealized pro-

tocols allow principals to send formulas to each other

in messages.

We assume the existence of a set T of primitive

terms. We assume that T contains several distin-

guished, disjoint sets of constant symbols: a set of

primitive propositions, a set of principals, and a set

of shared keys. The remaining constant symbols in T

represent things like nonces.

We define messages and formulas in the logic by

mutual induct ion. The language MT of messages is

the smallest language over T satisfying the following

conditions:

Ml.

M2.

M3.

M4.

M5.

M6<

p is a message if p is a formula,

X is a message if X is a primitive term in T,

(x,,..., Xk ) is a message if Xl, . . . . xk are mes-

sages,

{X’]~ is a message if X is a message, K is a

key, and P is a principal,

(X’)Y is a message if X and Y are messages

and P is a principal, and

‘X’ is a message if X is a message.

The language 7T of formulas is the smallest language

satisfying the following conditions:

F1. p is a formula if p is a primitive proposition,
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F2. lQ and p A p! are formulas if p and p’ are formu-

las (other propositional connective are defined

in terms ~ and A),

F3. P believes ~and P controls pare formulasif P

is a principal and q is a formula,

F4. P sees X, Psazd X, and P says X are formulas

if P is a principal and X is a message,

F5. P & Qisaformulaif X is amessageand P

and Q are principals,

F6. P & Q is a formula if K is a key and P and Q

are principals,

F7. ~~esh(X) is a formula if X is a message, and

F8. P has K is a formula if P is a principal and K is

a key.

It follows by condition Ml that the formulas YT form

a sublanguage of the messages MT. Several exten-

sions to this language are possible (see Section 8).

4.2 Axiomatization

Our axiom system includes of two inference rules:

RI. Modus Ponens: From !- ~ and b p > + infer

~ $.

R2. Necessitation: From F v infer l-- P believes p.

The axioms are all the instances of tautologies

of propositional calculus, and the following axiom

schemas:

Belief For principals P and formulas p and ~,

Al. P believes q A P believes (p 3 ~) 3

P believes@

A2. P believes y o P believes (P believes p)

A3. ?P believes p o P believes (7P believes q)

The first axiom says that a principal believes all log-

ical consequences of its beliefs, and the second and

third axioms say that a principal can tell what it

does and does not believe. Many properties follow

from these axioms, including

A4. P believes p A P believes p’ ~

P believes (p A w’)

(h the other hand, (P believes p) > ,p does not hold

in general: principals can be mistaken.

Message-meaning Keys and secrets are used to

deduce the identity of the sender of a message: if

P # S, then

A5. P ~ Q A R sees {X’). o Q said X

A6. P & Q A R sees (Xs). > Q said X

Seeing A principal sees every component of every

message it sees, providing it knows the necessary

keys:

A7. P sees (Xl,.. .,Xk) > P sees Xi

A8. P sees {XQJK A P has K o P sees X

A9. P sees (XQ), > P sees X

A1O. P sees ‘X’ > P sees X

All. P sees {XQ}~ A P has K >

P believes (P sees {XQ}~)

The last axiom is a new axiom needed to reconstruct

the message-meaning rule in [BAN89] from our ax-

ioms: in order for a principal P to believe it sees an

encrypted message {XQ }~, it must hold the key K

needed to decrypt {XQ }X, since otherwise, for all P

knows, the encrypted message is really {YQ}~ and

not {XQ}~.

Saying If a principal has said (or recently said) a

message, then the same is considered to be true of

each component of that message:

A12. P said (Xl,.. .,Xk) o P said Xi

A13. P said (XQ)~ ~ P said X

A14. P said ‘X’ A 7P sees X > P said X

Analogous axioms hold with P says X replacing

P said X. The last axiom says that any principal

misusing the forwarding syntax is held accountable

for the contents of%he “forwarded” message.

Jurisdiction This axiom reflects our redefinition of

jurisdiction. It says that one can trust P’s word on

the truth of p whenever P has jurisdiction over p:

A15. P contvoh p A P says p 1 p

Freshness A message is fresh if any component is

fresh:

A16. fresh(Xa) o fresh (Xl,..., Xk)

A17. fresh(X) > fresh ({XQ}~)

A18. fresh(X) o fresh ((XQ),)

A19. fresh(X) o fresh (’X’)

208



Nonce-verification The nonce-verification axiom

is now essentially a definition of freshness. A fresh

message must have been recently said:

A20. fTesh(X) A P said X 3 P says X

Shared keys and secrets Keys and secrets shared

between two principals can be used in either direc-

tion:

When compared to the shared key and secret rules in

Section 2.2, this axiom is a nice example of how much

more compactly our reformulation expresses the same

concepts as the original logic.

4.3 Using the Logic

The use of this proof system to analyze protocols is

essentially identical to the use of the original proof

system described in Section 2.3, but there are two

novelties.

Since we have added negation and primitive propo-

sitions to the language, it is now possible to write

unstable formulas, which may hold after one protocol

step and not after a later step. Now we must require

that the formulas annotating protocols are stable. In

fact, since the formulas Q sees X asserted after a step

of the form P + Q : X are always stable, the stabil-

ity of formulas annotating protocols is only an issue

when stating the initial assumptions. Although sta-

bility is a semantic concept, simple linguistic restric-

tions (such as avoiding the use of the belief operator

in the scope of negation) usually suffice in practice,

and are no more restrictive than the original language

in [BAN89].

Since we have introduced the notion of key posses-

sion and acquiring a key, we need to provide a mech-

anism for proving that a principal has a key. We

extend the syntax of idealized protocols to include

steps of the form “P : newkey(lq,” denoting the fact

that P has added the key K to its key set, in addition

to steps of the form P --+ Q : X. We also extend the

protocol annotation procedure to allow P has K to

be asserted after a step of the form P : newkey(K).

5 Model of Computation

We briefly sketch our model of computation. A sys-
tem consists of a finite collection of system principals

PI,... >Pm who communicate by sending messages to

each other. We also assume the existence of a distin-

guished principal Pa, called the environment, that, for

example, represents other principals trying to attack

an authentication protocol.

At any given time, a principal is in some local state;

we associate a set of local states with each principal.

A global state is a tuple (se, S1, . . . . s~) of local states,

one se for the environment Fe and one s~ for each Pi.

We assume that the environment state encodes all

interesting aspects of the global state that cannot be

deduced from the local states of the system principals

(such as the messages in transit between principals).

In any given state, any principal can change its

local state—and perhaps the environment state—by

performing an action. We associate with each prirl-

cipal a set of actions that principal can perform. An

action is identified with a state-transition relation (in

which only the principal’s and environment’s states

are changed). A local protocol for P is a function

from P’s local state to the next action P is to per-

form. A p~otocol is a tupIe (Ae, Ai, . . . . An) of local

protocols, one A. for P. and one Ai for each Pi.

A run is an infinite sequence of global states. A

system is a set ‘R of runs, typically the set of execu-

t ions of a given protocol. Integer times are assigned to

each state in a run: the first state of run r is assigned

some time k? < 0, and the Mh state is assigned time

k. + (k - 1). We consider the state at time O to be

the first state of the current epoch (the first state of

the current authentication), and we call it the initial

state. We denote the global state at time k in run r

by r(k), and the local state of Pi in ~(k) by ri(k). VVe

refer to the ordered pair (r, k) consisting of a run r

and a time k as a point.

We assume a principal Pi’s local state includes a

local history (the sequence of all actions the princi-

pal has ever performed) and a key set (the set of

keys the principal holds; we will return to this set in

a moment). The environment Fe’s state includes a

global history (the sequence of actions any principal

has performed), a key set, and a message bufle~ :m

for each system principal Pi containing all messages

sent to Pa but not yet delivered. We assume that

principals’ histories and message buffers are empty in

the first state of a run (which might be different from

the initial state), but the values of other components

depend on the application being modeled.

We assume that the set of actions a principal P can

perform includes the following actions:

1. seno!(m, Q): This denotes P’s sending of the

message m to Q. The message m is added to (Q’s

message buffer.

2, receiveo: This denotes P’s receipt of a message.

Some message m is nondeterministically chosen

and deleted from P’s message buffer. (We don’t

consider receive () to be an environment act ion.)
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3. newkey(K): This denotes P’s coming into pos-

session of a new key. The key K is added to P’s

key set.

Furthermore, each action appends itself to the end of

the principal’s local history and environment’s global

history. We actually append receive(m) to these his-

tories, in order to tag the receiweo action with the

message m returned. Similarly, in the global history,

we tag actions with the name of the principal per-

forming the action. It is convenient to define the

messages P has received by time k in a run r to be

the set of messages m such that receive(m) appears

in P’s local history in r(k), and to define the set of

messages P has sent similarly.

In this paper, we make the simplifying assumption

of perfect encryption: a principal must have K in its

key set in order to use K to encrypt or decrypt a mes-

sage, or to obtain any information at all about a mes-

sage encrypted with K. Since cryptographic security

statements are often quite difficult, and since many

authentication protocols are subtle enough without

worrying about these additional difficulties, it seems

reasonable to assume perfect encryption operators for

the time being, and to consider the effect of crypto-

graphic weakiiesses on authentication protocols after

the protocols themselves are understood.

Key sets together with the assumption of perfect

encryption give us a syntactic way to determine from

a principal’s local state what messages the principal

can encrypt and decrypt. While a principal may at-

tack an encrypted message by generating many dif-

ferent keys and trying to decrypt the message with

each key, the principal can only generate a small frac-

tion of the possible keys with a polynomial amount of

computation. The key set is used to determine what

fraction of the key space the principal has discovered:

we require that when a principal uses a key to en-

crypt or decrypt a message, that key must appear in

the principal’s key set. Each time the principal gen-

erates a new key K to use to attack an encrypted

message, it first adds the key to its key set using the

newkey (K) action, and then attempts to decrypt the

message using K and other keys in its key set.

This intended use of key sets leads us to define

an operation that takes a message M and a princi-
pal P’s key set K and returns the components (the

submessages) of 34 that P can read. These compo-

nents include contents of any encrypted component

{XQ}~ for which P has the key K needed to decrypt

the message. We define seen-submsgsx(M) to be the

union of the singleton set {M} and

1.

2.

seen-submsgs~ (Xl) U. . . U seen-submsgs~(Xk ) if

M=(xl, . . ..xk).

seen-submsgsx(X) if M = {XQ}~ and K c K,

3. seen-submsgs~(X) if M = (XQ ),, and

4. seen-submsgs~(X) if M = ‘X’.

We extend this operation from a single message to a

set of messages in the obvious way.

Similarly, we can define an operation that takes a

message M, a principal P’s key set K, and the set A4

of all messages received by P so far, and returns the

components of M we consider P to have said as the

result of sending M. Our definition has the property

that if P has said {M}x and P holds the key K used

to encrypt the message, then P is considered to have

said M as well. Of course, if P is simply forwarding

{M}~ for some other principal, then it seems a bit

harsh to force P to accept responsibility for saying M,

but P can always absolve itself of this responsibility

by using the forwarding syntax and sending ‘{M}~’

instead of {M]~. We define said-submsgs~,m (M) to

be the union of the singleton set {M) and

1. said-submsgsx,m (Xl) U . . . U

sazd-submsgsx,M (X~) if M = (Xl, . . . . X~),

2. said-submsgs~,M(X) ifM = {XQ]X and K c K,

3. sazd-submsgsx,M (X) if M = (XQ ),, and

4. said-submsgsx,~ (X) if M = ‘X’ and

X ~ seen-submsgs~ (M).

Part z says that a principal (such as a malicious en-

vironment) misusing the forwarding notation is held

to account for the message being “forwarded.”

These definitions now enable us to state several

syntactic restrictions on runs. Some of these prop-

erties follow from the model described above, but we

state them explicitly since the soundness of our se-

mantics depends on them. Given any run r and any

time k, if K is P’s key set at time k and M is the

set of messages P has received before time k, then we

require that

1.

2.

3.

4.

A principal’s key set never decreases: If X’ is P’s

key set at time k’ s k, then K’ ~ K.

A message must be sent before it is received: If

~eceive(M) appears in P’s local history at time k,
then send(lkf, P) appeam in some principal Q’s

local history at time k.

A principal must possess keys it uses for encryp-

tion: Suppose that the action send(itf, Q) ap-

pears in P’s local history at time k and that

{XR}~ E said-submsgs~,M (M), Then either

{X”}~ E seen-submsgs~(M) or K G K.

A system principal sets from fields correctly:

if send(M, Q) appears in P’s local history at
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time k and {XR}~ G said-submsgs~,~ (M), then

P = R or {XR}~seen-submsgsx( M), and simi-

larly for (XB)Y.

5, A system principal must see messages it for-

wards: if send(M, Q) appears in P’s local his-

tory at time k and ‘X’ c said-submsgs~)M( ~),

then X c seen-submsgs~(M).

Condition 3 says that if P says {M}~, then either P

has received {M}~ in a previous message, or P has

the key K needed to construct {M]~ (and hence

is also considered to have said the contents M of

{M}~). A system principal P’s behavior is restricted

more than the environment’s: condition 4 says that P

does not misuse the from field in a message, and con-

dition 5 says that P forwards only what it has previ-

ously received.

6 Semantics

We now give our semantics for the logic. Since we

have already discussed most of the issues involved,

we will be brief. Fix a system %3, and fix an inter-

pretation ~ of the primitive propositions that maps

each p c @ to the set of points r(p) in %? at which p

is true. We define the truth of q at (r, k), denoted

(~, k) ~ p, by induction on the structure of p. First,

we define

(r, k) * p iff (r, k) E m(p) for primitive p C 0,

(r, k)* -f iff (r, k) ~ p.

For the remaining constructs, we proceed as follows.

Seeing A principal sees all components it can read

in the messages it has received. We define P sees X

at (~, k) by

(r, k) * P sees X

iff, for some message M, at time k in r

1. receive(M) appears in P’s local hktory, and

2. X E seen-submsgsx (M), where K is P’s key set.

As P comes into possession of more keys, it is able to

decrypt more of the messages it has received, and see

more of their contents.

Saying In the process of constructing a message, a

principal may construct many message components,

and the principal is considered to have said each of

these components. We define P has said X at (r, k)

by

(r, k) ~ P said X

iff, for some message M, at some time k’ ~ k in ~

1. P performs send(M, Q), and

2. X E said-submsgs~,m (M), where K is P’s key

set and M is the set of messages P has received.

If P sends {XQ}~, then P says X only if it pos-

sessed K when it sent {XQ }X, and does not come

to say X at a later point simply as a consequence of

having acquired K at that point.

We define P has recently said X in (r, k), denoted

(T, k)+ P says X,

in the same way, except that k’ is restricted to the

range O < k’ < k. In other words, the message M con-

taining X must have been sent in the current epolch.

Jurisdiction A principal P is an authority on yJ

if p is true whenever P says p is true. We define P

has jurisdiction over p at (r, k) by

iff (r, k’) + P says w implies (~, k’) ~ w for all k’ z O.
Notice that P has jurisdiction over p at one point of

a run iff it does at all points (in the current epoch)l of

the run. For this reason, P controls p is more than a

shorthand for P says p > p.

Freshness A message is fresh if it has not been sent

in the past, and has not been contained in a messi~ge

sent in the past. Given a set M of messages, it is

convenient to define submsgs(M) to be the set of all

submessages of the messages in M. (The full pa-

per contains a formal definition by induction.) Let

M (r, O) be the set of messages sent by any principal

by time O in r. We define X is fresh in (r, k) by

(r, k) ~ fresh(X)

iff X @ .submsgs(M(r, O)).

Shared keys and secrets A key K is a shared key

for P and Q if P and Q are the only principals en-

crypting messages with K. Other principals sending

messages encrypted with K must have received them
from other principals. We define K is a shared key

for P and Q at (r, k) by

(r, k)+P~Q
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iff, for all k’, (r, k’) ~ R said {Xs}~ implies either

(r, k’) + R sees {X’}~ or R 6 {P, Q}. Notice that
the universal quantification over all k’, and not just

k’ >0, means that a good key for one pair of princi-

pals in one epoch cannot be a good key for another

pair in another epoch.

Similarly, we define X is a shared secret between P

and Q at (r, h) by

(r, k)~PSQ

iff, for all k’, (r, k’) ~ R said (YS)X implies either

(r, k’) + R sees (Ys)x or R ~ {P, Q}.

Belief We now turn our attention to the definition

of belief, the most interesting of our definitions. The

classical definition of belief is in terms of possible-

worlds and dates back to Hintikka [Hin62], but re-

cently it has been formulated in the context of dis-

tributed systems [CM86, HM90]. The intuition is

that in any given world (or point), a principal P con-

siders a number of other worlds to be possibie, and

that P believes a fact p if p is true in all worlds P

considers possible. For example, suppose that at any

given point, P considers another point possible if the

two points are indistinguishable to P, meaning that P

has the same local state at both points. This defini-

tion of possible worlds yields the standard possible-

worlds definition of knowledge. According to this def-

inition of knowledge, P knows p iff the truth of y fol-

lows from the information recorded in its local state,

since p must be true at all points in which P has

this local state. Consequently, this definition satis-

fies the axiom (P believes p) II p: if P believes v

at (r, k), then p is true at all points indistinguishable

from (r, k) by P, including the point (r, k) itself.

This definition of knowledge, however, does not

seem an appropriate definition for belief in the con-

text of authentication protocols. For example, given

the model of computation we have defined, it can

never be the case that a desirable initial assumption

of the form P believes P & Q is true. To see this,

notice that at any point (r, k) there is a point (r’, k)

indistinguishable to P in which a malicious environ-

ment randomly generating keys has stumbled upon

the key K by dumb luck and started using K to en-

crypt messages. It follows that P cannot believe K

is a good key for P and Q at (r, k) since there is a

point P considers possible at (r, k) at which K is not

a good key.

Our intuition is that a principal with preconceived

beliefs like P & Q is restricting its set of possible

worlds to those in which its preconceptions are true,

and not just to those it considers indistinguishable,

We view Pi’s initial beliefs as identifying a set Gi of

“good” runs, those in which these initial beliefs are

initially true. We will define the set of points that Pi

considers possible at a point to be the indistinguish-

able points of runs in G~, and this will determine

a notion of belief relative to L7 = (Gl, . . . . G~). We

leave the problem of actually calculating ~ for the

next sect ion.

First, however, a further refinement is required

to capture our assumption of perfect cryptography.

Specifically, before computing the points a princi-

pal considers possible, we must hide the contents of

unreadable encrypted messages. To see why, sup-

pose P’s local state contains {XQ}~ but that P does

not possess K and hence cannot read X. If we do

not hide unreadable encrypted messages, then P’s lo-

cal state will contain {XQ }~ at all points it considers

possible, and hence P will believe that {XQ }~ con-

tains X even though P cannot read X! We therefore

define an operation hide(s) that takes a principal’s

local state s and hides all messages in s that it can-

not read. (The full paper contains a formal definition

by induction.) For example, suppose P’s local state s

contains a message ({X~ }~, -(YR}~), and that P’s

key set does not contain K. In the state hide(s), this

message is replaced by something like (1, {YR}~ ),

where 1 is intended to represent encrypted messages

that cannot be read by a principal with the keys in

its possession.

We now define a principal Pi’s beliefs (relative to

G=(G1,..., Gin)). Define the possibility y relation N;

for Pi by

(r, k) N, (r’, k’)

iff r’ E Gi is a good run and hide(r~(h)) =

hide (r~(k’)). This says that the points a principal

considers possible are those points of good runs that

the principal considers indistinguishable from the cur-

rent point after hiding the encrypted messages. Fi-

nally, we say that Pi believes p (relative to g) at a

point (r, k), denoted

(r, k) + P; believes p,

iff (r’, k’) # p for all (r’, k’) such that (r, k) -i

(r’, k’).

Soundness of the axioms We can now prove that

the axiomatization given in Section 4.2 is sound rel-

ative to the model and semantics given ki Sections 5

and 6:

Theorem 1: The axiomatization is sound.

One might also ask whether the axiomatization is

complete. We believe the answer is “no.” For ex-

ample,
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P controls (P has K) A P sags (P has K, {Xp}~)

> P says X.

is a valid formula but it does not seem to be derivable.

This possible incompleteness, however, does not con-

cern us here. Our goal has been to find a model to

explain the logic of authentication, and the fact that

the axiomatization is sound leads us to believe that

we have done so.

7 Choosing the Good Runs

We now consider how to construct the sets of good

runs used in Section 6 to define belief. The proof

of soundness in Theorem 1 does not depend on any

particular choice of sets; they are simply a mechanism

to guarantee that axioms A2 and A3 are sound.

On the other hand, our original intuition was that

if a principal Pi has a preconceived belief that v is

true, then it is effectively restricting its set of possible

worlds to to those in which p is true at time O. To

make this precise, let us fix a system R, and let us fix

for each principal Pi a set Ii of initial assumptions,

where Ii is a set of formulas of the form Pi believes p,

andlet Z= (n, ..., In), Notice that if p holds at

all time O points in Gi9 then Pi believes p holds at

all time O points of 7?. Thus, given a vector ~ =

(GI,..., Gn), we say that G supper’t$ Z if the formulas

in ~~ hold at all time O points of 7? relative to L7.

We give a construction that is guaranteed to yield a

vector G supporting X, but in order for our construc-

tion to be well-defined, we must make one restriction

on the language of initial assumptions:

11. No formula Pi believes p appears within the scope

of a negation symbol.

This means that we do not allow an initial assumption

like “Pi does not believe K is a good key” (although

we do allow “Pi believes K is not a good key” if it is

of any interest). This is, of course, a restriction, but

it does not appear to be significant in practice. In

every application of this logic that we are aware of,

the initial assumptions satisfy this restriction (and so

do the proof’s conclusions, for that matter).

Our construction yields a vector g supporting Z,

but there are potentially many such vectors, so how

are we to choose among them? Given two vectors

@ = (G~,... ,G~) and g = (Gl,..., G~), we can

order them by set inclusion:

g’ < G iff G! C Gi for all i.

Given any formula of the form Pi believes p satisfy-

ing 11, it is easy to see that if Pi believes p relative

to Q, then Pi believes p relative to every @ < ~:

since G{ ~ Gi, every point Pi considers possible relat-

ive to ~’ is a point it considers possible relative to ~,

so if Pi believes p relative to ~, then Pi believes p

relative to ~’. A vector ~ supporting Z is optimum. if

it is the maximum of all vectors supporting Z. Given

an optimum ~, if Pi believes p relative to ~, then Pi

believes p relative to any vector supporting Z. Thus,

relative to ~, Pi initially believes only its initial be-

liefs and all beliefs that necessarily follow from them.

A good construction should yield an optimum G, ws-

suming an optimum !7 exists.

While our construction depends on 11, there is ccm-

vincing evidence that if Z violates 11, then there is no

definition of belief supporting Z that is best in any

convincing sense, regardless of whether we try to use

our technique of defining belief in terms of sets of

good runs or not. Halpern and Moses [HM84] con-

sider the problem of characterizing the state of knowl-

edge (not belief ) of an agent who “knows only a .“

The idea is that if a is a formula describing all of

the information explicitly available to the agent—for

example, a might describe a principal’s initial beliefs

about some, but not all, encryption keys—then there

should be a unique state of knowledge that charac-

terizes everything this agent knows. In particular, for

every question of the form “Does the agent know q>?”

this state should determine a unique yes or no answer.

Halpern and Moses give several convincing, equiva-

lent characterizations of this desired unique state of

knowledge, and one of them is a maximum model con-

dition similar to our definition of optimality. They

effectively show that if negation is included in the

logic, then—even in a system with a single principal

and formulas with a single level of belief—this unique

state of knowledge does not exist for alla. One a they

give as an example is the formula that “P knows p

or P knows @ .“ There is one state of knowledge in

which P knows p and not pi, and a second state of

knowledge in which P knows p’ and not V, but nei-

ther state is obviously superior to the other. Since we

have defined disjunction (and implication) in terms of

negation, we avoid negation in order to avoid trouble-

some a’s like the one given above.

We now define an iterative construction of the

vector g. Given the restriction 11 and belief ax-

ioms A2 and A3, we can assume without loss of

generality that every formula in Ii is of the form

Pi believes . . . Pk believes p] where p b a formula

not involving belief. Let 1: be the set of formulas

Pi believes . . . Pk believes p in Ii with j levels of be-

lief. Since we can always add a formula like Pi bel~eves

. . . Pi believes true to I;, we can assume the I; are

nonempty. For each j, define @ = (G{, ..., Gi) W
G? = %? and
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G~ = G{-l fl {r : (r, O) ~ p relative to g~-l,

for every formula Pi believes p in .I~ }

Finally, define 8 = (Gl,..., G~) by Gi = flj G~. We

can prove that:

Theorem 2: If Z satisfies 11, then ti supports Z.

This shows that our construction yields a model of

belief in which the initial assumptions are satisfied,

but is it optimum?

If the initial assumptions in Z do not involve nested

belief, then it is not too difficult to show that our con-

struction yields the optimum g supporting Z. This

condition is satisfied by all of the example protocols

considered so far. In fact, in this case, our definition

of belief is essentially equivalent to a definition of be-

lief as defensible knowledge proposed by Shoham and

Moses [SM89] (special cases of their definition appear

in [MT88] ). They suggest defining Pi believes p given

the assumption a by

Bi($o, cl) = Ki(cY 3 w)

where B~ @ and K;+ denote Pj’s belief and knowledge

of #, respective y. In other words, the agent knows

that either p is true, or something unusual has oc-

curred (a is false). Our definition of Pi believes p

corresponds to their definition Bi (y.Y,CY) when a is the

condition that Ii holds at time O.

Shoham and Moses note that it is possible to derive

Ki la > Bi (p, a); that is, P; believes p whenever Pi

knows its assumptions are violated, even if it knows p

is false (which is rather strange). This motivates them

to consider the definition

Bi(P, ~) = Ki(~ o W) A (Kil~ 3 Kiw).

It says that if Pi knows its assumptions are violated,

then it believes p only if it knows p is true. In the

full paper, we show how to modify our definition of

belief slightly to yield a definition that coincides with

this definition as well.

Our formulation of belief has one significant ad-

vantage over the definitions given by Shoham and

Moses. Their formulation necessarily requires that

the assumption a is a propositional formula (at least

one not involving belief ): their definition has an un-

resolved circularity if a concerns belief. On the other

hand, our formulation allows the initial assumption Ii

to contain arbitrary nesting of belief formulas.

The obvious question now is how well our construc-

tion does when we do allow nested belief. Actually,

even if we allow just two levels of belief, there is in

general no optimum choice of good runs supporting T,

and hence no construction can do well in general. The

example we give in detail in the full paper involves a

coin-tossing situation with three principals PI, P2,

and P3. The state of each principal consists of the

outcome of a single coin toss, but P1 and P3 disagree

about the outcome of Pz’s coin toss. Principal P1 be-

lieves the coin landed tails and believes P3 believes

the same thing, while P3 believes the coin landed

heads and believes PI believes so, too. We show that

either the set GI can contain the run in which the

coin landed tails, or the set G3 can contain the run

in which the coin landed heads, but not both. Con-

sequently, there can be no maximum ~ supporting

these initial assumptions.

This example, however, is rather strange, since

it requires that P1 and P3 be mistaken about each

other’s beliefs. The whole purpose of stating initial

conditions is to restrict the initial state of affairs in

some uniform way that guarantees that a protocol

works correctly, and not to model errors. This moti-

vates consideration of the following condition:

12. If Ii contains Pi believes (Pj beiieves ~), then Ij

contains Pj believes p.

This basically says that the initial assumptions of one

principal do not contain errors about the beliefs of the

others. While we know of no proof with initial as-

sumptions involving nest ed beliefs, the properties 11

and 12 are satisfied by the conclusions of proofs that

yield formulas involving nested beliefs as conclusions.

This suggests that they should not stand in the way

of the possibility of composing protocols sequentially,

and proving the correctness of the composition by

composing the proofs of the individual protocols. We

can prove:

Theorem 3: If Z satisfies 11 and 12, then ~ sup-

ports Z and o is optimum.

We have shown that when 11 holds, our construc-

tion yields a vector ~ supporting Z. We have also

shown that there is in general no optimum ~ sup-

porting Z when 12 does not hold, and that our con-

st ruction yields the optimum ~ when it does hold. In

this sense, our construction seems to do as well as can

be twpected.

8 Extensions

Several useful extensions of the logic are possible. We

sketch two of them here briefly.

So far, we have brushed over the fact that an ideal-

ized protocol is written schematically, and that some

of the symbols in its description have different val-

ues in different runs, For example, in the idealization

A + B : {T., A *&b B}~b, of the third step of the pro-

tocol in Figure 1, the symbol Kah is intended to be
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thekeygenerated by the server Sina particular run,

and not the same key in every run. Consequently,

it is convenient to add to the logic a distinguished

set of symbols we call parameters, and to allow these

parameters to appear in formulas and idealized proto-

cols. We assume that a run uniquely determines the

value of each parameter in the run. To compute the

truth of a formula p at a point (r, k), we first replace

the parameters in p with their values in the run r,

and then follow the inductive definition given in Sec-

tion 6. For example, defining the truth of a formula

like A believes A ‘A’ B at a point (r, k) proceeds as

follows: if .K is the value of the parameter Kab in r,

then A believes A ~~b B holds at (r, k) if A L B holds

at all points A considers possible at (r, k). Of course,

the parameter Ka~ might actually assume different

values at these points, but this will not happen in

the common case when its value is determined by A’s

local state at (r, k).

It is also convenient to allow universal quantifica-

tion over constants (such as keys, nonces, or princi-

pals), so that we can write formulas such as

A believes VK.(S controls A & B)

to express the fact that A trusts the server S to gen-

erate good encryption keys for communication be-

tween A and B. Since the set of all keys is typi-

cally finite in practice, this is equivalent to a finite

conjunct ion of formulas already in our language, but

quantification allows much more compact formulas.

There have even been uses of quantification over for-

mulas [ABKL90], but in practice a general assertion

of the form

A believes VP.(S controls P)

can often be replaced with a more specific assertion

such as the one above. Adding universal quantifi-

cation over constants is straightforward and requires

minimal changes to our work.

9 Conclusion

We have constructed a model and a semantics for a

slightly reformulated version of the logic of authenti-

cation in [BAN89] that we believe captures and clar-

ifies much of the original authors’ intuition. Interest-

ing problems to consider for the future include elabo-

rating the logic and semantics to deal with secrecy (in

addition to authentication)] and relaxing the assump-

tion of perfect encryption. As another possibility,

our bibliography contains references to several log-

ics for authentication and security such as [G NY90],

and it would be interesting to know whether slightly

modified versions of our model could be used to ex-

plain these logics and how they differ from the logic

in [BAN89].
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