
Rice’s Theorem ∗

Hans Hüttel

Autumn 2007

In this note I will show a theorem which states that a very large family of
problems are all undecidable. Our result, known as Rice’s theorem after Henry
Rice who proved the result in 1953 [2], states that if S is a non-trivial property
of Turing-recognizable languages, then the problem

Given a TM M , does L(M) have the property S?

is undecidable.
An example of a property of Turing-recognizable languages could be, say, the

property of being a regular language. If we had an algorithm for determining,
given a TM M , if L(M) was regular we would have a tool that we could use
to determine whether we could replace M by an equivalent finite-state automa-
ton. (In fact, we already know that this problem is undecidable – this is the
REGULARTM problem of Section 5.1 in ITTTOC.)

It would also be nice if we could determine if a Turing machine M accepted
all strings that contained some specific sequence of characters. Then we would
have a tool for determining e.g. if all data that we assumed to be correct were
indeed correctly handled.

Unfortunately this is also not possible. Algorithms that check properties of
input languages cannot exist, as we shall now see.

1 Properties

First,we give a mathematical definition of the notion of property. In our setting,
a property is simply a class of Turing-recognizable languages.

Definition 1 A class of languages S is called a property of Turing-recognizable
languages if the members of S are Turing-recognizable languages, i.e. for every
L ∈ S there exists a TM that recognizes L.

∗Denne note findes ogs̊a p̊a dansk som [1]

1



Eksempel 1 The class of languages

SREGULAR = {L | L is regular}

is a property of Turing-recognizable languages, since all its members are Turing-
recognizable languages. The class of languages

S2 = {EQTM, ATM}

is not a property of Turing-recognizable languages, since EQTM is a language in
S2 which is not Turing-recognizable. �

A property of Turing-recognizable languages is non-trivial if some recognizable
languages have the property and others do not. We formalize this as follows:

Definition 2 Let S be a property of Turing-recognizable languages. We say that
S is non-trivial if there exist Turing-recognizable languages L1 and L2 such that
L1 ∈ S but L2 6∈ S. If a property of Turing-recognizable languages is not non-
trivial, we call it trivial.

Eksempel 2 The class of languages

SREGULAR = {L | L is regular}

is a non-trivial property of Turing-recognizable languages, since the language
L1 = {an | n ≥ 0} is a member of SREGULAR (and therefore also recognizable,
as SREGULAR is a property), whereas the language L2 = {anbn | n ≥ 0} is also
recognizable, but not a member of SREGULAR, as it is a non-regular language. �

Eksempel 3 There are only two ways of violation the conditions for being non-
trivial. The properties

Sall = {L | L is Turing-recognizable} (1)

Snone = ∅ (2)

are both trivial, and they are the only such properties. Sall is trivial, since there
does not exist a Turing-recognizable L2 such that L2 6∈ Sall. Snone is trivial, since
there does not exist a Turing-recognizable L1 such that L1 ∈ Snone. �

Eksempel 4 The following are examples of non-trivial properties of Turing-
recognizable languages:

• The class {∅} whose only member is the empty language (not to be confused
with the empty property Snone from Example 3!)

• The class {Σ∗} whose only member is the language of all strings over al-
phabet Σ.

2



• The class of languages that have the empty string ε as an element.

• The class of context-free languages

• The class of Turing-decidable languages

�

Øvelse 1 Express the properties in Example 4 using set notation, if they were
not already expressed in this way, and prove that they are non-trivial properties
of Turing-recognizable languages. ♦

2 The undecidability result

Definition 3 Let S be a property. Then the language STM is defined as

STM = {〈M〉 | L(M) ∈ S}

The result that we shall now state and prove, states that STM is undecidable
whenever S is non-trivial.

Eksempel 5 Consider the property SREGULARdefined in Example 1. Then

STM = {〈M〉 | L(M) is a regular language}

Note that this is the language REGULARTM of Section 5.1 of ITTTOC. �

Theorem 1 If S is a non-trivial property of Turing-recognizable languages, then
STM is undecidable.

Beviside: We show that if S is a non-trivial property of Turing-recognizable
languages, then we can reduce ATMto STM. In other words, we show that, given
〈M, w〉 we can construct the description of a machine a 〈M ′〉 such that M accepts
w if and only if L(M ′) ∈ S.

Bevis: We know that S is non-trivial, so there is some L1 ∈ S and some other
L2 6∈ S. In our proof we pick some L1 and assume that the empty language ∅ is
our L2, i.e. that ∅ 6∈ S. We then construct, given 〈M, w〉 a Turing machine M ′

such that if M accepts w then L(M ′) = L1 and if M does not accept w, then
L(M ′) = ∅.

It is no loss of generality to assume that ∅ 6∈ S. For if we wanted to show
that S was undecidable and ∅ ∈ S, we could simply consider the complementary
property S. Clearly STM is decidable if and only if STM is.

Since STM is a non-trivial property of Turing-recognizable languages, by Defi-
nition 2 there must be some L1 ∈ S. Since L1 is Turing-recognizable, there exists
a Turing machine recognizing L1. We denote the recognizer for L1 by ML.

We can now present the reduction from ATMto STM. From 〈M, w〉 and using
ML we construct the description of a new machine M ′:

3



M ′ = ”On input x

1. Simulate M on w

2. If M accepts w, then simulate ML on x

3. If ML accepted x, then accept”

Now we show that our reduction is faithful, i.e. that 〈M, w〉 ∈ ATM if and
only if 〈M ′〉 ∈ STM.

First, suppose that 〈M, w〉 ∈ ATM, that is, M accepts w. Then M ′ will accept
its input x exactly when ML accepts x. So here L(M ′) = L1, and L1 ∈ S by
assumption.

Now suppose that 〈M, w〉 6∈ ATM, that is, M does not accept w. Then M ′

will never reach the simulation of ML, and consequently M ′ accepts no string.
So here L(M ′) = ∅, and ∅ 6∈ S by assumption.

We can now conclude that STM cannot be decidable. For if STM were decid-
able, we would have a decider for it, R, but then we could also build the following
decider for ATM:

H = ”On input 〈M, w〉

1. Construct 〈M ′〉 from 〈M, w〉
2. Feed 〈M ′〉 to R

3. If R accepts,then accept. If R rejects, then reject.

�

3 Consequences of Rice’s theorem

Theorem 1 has a whole bunch of consequences, some of which I will first present.
I will then mention some of the frequent pitfalls that should be avoided.

4 Lots of undecidability results for free!

The following results are immediate consequences of Theorem 1 and Example 4:

Corollary 1 The following problems are all undecidable. Given Turing machine
M ,

1. – does M accept the empty string?

2. – does M accept no inputs at all?

3. – does M accept all inputs?

4



4. – is L(M) regular ? Context-free ? Turing-decidable?

Eksempel 6 Consider the decision problem

Given TM M , does M accept all strings that are palindromes?

If we want to use Rice’s theorem, we need to reformulate this problem so that
it talks directly about a class of languages. First, we can express our decision
problem as the language

PALINDROMESTM = {〈M〉 | L(M) contains all palindromes}

We can now see that the property we are really looking at is

SPALINDROMES = {L | L is Turing-recognizable and contains all palindromes}

This class is by definition a class of Turing-recognizable languages. It is non-
trivial, since the Turing-recognizable language of all strings Σ∗ is a member of
the class, whereas the empty language ∅ (which is of course recognizable) is not
a member of the class.

By Rice’s theorem we now get that PALINDROMESTM is undecidable. �

We can also use Rice’s theorem to show that automatic complexity analysis
is not possible.

Eksempel 7 Consider the following class of decidable languages:

P = {L | L can be decided by a Turing-machine with polynomial-time complexity}

We know that P must be a non-trivial property of recognizable languages (why?).
Therefore the problem

Given a TM M , is it the case that M can optimized to have polynomial-
time complexity?

is undecidable. �

5 Some frequent pitfalls

Sometimes people try to apply Rice’s theorem in situations where it cannot be
applied or cannot be easily applied. As a result, the ‘proofs’ that they come
up with are either very imprecise or completely incorrect. One should of course
strive to avoid such situations. Here are three examples.

5



Eksempel 8 Consider the decision problem

Given TM M , is L(M) Turing-recognizable?

Sometimes, people will say:

The property ‘L is Turing-recognizable’ is non-trivial, and by Rice’s
theorem we know that our problem is undecidable.

However, this is false. The property is trivial, as we saw in Example 3. In fact,
our problem is decidable with the following decider:

R = ”On input 〈M〉 accept”

�

Eksempel 9 Let us say that a state of a TM is ordinary if it is not the accept
state or the reject state. Consider the decision problem

Given TM M , is there any input w such that M visits every ordinary
state during its computation?

Sometimes, people will say:

The property ‘For some input w M visits every ordinary state during
its computation’ is non-trivial, and by Rice’s theorem we know that
our problem is undecidable.

However, this does not constitute a proof. The concept ’property’ is used in an
incorrect way.

The decision problem can be expressed as the language

TOURTM = {〈M〉 | For some input w M visits every ordinary state
during its computation

}

TOURTM is indeed undecidable but one cannot apply Rice’s theorem to prove
it. The condition ‘M visits every ordinary state during its computation for some
input w’ directly mentions the ordinary states of the Turing machine, i.e. we are
not talking about a property corresponding to a class of languages but about a
property of a machine.

We can prove that we cannot find a property that would apply; we do this
by finding two machines M1 and M2 such that L(M1) = L(M2), but where
〈M1〉 ∈ TOURTM and 〈M2〉 6∈ TOURTM. A simple example can be seen in
figure 1. Both machines recognize the language {an | n > 0}, but M1 has an
additional state which is only used when the machine does not accept its input.
Consequently 〈M1〉 6∈ TOURTM.

�

6



t → t, R

........

.........
...........

............................................................................................................................................
..........
.........
....... ........

.........
...........

............................................................................................................................................
..........
.........
.......

........

.........
...........

............................................................................................................................................
..........
.........
.......

........

.........
...........

............................................................................................................................................
..........
.........
.......

........

.........
...........

............................................................................................................................................
..........
.........
.......

........................
........

........................
........

...............................

.
...............................
.

q1

t → t, R
a→ a, R

t → t, Ra→ a, R
qaq0

q2

qr

a→ a, R

........
........................
...................................................................

..........
.........
.....

(a) M1

qr

........

.........
...........

............................................................................................................................................
..........
.........
....... ........

.........
...........

............................................................................................................................................
..........
.........
.......

........

.........
...........

............................................................................................................................................
..........
.........
.......

........

.........
...........

............................................................................................................................................
..........
.........
.......

........................
........

...............................

.
...............................
.

q1

t → t, R
a→ a, R

t → t, Ra→ a, R
qaq0

........
........................
...................................................................

..........
.........
.....

(b) M2

Figure 1: Two machines where L(M1) = L(M2) but 〈M1〉 6∈ TOURTM and
〈M2〉 ∈ TOURTM

Øvelse 2 Prove that TOURTM is undecidable by reduction from ATM. ♦

Eksempel 10 Consider the problem EQTM (ITTTOC, section 5.1). Sometimes,
people will say:

The property ‘L(M1) = L(M2)’ is non-trivial, and by Rice’s theorem
we know that our problem is undecidable.

This is not just imprecise, it is also meaningless, since the terminology is used
incorrectly. Rice’s theorem cannot be applied in the form that we have seen. For
the problem stated involves two languages, not one. We will need a generaliza-
tion of Rice’s theorem to pairs of languages if we want to prove that EQTM is
undecidable in this way. See problem 3 below. �

Øvelse 3 A property of pairs of recognizable languages is any set S of pairs that
are all of the form (L1, L2), where L1 and L2 are Turing-recognizable languages.
We say that a property S of pairs of recognizable languages is non-trivial if there
exist pairs of recognizable languages (L1, L2) and (L3, L4) such that (L1, L2) 6∈ S
and (L3, L4) ∈ S.

Theorem 2 If a property S of pairs of recognizable languages is non-
trivial, the language

LS = {〈M, M ′〉 | (L(M), L(M ′)) ∈ S}

uafgørbart.

1. Prove this theorem. Hint: Reduction from normal property checking.

2. Use the theorem to show that EQTM is undecidable.

♦

7



References

[1] Hüttel, H. Om Rice’s sætning, Aalborg Universitet 2005.

[2] Rice, H.G. Classes of recursively enumerable sets and their decision prob-
lems, Trans. AMS 89:25–59.

[3] Sipser, M. Introduction to the Theory of Computation, First edition, PWS
Publishing 1997.

8


