
Data Mining and Knowledge Discovery, 11, 121–154, 2005
c© 2005 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10618-005-0006-6

A Framework for Evaluating Privacy Preserving
Data Mining Algorithms∗

ELISA BERTINO bertino@cerias.purdue.edu
CERIAS and CS Department, Purdue University

IGOR NAI FOVINO nai@dico.unimi.it

LOREDANA PARASILITI PROVENZA parasiliti@dico.unimi.it
Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano
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Abstract. Recently, a new class of data mining methods, known as privacy preserving data mining (PPDM)
algorithms, has been developed by the research community working on security and knowledge discovery. The aim
of these algorithms is the extraction of relevant knowledge from large amount of data, while protecting at the same
time sensitive information. Several data mining techniques, incorporating privacy protection mechanisms, have
been developed that allow one to hide sensitive itemsets or patterns, before the data mining process is executed.
Privacy preserving classification methods, instead, prevent a miner from building a classifier which is able to
predict sensitive data. Additionally, privacy preserving clustering techniques have been recently proposed, which
distort sensitive numerical attributes, while preserving general features for clustering analysis. A crucial issue is to
determine which ones among these privacy-preserving techniques better protect sensitive information. However,
this is not the only criteria with respect to which these algorithms can be evaluated. It is also important to assess
the quality of the data resulting from the modifications applied by each algorithm, as well as the performance
of the algorithms. There is thus the need of identifying a comprehensive set of criteria with respect to which to
assess the existing PPDM algorithms and determine which algorithm meets specific requirements.

In this paper, we present a first evaluation framework for estimating and comparing different kinds of PPDM
algorithms. Then, we apply our criteria to a specific set of algorithms and discuss the evaluation results we obtain.
Finally, some considerations about future work and promising directions in the context of privacy preservation in
data mining are discussed.

1. Introduction

Data mining technology has been developed with the goal of providing tools for
automatically and intelligently transforming large amount of data in knowledge relevant
to users. The extracted knowledge, often expressed in form of association rules, decision
trees or clusters, allows one to find interesting patterns and regularities deeply buried in the
data, that are meant to facilitate decision making processes. Such a knowledge discovery
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process, however, can also return sensitive information about individuals, compromising
the individual’s right to privacy. Moreover, data mining techniques can reveal critical
information about business transactions, compromising the free competition in a business
setting. Thus, there is a strong need to prevent disclosure not only of confidential personal
information, but also of knowledge which is considered sensitive in a given context. For this
reason, recently much research effort has been devoted to addressing the problem of privacy
preserving in data mining. As a result, several data mining techniques, incorporating privacy
protection mechanisms, have been developed based on different approaches. For instance,
various sanitization techniques have been proposed for hiding sensitive items or patterns
that are based on removing reserved information or inserting noise into data. Privacy
preserving classification methods, instead, prevent a miner from building a classifier able
to predict sensitive data. Additionally, privacy preserving clustering techniques have been
recently proposed, which distort sensitive numerical attributes, while preserving general
features for clustering analysis. Given the number of different privacy preserving data
mining (PPDM) techniques that have been developed over the last years, there is an
emerging need of moving toward standardization in this new research area, as discussed
in Oliveira and Zaiane (2004). We believe that one step toward this essential process is the
definition of a framework identifying the various parameters which characterize a PPDM al-
gorithm, thus making it possible to assess and compare such techniques according to a fixed
set of evaluation criteria. Because all the various techniques differ among each other with
respect to a number of criteria, like performance, data quality, privacy level, it is important
to provide a systematic and comprehensive framework for their evaluation. In many cases,
no technique is better than the other ones with respect to all criteria. Thus, one has to select
the privacy preserving technique based on the criterion to be optimized. A framework like
the one developed here is thus essential in order to select the privacy preserving technique
which is more adequate based on the data and the requirements of the application domain.

A major feature of PPDM techniques is that they usually entail modifications to the data
in order to sanitize them from sensitive information (both private data items and complex
data correlations) or anonymize them with some uncertainty level. Therefore, in evaluating
a PPDM algorithm it is important to assess the quality of the transformed data. To do this,
we need methodologies for the assessment of the quality of data, intended as the state of
the individual items in the database resulting from the application of a privacy preserving
technique, as well as the quality of the information that is extracted from the modified
data by using a given data mining method. The former notion of data quality is strictly
related to the use the data are intended for. Moreover, some of those algorithms can be
computationally very expensive and thus cannot be used when very large sets of data need
to be frequently released. Therefore, in addition to data quality, performance also needs
to be carefully assessed. Other aspects, like scalability, need also to be taken into account
since the data collected, stored and managed for the mining process grow enormously. We
thus clearly need a comprehensive evaluation framework characterized by several metrics
relevant for assessing the various aspects of PPDM algorithms. In this paper, we present
such a framework which allows one to compare the various privacy preserving techniques
on a common platform. The framework consists of a number of evaluation criteria and a
set of tools for data pre-processing and PPDM algorithm evaluation. The framework has
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been extensively used for assessing a suite of PPDM algorithms developed as part of the
CODMINE project (CODMINE, 2002–2003).

The problem of disclosing private information when partially or totally releasing data
storage is also addressed in the area of statistical databases. The statistical disclosure
control (SDC) aims at protecting individual data, referred to as microdata according to
the SDC terminology, when releasing some relevant statistics by means of statistics-based
techniques, some of which are also adopted in the area of data mining. Domingo-Ferrer
and Torra (2002) have analyzed various SDC methods and compared some of them on the
basis of some relevant evaluation measures they have also developed. Given the relations
between these two research areas, we will also analyze and compare some of these methods
along with the metrics used for evaluating them.

The remainder of this paper is organized as follows. Section 2 reviews different PPDM
methods focusing on the evaluation criteria. Section 3 describes the evaluation framework
we have developed for assessing various PPDM algorithms. Section 4 shows how such a
framework has been used in the evaluation of a particular kind of PPDM algorithms, known
as data fuzzification techniques. Finally, Section 5 presents considerations about future
extensions and promising directions in the context of privacy preserving data mining.

2. Background and related work

Recent research in the area of privacy preserving data mining has devoted much effort to
determine a trade-off between the right to privacy and the need of knowledge discovery,
which is crucial in order to improve decision-making processes and other human activities.
Such research has resulted in several approaches to the evaluation of privacy preserving
techniques. In this section, we first present a taxonomy of the PPDM algorithms that have
been proposed based on a classification presented in Verykios et al. (2004). We then present
a brief review of the major work in this area, focusing on the metrics used in each approach
to evaluate the proposed privacy preservation methods.

Verykios et al. (2004) analyze the state-of-the-art in the area of PPDM, classifying
the proposed privacy preservation techniques according to five different dimensions:
(i) data distribution (centralized or distributed); (ii) the modification applied to the data
(encryption, perturbation, generalization, and so on) in order to sanitize them; (iii) the
data mining algorithm which the privacy preservation technique is designed for; (iv) the
data type (single data items or complex data correlations) that needs to be protected from
disclosure; (v) the approach adopted for preserving privacy (heuristic, reconstruction
or cryptography-based approaches). Figure 1 shows a taxonomy of the existing PPDM
algorithms according to those dimensions. Obviously, it represents a first organization in
this new area and does not cover all the possible PPDM algorithms. However, it gives
one overview of the algorithms that have been proposed so far, focusing on their main
features. While heuristic and reconstruction-based techniques are mainly conceived for
centralized datasets, cryptography based algorithms are designed for protecting privacy
in a distributed scenario by using encryption techniques. Reconstruction-based algorithms
recently proposed aim at hiding sensitive raw data by applying perturbation techniques
based on probability distributions. Moreover, several heuristic-based approaches for hiding
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both raw and aggregated data through a hiding technique (perturbation, blocking, data
swapping, aggregation, generalization and sampling) have been developed, first, in the
context of association rule mining and classification and, more recently, for clustering
techniques. Now, we briefly describe some of the algorithms proposed in the PPDM
area.

Oliveira and Zaiane (2002) propose a heuristic-based framework for preserving privacy
in mining frequent itemsets. They focus on hiding a set of frequent patterns, containing
highly sensitive knowledge. They propose a set of sanitized algorithms, that only remove
information from a transactional database, also known in the SDC area as non-perturbative
algorithms, unlike those algorithms, that modify the existing information by inserting
noise into the data, referred to as perturbative algorithms. The algorithms proposed by
Oliveira and Zaiane rely on a item-restriction approach, in order to avoid the addition of
noise to the data and limit the removal of real data. In the evaluation of the proposed
algorithms they introduce some measures quantifying the effectiveness and the efficiency
of their algorithms. The first parameter is evaluated in terms of: Hiding Failure, that is, the
percentage of restrictive patterns that are discovered from the sanitized database; Misses
Cost, that is, the percentage of non-restrictive patterns that are hidden after the sanitization
process; Artifactual Pattern, measured in terms of the percentage of discovered patterns that
are artifacts. The specific algorithms proposed by Oliveira and Zaiane do not introduce any
artifactual patterns, whereas with respect to the hiding failure and misses cost parameters,
it turns out that the more restrictive patterns are hidden, the more legitimate patterns
are missed. The specification of a disclosure threshold φ, representing the percentage of
sensitive transactions that are not sanitized, allows one to find a balance between the hiding
failure and the number of misses. The efficiency of the algorithms is measured in terms of
CPU time, by first keeping constant both the size of the database and the set of restrictive
patterns, and then by increasing the size of the input data in order to assess the algorithm
scalability. Moreover, Oliveira and Zaiane propose three different methods to measure the
dissimilarity between the original and sanitized databases. The first method is based on the
difference between the frequency histograms of the original and the sanitized databases.
The second method is based on computing the difference between the sizes of the sanitized
database and the original one. The third method is based on a comparison between the
contents of two databases.

In Sweeney (2002), instead, Sweeney proposes a heuristic-based approach for protecting
raw data through generalization and suppression techniques. The methods she proposes
provide K-Anonymity. Roughly speaking a database is K-anonymous with respect to some
attributes if there exist at least k transactions in the database for each combination of the
attribute values. A database A can be converted into a new database A1 that guarantees the
K-Anonymity property for a sensible attribute by performing some generalizations on the
values of the target attributes. As result, such attributes are susceptible to cell distortion due
to the different level of generalization applied in order to achieve K-Anonymity. Sweeney
measures the cell distortion as the ratio of the domain of the attribute to the height of the
attribute generalization which is a hierarchy. In the same article the concept of precision
is also introduced. Given a table T, the precision represents the information loss incurred
by the conversion process from a table T to a K-Anonymous Table Tk. More in detail the
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precision of a table Tk is measured as one minus the sum of all cell distortions, normalized
by the total number of cells. In some way, the precision is a measure of the data quality or
the data utility of the released table, specifically conceived for PPDM algorithms adopting
generalization techniques for hiding sensitive information.

A reconstruction-based technique, instead, is proposed in R. Agrawal and Srikant (2000)
for estimating the probability distribution of original numeric data values, in order to build
a decision tree classifier from perturbed training data. They also introduce a quantitative
measure to evaluate the amount of privacy offered by a method and evaluate the proposed
method against this measure. The privacy provided by a reconstruction-based technique
is measured by evaluating how closely the original values of a modified attribute can be
determined. More specifically, if one can estimate with c% confidence that a value x lies
in an interval, then the width of such interval defines the amount of privacy with a c%
confidence level. They also assess the accuracy of the proposed algorithms for Uniform
and Gaussian perturbation and for fixed privacy level. The reconstruction-based approach
proposed by Agrawal and Aggarwal (2001) is based on an Expectation Maximization (EM)
algorithm for distribution reconstruction, which converges to the maximum likelihood
estimate of the original distribution on the perturbed data. The metrics they propose for
the estimation of their methods, provide a quantification and a measurement of privacy and
information loss. Unlike the approach in Agrawal and Srikant (2000), the privacy metric
proposed by Agrawal and Aggarwal takes into account the fact that both the perturbed
individual record and the reconstructed distribution are available to the user as well as
the perturbing distribution, as it is specified in Evfimievski (2002). This metric is based
on the concept of mutual information between the original and perturbed records. The
average conditional privacy of an attribute A given some other information, modeled with a
random variable B, is defined as 2h(A|B), where h(A|B) is the conditional differential entropy
of A given B representing a measure of uncertainty inherent in the value of A, given the
value of B. The information loss, instead, measures the lack of precision in estimating the
original distribution from the perturbed data. It is defined as half the expected value of the
L1-norm between the original distribution and the reconstructed one. The proposed metric
for evaluating information loss is related to the amount of mismatch between the original
distribution and its estimate in terms of area. Both the proposed metrics are universal in
the sense that they can be applied to any reconstruction algorithm, independently from the
particular data mining task applied.

Evfimievski et al. (2002) propose a framework for mining association rules from trans-
actions consisting of categorical items, where the data has been randomized to preserve
privacy of individual transactions, while ensuring at the same time that only true associa-
tions are mined. They also provide a formal definition of privacy breaches and a class of
randomization operators that are much more effective in limiting breaches than uniform
randomization. According to Definition 4 from Evfimievski et al. (2002), an itemset A
results in a privacy breach of level ρ if the probability that an item in A belongs to a non
randomized transaction, given that A is included in a randomized transaction, is greater
or equal to ρ. In some scenarios, being confident that an item be not present in the orig-
inal transaction may also be considered a privacy breach. In order to evaluate the privacy
breaches, the approach taken by Evfimievski et al. is to count the occurrences of an itemset
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in a randomized transaction and in its sub-items in the corresponding non randomized
transaction. Out of all sub-items of an itemset, the item causing the worst privacy breach
is chosen. Then, for each combination of transaction size and itemset size, the worst and
the average value of this breach level are computed over all frequent itemsets. Finally, the
itemset size giving the worst value for each of these two values is selected.

Another reconstruction-based technique is proposed by Rivzi and Haritsa (2002). They
propose a distortion method to pre-process the data before executing the mining process.
The privacy measure they propose deals with the probability with which the user’s distorted
entries can be reconstructed. Their goal is to ensure privacy at the level of individual entries
in each customer tuple. In other words, the authors estimate the probability that a given 1
or 0 in the true matrix representing the transactional database can be reconstructed, even if
for many applications the 1’s and 0’s values do not need the same level of privacy.

A cryptography-based technique is proposed by Kantarcioglu and Clifton (2002). They
specifically address the problem of secure mining of association rules over horizontally
partitioned data, using cryptographic techniques to minimize the information shared. Their
solution is based on the assumption that each party first encrypts its own itemsets using
commutative encryption, then the already encrypted itemsets of every other party. Later on,
an initiating party transmits its frequency count, plus a random value, to its neighbor, which
adds its frequency count and passes it on to other parties. Finally, a secure comparison
takes place between the final and initiating parties to determine if the final result is greater
than the threshold plus the random value. The proposed methods are evaluated in terms of
communication and computation costs. The communication cost is expressed in terms of
the number of messages exchanged among the sites, that are required by the protocol for
securely counting the frequency of each rule. The computation cost, instead, is expressed
in terms of the number of encryption and decryption operations required by the specific
algorithm. Another cryptography-based approach is described in Vaidya and Clifton (2002).
Such approach addresses the problem of association rule mining in vertically partitioned
data. In other words, its aim is to determine the item frequency when transactions are split
across different sites, without revealing the contents of individual transactions. A security
and communication analysis is also presented. In particular, the security of the protocol for
computing the scalar product is analyzed. The total communication cost depends on the
number of candidate itemsets and can best be expressed as a constant multiple of the I/O
cost of the apriori algorithm.

In the context of statistical disclosure control a large number of methods, called masking
methods in the SDC jargon, have been developed to preserve individual privacy when
releasing aggregated statistics on data, and more specifically to anonymize the released
statistics from those data items that can identify one among the individual entities (person,
household, business, etc.) whose features are described by the statistics, also taking into
account, additionally, related information publicly available (Willenborg and De Waal
2001). In Domingo-Ferrer and Torra (2002) a description of the most relevant masking
methods proposed so far is presented. Among the perturbative methods specifically designed
for continuous data, the following masking techniques are described: additive noise, data
distortion by probability distribution, resampling, microaggregation, rank swapping, and so
on. For categorical data both perturbative and non-perturbative methods are presented. The
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top-coding and bottom-coding techniques are both applied to ordinal categorical variables;
they recode, respectively, the first/last p values of a variable into a new category. The
global-recoding technique, instead, recodes the p lowest frequency categories into a single
one. All these masking methods are assessed according to the two main parameters: the
information loss and the disclosure risk, that is, the risk that a piece of information be
linked to a specific individual. Several metrics are presented in the paper for assessing the
information loss and the disclosure risk given by a SDC method. Additionally, in order to
provide a trade-off level between these two metrics, a score is defined that gives the same
importance to disclosure risk and information loss.

3. Evaluation framework

In this section, we present the evaluation framework we have identified and the related
benchmarks for estimating PPDM algorithms. Before describing the selected evaluation
criteria, we briefly describe the goals of a PPDM algorithm and explain what we mean by
the general term of “Privacy”.

In our society the Privacy term is overloaded, and can, in general, assume a wide range of
different meanings. For example, in the context of the HIPAA1 Privacy Rule, Privacy means
the individual’s ability to control who has the access to personal health care information.
From the organizations point of view, Privacy involves the definition of policies stating
which information is collected, how it is used, and how customers are informed and involved
in this process. Moreover, there are many other definitions of privacy that are generally
related with the particular environment in which the privacy has to be guaranteed. What
we need is a more generic definition, that can be instantiated to different environments
and situations. From a philosophical point of view, Schoeman (1984) and Walters (2001)
identify three possible definitions of privacy:

1. Privacy as the right of a person to determine which personal information about him-
self/herself may be communicated to others.

2. Privacy as the control over access to information about oneself.
3. Privacy as limited access to a person and to all the features related to the person.

These three definitions are very similar apart from some philosophical differences that
are not in the scope of our work. What is interesting from our point of view is the concept
of “Controlled Information Release” emerging from the previous definitions. From this
idea, we argue that a definition of privacy that is more related with our target could be
the following: “The right of an individual to be secure from unauthorized disclosure of
information about oneself that is contained in an electronic repository”. Performing a
final tuning of the definition, we consider privacy as “The right of an entity to be secure
from unauthorized disclosure of sensible information that are contained in an electronic
repository or that can be derived as aggregate and complex information from data stored
in an electronic repository”. The last generalization is due to the fact that the concept of
individual privacy does not even exist. As in Oliveira and Zaiane (2004) we consider two
main scenarios. The first is the case of a Medical Database where there is the need to
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provide information about diseases while preserving the patient identity. Another scenario
is the classical “Market Basket” database, where the transactions related to different client
purchases are stored and from which it is possible to extract some information in form
of association rules like “If a client buys a product X, he/she will purchase also Z with
y% probability”. The first is an example where individual privacy has to be ensured by
protecting from unauthorized disclosure sensitive information in form of specific data
items related to specific individuals. The second one, instead, emphasizes how not only
the raw data contained into a database must be protected, but also, in some cases, the high
level information that can be derived from non sensible raw data need to protected. Such
a scenario justifies the final generalization of our privacy definition. In the light of these
considerations, it is, now, easy to define which are the main goals a PPDM algorithm should
enforce:

1. A PPDM algorithm should have to prevent the discovery of sensible information.
2. It should be resistant to the various data mining techniques.
3. It should not compromise the access and the use of non sensitive data.
4. It should be usable on large amounts of data.
5. It should not have an exponential computational complexity.

Current PPDM algorithms do not satisfy all these goals at the same time; for instance, only
few of them satisfy the point (2). The above list of goals helps us to understand how to
evaluate these algorithms in a general way. The framework we have identified is based on
the following evaluation dimensions:

– efficiency, that is, the ability of a privacy preserving algorithm to execute with good
performance in terms of all the resources implied by the algorithm;

– scalability, which evaluates the efficiency trend of a PPDM algorithm for increasing sizes
of the data from which relevant information is mined while ensuring privacy;

– data quality after the application of a privacy preserving technique, considered both as
the quality of data themselves and the quality of the data mining results after the hiding
strategy is applied;

– hiding failure, that is, the portion of sensitive information that is not hidden by the
application of a privacy preservation technique;

– privacy level offered by a privacy preserving technique, which estimates the degree of
uncertainty, according to which sensitive information, that has been hidden, can still be
predicted.

An important question is which one among the presented “dimensions” is the most
relevant for a given privacy preserving technique. Dwork and Nissim (2004) make some
interesting observations about this question. In particular, according to them in the case
of statistical databases privacy is paramount, whereas in the case of distributed databases
for which the privacy is ensured by using a secure multiparty computation technique
functionality is of primary importance. Since a real database usually contains a large
number of records, the performance guaranteed by a PPDM algorithm, in terms of time
and communication requirements, is a not negligible factor, as well as its trend when
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increasing database size. The quality of data guaranteed by a PPDM algorithm is, on the
other hand, very important when ensuring privacy protection without damaging the data
usability from the authorized users. A trade-off metric can help us to state a unique value
measuring the effectiveness of a PPDM algorithm. In Domingo-Ferrer and Torra (2002)
the score of a masking method provides a measure of the trade-off between disclosure
risk and information loss. It is defined as an average between the ranks of disclosure risk
and information loss measures, giving the same importance to both metrics. In Duncan,
Keller-McNulty and Stokes (2001) a R-U confidentiality map is described that traces the
impact on disclosure risk R and data utility U of changes in the parameters of a disclosure
limitation method which adopts an additive noise technique. We believe that an index
assigning the same importance to both the data quality and the degree of privacy ensured by
a PPDM algorithm is quite restrictive, because in some contexts one of these parameters can
be more relevant than the other. Moreover, in our opinion the other parameters, even less
relevant ones, should be also taken into account. The efficiency and scalability measures, for
instance, could be discriminating factors in choosing among a set of PPDM algorithms that
ensure similar degrees of privacy and data utility. A weighted mean could be, thus, a good
measure for evaluating by means of a unique value the quality of a PPDM algorithm. In the
current work, however, we mainly focus on the different evaluation criteria characterizing
a PPDM algorithm. In the following, we discuss in details each evaluation criteria we have
identified.

3.1. Efficiency

The assessment of the resources used by a privacy preserving data mining algorithm is
given by its efficiency, which represents the ability of the algorithm to execute with good
performance in terms of all used resources. Performance is assessed, as usually, in terms of
time and space, and, in case of distributed algorithms, in terms of the communication costs
incurred during information exchange.

Time requirements can be evaluated in terms of CPU time, or computational cost, or even
the average of the number of operations required by the PPDM technique. Clearly, it would
be desirable that the algorithms have a polynomial complexity rather than an exponential
one. Anyway, it can be useful to compare the performance of the privacy preserving method
with the performance of the data mining algorithm for which the privacy preserving method
has been developed. Our expectation is that the execution times of the hiding strategies
be proportional to the execution times of the mining algorithms that extract the sensitive
information.

Space requirements are assessed according to the amount of memory that must be
allocated in order to implement the given algorithm.

Finally, communication requirements are evaluated for those data mining algorithms,
which require information exchanges during the secure mining process, as the cryptography-
based techniques. It is measured in terms of the number of communications among all the
sites involved in the distributed data mining task.
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3.2. Scalability

Scalability is another aspect that it is important to assess when a PPDM algorithm is ana-
lyzed: it describes the efficiency trends for increasing values in data sizes. Therefore, such
parameter concerns the increase of both performance and storage requirements together
with the costs of the communications required by a distributed technique when data sizes
increase. Because of the continuous advances in hardware technology, it is today easy to
store large amounts of data. Thus, databases along with data warehouses today store and
manage amounts of data which are increasingly large. For this reason, a PPDM algorithm
has to be designed and implemented for being scalable with larger and larger datasets.
The less rapid is the decrease in the efficiency of a PPDM algorithm for increasing data
dimensions, the better is its scalability. Therefore, we have to evaluate the scalability of a
PPDM technique as an equally important requirement of such a kind of algorithms.

3.3. Data quality

The main feature of the most PPDM algorithms is that they usually apply perturbation
techniques in order to sanitize data from sensitive information (both private data items and
complex data correlations). The data quality is, thus, an important parameter to take into
account in the evaluation of a PPDM technique. Since the data is often sold for making
profit, or shared with others in the hope of leading to innovation, data quality should have an
acceptable level according also to the intended data usage. If data quality is too degraded,
the released database is useless for the purpose of knowledge extraction. As discussed in
the previous section, several data quality metrics have been proposed that are either generic
or data-use-specific. However, currently, there is no metric that is widely accepted by the
research community. Here we try to identify a set of possible measures that can be used
to evaluate different aspects of data quality. We believe that, in evaluating the data quality
after the privacy preserving process, it can be useful to assess both the quality of the data
themselves, considered as a general measure evaluating the state of the individual items
contained in the database after the enforcement of a privacy preserving technique, and
the quality of the data mining results for evaluating the alteration in the information that
is extracted from the database after the privacy preservation process, on the basis on the
intended data use.

The main problem with data quality is that its evaluation is relative (Tayi and Ballou,
1998), in that it usually depends from the context with respect to which it is analyzed.
More in general in the scientific literature data quality is considered a multi-dimensional
concept that in certain contexts involves both objective and subjective parameters (Ballou
and Pazer, 1985; Wang and Strong, 1996). However, among the various possible parameters,
the following ones are usually considered the most relevant:

• Accuracy: it measures the proximity of a sanitized value a′ to the original value a.
• Completeness: it evaluates the degree of missed data in the sanitized database.
• Consistency: it is related to the internal constraints, that is, the relationships that must

hold among different fields of a data item or among data items in a database.
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While the accuracy is a relatively general parameter in that it can be measured without
strong assumptions on the dataset analyzed, the completeness is not so general, because, for
example, in some PPDM strategies, e.g. blocking, its evaluation is not significant. On the
other hand, the last parameter requires to determine all the relationships that are relevant
for a given dataset. Data consistency and completenesses are not explored here; we plan to
address the development of evaluation methodologies for these parameters as future work.

The accuracy as measure of the quality of data to which a PPDM algorithm is applied
is closely related to the information loss resulting from the hiding strategy: the lower is
the information loss, the greater is the data quality. In our opinion, its measure depends on
the specific class of PPDM algorithms. As for heuristic-based techniques, we distinguish
the following cases based on the modification technique that is performed for the hiding
process. If the algorithm adopts a perturbation or a blocking technique to hide both raw
and aggregated data, the information loss can be measured in terms of the dissimilarity
between the original dataset D and the sanitized one D′. In the case of transactional
dataset perturbation, we can compute such dissimilarity as the difference between the
item frequencies of the two datasets before and after the sanitization, as expressed by the
following formula:

Diss(D, D′) =
∑n

i=1 | fD(i) − fD′(i)|
∑n

i=1 fD(i)
(1)

where i is a data item in the original database D and fD(i) is its frequency within the
database, whereas i′ is the given data item after the application of a privacy preservation
technique and fD′(i) is its new frequency within the transformed database D′. As we can
see, the information loss is defined as the ratio between the sum of the absolute errors
made in computing the frequencies of the items from a sanitized database and the sum of
all the frequencies of items in the original database. If the PPDM algorithm uses, instead,
a blocking technique for inserting into the dataset uncertainty about some sensitive data
items or their correlations, the dissimilarity can be measured again by the formula 1, where
the frequency of the item i belonging to the sanitized dataset D′ is given by the mean
value between the minimum frequency of the data item i, computed by considering all the
blocking values ‘?’ associated with it equal to zero, and the maximum frequency, obtained
by considering all the question marks equal to one. In case of data swapping, the information
loss caused by an heuristic-based algorithm can be evaluated by a parameter measuring
the data confusion introduced by the value swappings. If there is no correlation among the
different database records, the data confusion can be estimated by the percentage of value
replacements executed in order to hide specific information. If the data modification consists
of aggregating some data values, the information loss is given by the loss of detail in the
data. Intuitively, in this case, in order to perform the hiding operation, the PPDM algorithms
use some type of “Generalization or Aggregation Scheme” that can be ideally modelled
as a tree scheme. Each cell modification applied during the sanitization phase using the
Generalization tree introduces a data perturbation that reduces the general accuracy of the
database. As in the case of the K Anonymity algorithm presented in Sweeney (2002), we
can use the following formula. Given a database DB with NA fields and N transactions, if
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we identify as generalization scheme a domain generalization hierarchy GT with a depth h,
it is possible to measure the quality of a sanitized database SDB as:

Quality(SDB) = 1 −
∑i=NA

i=1

∑i=N
j=1

h
|GTAi |

|DB| ∗ |NA| (2)

where h
|GTAi | represent the detail loss for each cell sanitized. For hiding techniques based

on sampling approach, the quality is obviously related to the size of the considered sample
and, more generally, on its features. A further analysis is needed to understand how the data
quality of this kind of hiding techniques can be better assessed.

In the context of reconstruction-based algorithms aiming to hide the values of a confiden-
tial attribute by a statistical-based perturbation technique, the information loss is basically
the lack of precision in estimating the original distribution function of the given attribute.
As in Agrawal and Aggarwal (2001), we measure the information loss incurred by a
reconstruction-based algorithm in estimating the density function fX(x) of the attribute X,
by computing the following value:

I ( fX , f̂ X ) = 1

2
E

[∫

�X

∣
∣ fX (x) − f̂ X (x)

∣
∣ dx

]

(3)

that is, half of the expected value of L1 norm between fX(x) and f̂ X (x), which are the
density distributions respectively before and after the application of the privacy preserving
technique.

By contrast, we observe that cryptography-based techniques adopting Secure Multiparty
Computation protocols, typically used in distributed environments, do not make use of any
kind of perturbation technique in order to preserve privacy. Such techniques assure data
privacy at each site by limiting the information shared by all the sites through the use of
cryptographic techniques. Thus, the quality of data stored et each site is not compromised
at all.

As we have stated above, in some cases it can be useful and also more relevant to evaluate
the quality of the data mining results after the sanitization process. This kind of metric is
strictly related to the use the data are intended for. Data can be analyzed in order to mine
information in terms of associations among single data items or to classify existing data
with the goal of finding an accurate classification of new data items, and so on. Based on
the intended data use, the information loss is measured with a specific metric, depending
each time on the particular type of knowledge model one aims to extract.

If the intended data usage is data clustering, the information loss can be measured by the
percentage of legitimate data points that are not well-classified after the sanitization process.
Data modification often applied by a privacy preserving technique obviously affects the
parameters involved in the clustering analysis. There is, thus, the need to control, as much
as possible, the results of such analysis before and after the application of a data hiding
technique.
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When quantifying information loss in the context of the other data usages, it is useful to
distinguish between: lost information representing the percentage of non-sensitive patterns
(i.e., association, classification rules) which are hidden as side-effect of the hiding process;
and the artifactual information representing the percentage of artifactual patterns created
by the adopted privacy preserving technique.

In case of association rules, the lost information can be modelled as the set of non-
sensitive rules that are accidentally hidden, referred to as lost rules, by the privacy
preservation technique, the artifactual information, instead, represents the set of new rules,
also known as ghost rules, that can be extracted from the database after the application
of a sanitization technique.

Similarly, if the aim of the mining task is data classification, e.g. by means of decision
trees inductions, both the lost and artifactual information can be quantified by means of the
corresponding lost and ghost association rules derived by the classification tree.

These measures allow one to evaluate the high level information that are extracted from
a database in form of the widely-used inference rules before and after the application of a
PPDM algorithm.

3.4. Hiding failure

The percentage of sensitive information that is still discovered, after the data has been
sanitized, gives an estimate of the hiding failure parameter. Most of the developed privacy
preserving algorithms are designed with the goal of obtaining zero hiding failure. Thus,
they hide all the patterns considered sensitive. However, it is well known that the more
sensitive information we hide, the more non-sensitive information we miss. Thus, some
privacy preserving data mining algorithms have been recently developed which allow one
to choose the amount of sensitive data that should be hidden in order to find a balance
between privacy and knowledge discovery.

3.5. Privacy level

In order to evaluate the privacy protection offered by a PPDM algorithm, we need to define a
unique parameter quantifying the privacy level ensured by these algorithms. As previously
stated, a metric for evaluating the privacy level offered by a PPDM method is proposed
in Agrawal and Srikant (2000): if the perturbed value of an attribute can be estimated,
with a confidence c, to belong to an interval [a, b], then the privacy is estimated by (b-a)
with confidence c. This metric does not work well because it does not take into account
the distribution of the original data along with the perturbed data. We need, therefore, a
metric that considers all the informative content of data available to the user. Agrawal and
Aggarwal (2001) address this problem by introducing a new privacy metric based on the
concept of information entropy.

Shannon in formulating his most well-known theorem (Shannon, 1948) defines the
concept of Information Entropy as follows: let X be a random variable which takes on a
finite set of values according to a probability distribution p(x). Then, the entropy of this
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probability distribution is defined as follows:

h(X ) = −
∑

p(x) log2(p(x)) (4)

or, in the continuous case:

h(X ) = −
∫

f (x) log2( f (x)) dx (5)

where f(x) denotes the density function of the continuous random variable x.
Information Entropy is a measure of how much “choice” is involved in the selection of an

event or how uncertain we are of its outcome. It can be used for quantifying the amount of
information associated with a set of data. The concept of “information associated with data”
can be useful in the evaluation of the privacy achieved by a PPDM algorithm. Because the
entropy represents the information content of a datum, the entropy after data sanitization
should be higher than the entropy before the sanitization. Moreover the entropy can be
assumed as the evaluation of the uncertain forecast level of an event which in our context is
evaluation of the right value of a datum. As in Agrawal and Aggarwal (2001), we measure
the level of privacy inherent in an attribute X, given some information modeled by Y, by
the following quantity:

�(X | Y ) = 2− ∫
fX,Y (x,y) log2 fX |Y=y (x))dxdy (6)

However, we have to notice that the value of the privacy level depends not only on
the PPDM algorithm used, but also on the knowledge that an attacker has about the data
before the use of data mining techniques and the relevance of this knowledge in the data
reconstruction operation. This problem is underlined, for example, in Trottini (2001, 2003).
In our work this aspect is not considered in the testing phase, but it will be investigated as
part of future work; for instance by referring to expression (6), it is possible to introduce
assumptions on attacker knowledge by properly modeling Y.

The measure of the entropy level, and thus of the privacy level, is very general and in
order to use it in the different PPDM contexts, it needs to be refined in relation with some
characteristics like the type of transactions, the type of aggregation and PPDM methods.
Here, for example, we show how the entropy concept can be instantiated in order to evaluate
the privacy level in the context of “association rules”. Our approach is based on the work
of Smyth and Goodman (1992) that use the concept of Information Entropy in order to
measure the amount of information contained in the association rules extracted from a
database, with the aim of ranking and thus characterizing the most important rules in terms
of information they contain. They think of a rule y ⇒ x as a condition if Y = y then X = x
with a certain probability p and they then define a J-measure representing the entropy of a
rule as:

J (x, Y = y) = p(y) j(x, Y = y) (7)
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Figure 2. Evolution of information entropy with respect to confidence.

The term p(y) is the probability of the rule antecedent and j(x, Y = y) is the cross-entropy,
defined as:

j(x, Y = y) = p(x | y) log
p(x | y)

p(x)
+ (1 − p(x | y)) log

1 − p(x | y)

1 − p(x)
. (8)

If we consider the association rules model and a specific rule y ⇒ x, the value p(y), that
is, the probability of antecedent, is equal to frequency of y and the value p(x | y) is the
probability that the variable X assumes the value x, given that y is the value of variable Y.
It represents the strength of the rule if Y = y then X = x and it is referred to as confidence
of the rule. Now, we define a parameter entropy privacy (EP) as:

E P = J (x, Y = y) − J1(x, Y = y) (9)

where J1 is the J-measure after the operation of data hiding. Some preliminary tests executed
in the context of this work, show that the simple J-measure does not provide an intuitive
evaluation parameter. In fact, as the Information Theory suggests, we would expect as result
that when the confidence decreases, the level of entropy increases (see figure 2). Indeed,
in some particular cases, the trend obtained is the one shown in figure 3. This is due to the
fact that the J-measure represents the average conditional mutual information, or, in other
words, the difference between the “a priori” and “a posteriori” probabilistic distributions
of the two random variables X and Y. On the base of this observation, we note that if:

• P(X ∧ Y) < P(X)× P(Y) the two variables X and Y are negatively correlated
• P(X ∧ Y) > P(X)× P(Y) the two variables X and Y are positively correlated
• P(X ∧ Y) = P(X)× P(Y) the two variables X and Y are independent
Remembering that:

P(X ∧ Y )

P(Y )
= P(X | Y ) (10)
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Figure 3. Evolution of information entropy with respect to confidence in some particular cases.
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Figure 4. Evolution of J’ with respect to Confidence.

we observe than the J-measure does not take into account the type of correlation between
the involved random variables. For this reason, we finally adopt as measure the derivative
of the J-measure:

J ′(X ; Y = y) = p(y) ∗
(

log2

(
p(x | y)

p(x)

)

− log2

(
1 − p(x | y)

1 − p(x)

))

(11)

Figure 4 shows the graph obtained when using J′. Finally, we measure the amount of
privacy introduced by the following expression:

Level of privacy = (J ′
1 − J ′) (12)

where J′
1 is calculated after the sanitization and J′ is measured before sanitization.
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By using the expression (12), we can compute the level of privacy of a classification
model, where the class is represented in form of a classification rule if A1 A2...An then Ci.

We observe that a decrease in the confidence value, and therefore an increase in the
level of privacy, results in an increase of entropy, as shown in figure 4. This trend is in
accordance with the Information Theory, because if a rule or in general an information is
well hidden, the informative value of its discovery is higher than an information that is
simple to discover. We plan to define a corresponding privacy level, specifically conceived
for PPDM algorithms based on clustering techniques.

4. Experimental evaluations

In order to measure the effective accuracy of the parameters described in the previous sec-
tion, we have carried out some experimental evaluations on a set of data hiding algorithms.
In the following, we first present the algorithms we have assessed according to these eval-
uation criteria. We then describe the data set we have used along with the methodology we
have adopted for the evaluation process. Finally, the results of our evaluations are discussed.

4.1. Algorithms

Here, we describe a specific class of privacy preserving data mining algorithms, developed
in the context of CODMINE project (CODMINE, 2002–2003), that we have chosen as
testbed for our evaluations. As part of future work, we plan to apply our framework to the
other classes of PPDM algorithms in order to assess them according to the several criteria we
have identified. The algorithms, we have analyzed as testbed for our evaluation activity, rely
on a heuristic-based hiding approach, according to which the original dataset is modified by
blocking data values. Their goal is not to protect the individual privacy but the extraction of
aggregated data in terms of association rules, that are considered sensitive. First of all, we
present a scenario that requires preventing the disclosure of sensitive information, modelled
as associations among data items, which could be even unknown to data owners.

4.1.1. Scenario. A large number of examples from different application domains (such
as financial, medical, scientific, demographic, military environments) can be identified for
which data mining represents a threat to information security. Consider the well-known
market basket analysis environment. Suppose that a large supermarket chain gives a supplier
of it, e.g. a HIGH-TV Company making and selling televisions, access to its database
containing customer purchases in exchange for a reduction in their television prices. Then,
the company can use an association rule mining tool and find some interesting correlations
between the purchase of televisions and other products. For example, the company could
find that people who purchase DVD player also purchase a television made by the STAR
Company, its competing firm. Therefore, the HIGH-TV company can exploit the sensitive
information to run a promotional campaign based on which who purchases a HIGH-TV
television receives a discount coupon for buying a DVD player. This causes a heavy drop in
selling STAR televisions, which increases the store prices to the market chain, because of the
lower sales. Moreover, during a subsequent negotiation between the HIGH-TV Company
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and the supermarket chain, given the reduced competition, the company will be unwilling
to reduce the store prices of their televisions to the supermarket chain. The association
rule mining tools can, thus, represent a threat to the privacy of individuals and, in this
case, to the confidentiality of information concerning abstract entities such as companies,
organizations, and so on. Such tools allow an authorized miner to learn about unknown
data correlations that can be exploited against the released entity, being prejudicial to its
own interests or, in some cases, to the common interests. In the considered example, the
supermarket chain wants to take advantage of sharing the huge amount of data it possesses,
but, at the same time, it does not want to unconsciously release reserved information.
Therefore, it needs a data mining tool providing a certain level of privacy, considered as
privacy of its own businesses, when the rule mining process is executed by an authorized
party. On the other side, who purchases the access to a data repository wants the data to be
as much as possible close the reality they refer to. There is, thus, the need of an association
mining tool for mainly ensuring, on one hand, privacy to data owners and, on the other
hand, data accuracy to the legal miners.

4.1.2. Problem formulation. Now, we give a formal description of the rule hiding problem.
Let D be a transactional database and I = {i1, . . . , in} be a set of literals, called items. Each
transaction can be considered as an itemset that is included in I. We assume that the items
in a transaction or in an itemset are sorted according to a lexicographic order. According
to a bitmap notation, each transaction t in the database D is represented as a triple <TID,
values of items, size>, where TID is the identifier of the transaction t, and values of items
is a list of values, one value for each item in I, associated with transaction t. An item is
supported by a transaction t if its value in the values of items is 1, and it is not supported
by t if its value in the values of items is 0. Size is the number of 1 values which appear in
the values of items, that is, the number of items supported by the transaction. A detailed
description of this notation can be found in Sabanci University (2003). An association rule
is an implication of the form X ⇒ Y between two disjoint itemsets X and Y in I. Each
rule is assigned both a support and a confidence value. The first one is a measure of a
rule frequency, more precisely, it is the probability to find in the database transactions
containing all the items in X ∪ Y, whereas the confidence is a measure of the strength of the
relation between the antecedent X and the consequent Y of the rule, that is, the probability
to find transactions containing all the items in X∪Y, once we know that they contain X.
An association rule mining process consists of two steps: (1) the identification of all the
frequent itemsets, that is, all the itemsets, whose supports are higher than a pre-determined
minimum support threshold, min supp; (2) the generation of strong association rules from
the frequent itemsets, that is, those frequent rules whose confidence values are higher than a
minimum confidence threshold, min conf. Along with confidence and support, a sensitivity
level is assigned only to both frequent and strong rules. If a strong and frequent rule is above
a certain sensitivity level, the hiding process should be applied in such a way that either
the frequency or the strength of the rule is reduced below the min supp and the min conf
correspondingly. The problem of association rule hiding can be stated as follows: given a
database D, a set R of relevant rules that are mined from D and a subset Rh of those sensitive
rules included in R, we want to transform D into a database D′ in such a way that the rules
in R can still be mined, except for the rules in Rh.
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Figure 5. Algorithm GIH for Rule Fuzzification by Hiding their generating Greatest Itemsets.

4.1.3. Rule hiding algorithms based on data fuzzification. According to the data fuzzifi-
cation approach, a sequence of symbol in the new alphabet of an item {0,1,?} is associated
with each transaction where one symbol is associated with each item in the set of items
I. As before, the ith value in the list of values is 1 if the transaction supports the ith item,
it is 0 otherwise. The novelty of this approach is the insertion of an uncertainty symbol,
e.g. a question mark, in a given position of the list of values which means that there is no
information on whether the transaction supports the corresponding item. In this case, the
confidence and the support of an association rule may be not uniquely determined, but they
can range between a minimum and a maximum value. The minimum support of an itemset
is defined as the percentage of transactions that certainly support the itemset, while the
maximum support represents the percentage of transactions that support or could support
the itemset. The minimum confidence of a rule is obviously the minimum level of confi-
dence that the rule can assume based on the support value, and similarly for the maximum
confidence. Given a rule r, mincon f (r ) = minsup(r )∗100

maxsup(lr ) and maxcon f (r ) = maxsup(r )∗100
minsup(lr ) ,

where lr denotes the rule antecedent.
Considering the support interval and the minimum support threshold, MST, we have the

following cases for an itemset A:

• A is hidden when maxsup(A) is smaller than MST;
• A is visible with an uncertainty level when minsup(A) ≤ M ST ≤ maxsup(A);
• A is visible if minsup(A) is greater than or equal to MST.
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Figure 6. Algorithms CR and CR2 for Rule Fuzzification by Confidence Reduction.

The same reasoning applies to the confidence interval and the minimum confidence thresh-
old (MCT).

Traditionally, a rule hiding process takes place according to two different strategies: de-
creasing its support or its confidence. In this new context, the adopted alternative strategies
aim at introducing uncertainty in the frequency or the importance of the rules to hide. The
two strategies reduce the minimum support and the minimum confidence of the itemsets
generating these rules below the minimum support threshold (MST) and minimum con-
fidence threshold (MCT) correspondingly by a certain safety margin (SM) fixed by the
user. In order to reduce the support of the large itemset generating a sensitive rule, Algo-
rithm GIH replaces 1’s by “?” for the items in transactions supporting the itemset until
its minimum support goes below the minimum support threshold MST by the fixed safety
margin SM. Algorithms CR and CR2 operate by reducing the minimum confidence value
of sensitive rules. The first one decreases the minimum support of the generating itemset of
a sensitive rule by replacing items of the rule consequent with unknown values. The second
one, instead, increases the maximum support value of the antecedent of the rule to hide
via placing question marks in the place of the zero values of items in the antecedent. All
the fuzzification algorithms hide a sensitive rule with an uncertainty level by decreasing
the minimum support or confidence values below the resulting thresholds, MST-SM and
MCT-SM. More details can be found in Sabanci University (2003).

4.2. Testing framework

In this section we present the assessment of the data fuzzification algorithms described in the
previous section according to the evaluation framework we have proposed. We describe in
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details the methodology adopted in the evaluation process, the dataset with respect to which
the algorithms have been evaluated, and the tools supporting our evaluation methodology.

4.2.1. Evaluation methodology. The methodology consists of three main steps:

• Database Creation.
• Sanitization of the generated databases.
• Testing of each algorithm according to the specified evaluation criteria.

Each algorithm tries to hide sensitive association rules that can be extracted by
the Apriori algorithm from an artificially generated database that summarizes the
properties of a supermarket database recording the customer purchase habits. Each
row of such database specifies the customer ID, the transaction ID and a set of items
corresponding to those products bought by that customer with this ID during the given
transaction. While trying to hide some association rules, each algorithm follows a
different strategy which leads to questions like: “Which algorithm has the best per-
formance, and the worst data quality? Which algorithm provides the highest privacy
level?” In order to answer these questions, we performed the following steps. We first
created a synthetic databases by using the IBM Synthetic Data Generator, IBM SDG, (see
http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.
html). We then analyzed the database to detect all relevant association rules. After that, the
sensitive rules to be hidden and the hiding algorithm to use were chosen. Based on these
choices, the sanitized database was then generated. All these activities were supported by
a prototype system whose architecture will be explained in subsection 4.2.3.

4.2.2. The dataset. In evaluating the data fuzzification algorithms, we have selected a
homogeneous data set for all the proposed algorithms with the aim of ensuring a uniform
evaluation. Now, we briefly describe the characteristics of the dataset we have selected.

The dimension of the itemset is 50 items, and the average length of the transaction is 5.
A different dataset size is selected based on the particular test we have to execute. For tests
on data quality, efficiency and hiding failure, we use a database with dimension 20 K; for
scalability tests, we used a greater number of databases with dimension of 20 K, 40 K, 60
K, 80 K, 100 K. For the tests on the level of privacy, instead, we have chosen a database
of 10K, because this parameter, which depends on the antecedent and consequent supports
and on the rule confidence, is not affected by the database dimension.

4.2.3. The prototype. The prototype, that supports the evaluation methodology we have
chosen, consists of the following five modules: (i) the file optimizer, (ii) the Apriori Algo-
rithm (association rule generator); (iii) the rule hiding module; (iv) the comparison module;
(v) the user interface. The file optimizer takes an input file (in the “.txt” format) containing
the transactions generated by the IBM transaction generator. An example of a *.txt file is
reported in figure 7. According to such file, the customer whose ID is equal to 1 bought the
items identified by 1, 2, 3, and 4 as part of the transaction with ID equal to 100, whereas
the customer with ID = 2 bought the items 5, 1 and 4 has part of the transaction with ID
equal to 200. The task of the file optimizer module consists of optimizing the database
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Figure 7. An example of a database transaction file(*.txt).

Figure 8. An example of a rule file(*.out).

transaction file by converting the input file from the text (“.txt”) to a binary format (file
extension suffix “.opt”). The use of binary data reduces the database size if the database
contains a large number of transactions. For instance, a *.txt database file of size 1.67 MB
can be reduced to the size of 144 KB after the optimization process.

Then, the output of the file optimizer module is given to the Apriori Algorithm which
uses the optimized transaction file to generate association rules with the given minimum
support and confidence values. The association rule generator returns a file with “.out”
extension which contains the association rules of the optimized transactional database. An
example of a *.out file is given in figure 8.

Each row in the file illustrated in Figure 8 provides the size of both the antecedent and
consequent of the considered rule along with the antecedent and rule supports. Then the
rule hiding module is invoked: it takes the output of the association rule generator module,
that is, a file of rules with extension “.out” and a “.txt” file containing a parameter denoting
the set of rules to be hidden along with its cardinality. The output of the rule hiding module
is a “.txt” file containing the transactions generated. If we process the output of the rule
hiding module through the file optimizer and the association rule generator in this order, we
obtain the association rules resulting from the rule hiding process. By comparing the rules
before and after the rule hiding process through the comparison module, we can determine
the differences between the two rule files, and thus we are able to determine how many
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Figure 9. Architecture of the prototype supporting the evaluation methodology.

rules are “lost”, and how many rules are “new” (that is, how many new rules have been
introduced).

The prototype has been developed in Delphi environment by using Object Pascal lan-
guage. Figure 9 illustrates the prototype architecture. It takes the input parameters from
the user and sends them to the executables that are compiled in MS Visual Studio C++.
These executable modules are the file optimizer, the apriori, the rule hider and the com-
parison module that have been previously described. Each executable module performs
synchronously.

4.2.4. General automatic data hiding algorithms evaluation tool (GADHAET). The
prototype we have described is the core of a more general tool, called GADHAET, that
we have designed with the aim to realize a general and automatic evaluator of data hiding
algorithms. From the logical point of view, this tool is composed by four main units: data
mining, data hiding, statistics, loader.

The Data mining unit receives in input a database and applies the appropriate data mining
algorithms in order to determine all possible information that can be retrieved from the
database. The results of this phase are transmitted to the Data Hiding and Statistics unit.
The first one applies the algorithms that we want to test to the database, generating an
Internal Sanitized Database over which the data mining algorithms will be re-applied. The
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results of these operation are collected and analyzed by the Statistic unit in order to assess
the different properties of the considered algorithm according to the evaluation framework.
In order to make the tool usable for a large variety of data mining techniques, the different
algorithms and the different strategies used for evaluating the criteria over different types of
algorithm and with different types of database are not part of the tool, but they are included
in dynamic modules that can be automatically loaded by using the Loader unit. It is thus
possible to test new algorithms and strategies by simply encoding them into new modules
that can be transparently used.

4.3. Evaluation of experimental results

Here we present some results of the experiments we have performed in order to evaluate
the set of hiding algorithms based on data fuzzification according to the evaluation criteria
described in Section 3. The experiments have been performed on a Pentium III with 256
MB of RAM under Windows OS. In the testing phase, the same working load of the system
was ensured. For each set of experiments, five trials have been executed and the average
value has been computed.

4.3.1. Efficiency evaluation. In analyzing the efficiency of the considered PPDM algo-
rithms, we focused our attention on assessing the time requirements given the irrelevant
costs for data storage. The time requirements of the algorithms presented in Section 4.1
have been evaluated in terms of both computational costs and CPU times. We first present
the results of the computational cost analysis of each algorithm. Then, we describe the CPU
times we obtained from the performed experiments.

In what follows, we denote with ATL the average number of items per transaction, while
AD = |D| ∗ AT L denotes the average number of items in the database. The following
theorems state the theoretical complexity of the three fuzzification algorithms. We refer the
reader to Appendix A for the proofs.

Theorem 4.1. Algorithm GIH performs in O(|Lh| ∗ |D|).

Theorem 4.2. Algorithm CR performs in O(|Rh| ∗ AD).

Theorem 4.3. Algorithm CR2 performs in O(|Rh | ∗ AD).

Besides the theoretical analysis on the complexity of the considered algorithms, we have
evaluated the efficiency of these algorithms by means of experimental measurements of their
execution times. They are measured in terms of CPU time (in milliseconds) by increasing,
first, the values of the rule support or confidence, and then, the number of sensitive rules
to be hidden. We applied the data fuzzification algorithms to a database containing 20 K
transactions, 50 different items (AD) and characterized by an average number of items per
transaction (ATL) equal to 10. For analyzing the CPU time for increasing values of the rule
support or confidence, we chose four different association rules with increasing support
and confidence values. Then the support and confidence thresholds (MST and MCT) have
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Figure 10. CPU times of Algorithms GIH, CR respectively, when varying support/confidence values and number
of sensitive rules to be hidden.

been fixed equal to the minimum value of support and confidence; the safety margin (SM),
instead, has been set equal to 10% of the fixed thresholds. As for Algorithm GIH, the four
rules have been sorted in ascending order of their support, whereas for testing the other
algorithms, the rules have been sorted in ascending order of their confidence.

For all three algorithms, as we can see from figure 10, the CPU time increases for
increasing values of the support in the case of Algorithm GIH, and of the confidence for the
other algorithms and, similarly, when varying the number of rules to be hidden. However,
we have to notice that the order of magnitude is different. Algorithm CR2 has the worst
performance with respect to both the rule confidence and the number of rules to be hidden.
Algorithms GIH and CR, instead, show a similar trend, but Algorithms CR proves to be the
most efficient according to the two considered dimensions.
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Figure 11. CPU times of Algorithms GIH, CR, CR2, respectively, when increasing data sizes (both ATL and
DB size).

4.3.2. Evaluation of scalability. Now, we present the results of the experiments we have
executed for evaluating the scalability of the three algorithms. This parameter measures
the efficiency for increasing values of the data size, that is, the size of the dataset in
terms of both transaction number and transaction length (average number of items per
transaction, briefly denoted as ATL). Therefore, we have performed two series of tests on
each fuzzification algorithm that hides four association rules, characterized by the same
features, first, by increasing the database size from 20 k to 100 k, and then by increasing the
average transaction length from 5 to 15. The scalability trend of the algorithms is similar
to the efficiency trend. As we can see from figure 11, algorithm CR2 proves to be the least
scalable algorithm with respect to both the database size and the transaction length. As for
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Algorithms GIH and CR, their CPU times grow slower than the CPU time of Algorithm
CR2. Again Algorithms CR proves to be the most scalable.

4.3.3. Data quality evaluation. The data quality parameter is a measure of the amount
of perturbation applied to the database to be protected from the mining process. In our
evaluation, we analyzed both the data dissimilarity measuring the amount of modification
applied to the data, and the perturbation in the data mining results after the sanitization
process, in terms of the number of ghost and lost rules due to the hiding operation. Both these
metrics, which describe two different, even if correlated, aspects of data quality, have been
evaluated, first, when the support or the confidence value of the rule to be hidden increases,
and then, when the number of the rules to hide grows. We observe that for each considered
parameter, the number of ghost rules, due to the application of a fuzzification algorithm, is
always equal to zero. Algorithms GIH and CR, in fact, work by decreasing the minimum
support and confidence values, respectively, while keeping fixed the maximum value of both
support and confidence and, similarly, for all the rules generated by the itemsets containing
the blocked values. Algorithm CR2, instead, performs in such a way so to increase the
maximum confidence value of the antecedent of the considered rule, while keeping fixed
the minimum values for both support and confidence of the rule as well as its antecedent.
Therefore, it does not create new rules. Moreover, it less affected by the loss of relevant
rules than the other algorithms, even if it has to execute a higher number of operations
to reduce the minimum confidence value under the considered threshold, MCT-SM, than
Algorithms GIH and CR. This is why Algorithm CR2 decreases the minimum confidence
by increasing the maximum support of the rule antecedent, that is, the denominator of the
fraction providing the minimum confidence; this also explains the reason why Algorithm
CR2 is the less efficient and the less scalable. Figures 12 and 13 show both the two measures
for data quality when varying the two considered dimensions. We can see that Algorithm
CR has the least dissimilarity since for the same rule to be hidden it performs a lower
number of blocking operations by decreasing its minimum confidence. Algorithms CR2,
instead, is characterized by the worst dissimilarity (for the reason explained above), even
though it ensures the best quality in term of lost rules. The reason is that this algorithm
increases the relevance of the rules that are already visible before the privacy preservation
process, while limiting the loss of relevant rules. Here, we can see that the combination
of these two metrics allows us to better control the state of data after the application of a
PPDM algorithm.

To conclude, Algorithm CR is the one that introduces less uncertainty in the database,
even if it results in a high loss of relevant association rules. Algorithm CR2, instead, inserts
the highest level of uncertainty into the database, but it little affects the results of the rule
mining process.

4.3.4. Evaluation of hiding failure. As we have previously discussed, the hiding failure
parameter provides a measure of the amount of sensitive information that can be still mined
after the privacy preservation process.

All algorithms we have analyzed aim at hiding all sensitive rules identified in the transac-
tional database. However, the hiding strategy adopted by Algorithm CR2 applies only if the
database to be sanitized contains for each sensitive rule to be hidden some transactions that
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Figure 12. Data quality of Algorithms GIH, CR and CR2 when increasing rule support/confidence values.

partially support the rule antecedent and that do not fully support the rule consequent, that
is, they cannot support the rule consequent or can partially support it. If such transactions do
not exist, for instance when the rule antecedent consists of only one item, Algorithm CR2
is not able to hide the corresponding rule and, thus, its hiding failure parameter is greater
than zero. The other data fuzzification algorithms, instead, are characterized by a value of a
zero for the hiding failure parameter. Both of them hide a sensitive itemset or an association
rule by blocking some items within transactions that fully support the given itemset or the
itemset generating the rule. The database obviously contains such transactions given the
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Figure 13. Data quality of Algorithms GIH, CR and CR2 when increasing the number of sensitive rules.

relevance of the considered itemsets. Thus, they provide a complete protection of all the
sensitive information contained in any database. Obviously, the more sensitive information
we hide, the more non-sensitive information we miss and the more artifactual information
we create, in terms of lost and ghost rules, respectively, as we have observed from the data
quality graphs. For this reason, in some cases it could be better to keep a low non null
hiding failure in order to obtain a sanitized database more similar to the original one.

4.3.5. Evaluation of privacy level. Here, we present some results of the experiments we
have executed for assessing the privacy level ensured by the fuzzification algorithms. In
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Table 1 Rules to be hidden

Selected rules for Privacy level measure

Rule ID Rule Supp. (%) Conf. (%)

R1 9 28 ⇒ 6 13 22 10,23 28,70

R2 9 13 ⇒ 2 25,41 52,39

R3 6 9 22 26 ⇒ 13 10,60 80,71

our evaluation, we have considered a database containing 10 K transactions, 30 items and
10 items per transaction on average. Three rules, R1, R2 and R3, have been considered
within the selected database having different support and confidence values. Their features
are described in Table 1. The minimum support and confidence thresholds, MST and MCT,
have been set equal to the support and confidence values, respectively, of each rule to hide.
Then, five different safety margins, SM, have been considered. They are equal to 10%, 20%,
30%, 40%, 50% of the fixed MST and MCT values. Then, each rule has been hidden and
the average value of the privacy levels has been computed. We can observe from figure 14
that an increase in the safety margin, resulting in a reduction in the applied threshold,
MST-SM or MCT-SM, (for both the support and confidence values) leads to an increase
in the level of privacy. Additionally, we notice that Algorithm CR2 is the one ensuring the
highest privacy level, whereas the other two algorithms, characterized by a similar trend,
hide the fixed rules, R1 and R2, with a lower degree of uncertainty.

To conclude, none of the analyzed algorithm is better the other ones wrt all the parameters
we have considered. Then, for choosing which one to use in a real case, all these parameters
have to be taken into account, giving each one the relevance required by the specific case
and the particular application domain.

5. Conclusions and future work

In this paper, we have proposed a framework for evaluating privacy preserving data min-
ing algorithms. Such framework allows one to assess the different features of a privacy
preserving algorithm according to a variety of evaluation criteria. Parameters like level
of privacy, data quality and hiding failure have been defined and the evaluations of such
parameters over a set of association rule hiding algorithms have been presented. As part of
future work, we plan to apply the proposed evaluation framework to other classes of pri-
vacy preservation algorithms, like cryptography-based and reconstruction-based methods.
This is an important step in order to obtain a complete evaluation of privacy preserving
techniques. Another interesting topic that we plan to explore is the data quality parameter
and a characterization of dataset features relating to the hiding and quality of data. Finally,
the use of entropy and information theory for discriminating relevant information within
very large databases needs further investigation.
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Figure 14. Entropy level ensured by Algorithms GIH, CR and CR2 when hiding the association a set of rules
for increasing support/confidence values.

Appendix A: Proofs

Proof-of Theorem 4.1: First, Algorithm GIH sorts the itemset Lh wrt the items it contains
and the particular items it supports. In general, sorting N number has a complexity in
O(Nlog(N)). However, in our case the length of transactions and thus of the considered
itemsets has an upper bound that is very small compared to the size of the database. Then,
Algorithm GIH takes O(|Lh|) to sort the set Lh of large itemsets to hide according to a
descending order based on their size and minimum support. For each itemset Z in Lh, it
takes O(|D|) in order to generate the set TZ of the transactions in D that support Z, assuming
that the transaction length is bounded by a constant. In addition to that, the algorithm sorts
TZ in ascending order of transaction size. Since the transaction length is bound, the sorting
algorithm is of order O(|TZ |). Then, the item i ∈ Z with highest minimum support is selected
and a question mark is placed for that item in the transaction with minimum size, and this
is repeated until the minimum support of the itemset Z goes below the MST by SM. After
k iterations, the minimum support of Z will be minsup(Z )(k) = |TZ |−k

|D| ; thus the number of
steps required to hide Z is |TZ | − (MST − SM) ∗ |D|. Since |TZ | ≤ |D| and [(MST − SM)
∗ |D|] ≤ |D| we can state that Algorithm GIH requires O(|Lh| ∗ |D|) time to hide all the
itemsets belonging to Lh and consequently all the sensitive rules, whose generating itemsets
are stored in Lh. �
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Proof-of Theorem 4.2: For each sensitive rule r to hide, Algorithm CR performs the
following tasks: it generates the set Tr of transactions of D supporting r, taking O(|D|∗ ATL),
then for each transaction t in Tr it counts the number of items in t, that is of order O(|Tr |∗
ATL). To sort the transactions in Tr in ascending order of the number of items supported
the Algorithm CR takes O(|T ′

lr
|) for the reason explained above. To hide the selected rule

r, the algorithm executes the inner loop until the minimum support becomes lower than
MST by SM or minimum confidence becomes lower than MCT by SM. The minsup(r)
and minconf(r) are initially equal to |Tr |

|D| and |Tr |
|Tlr | respectively, and after k iterations the

fractions become |Tr |−k
|D| for the minsup(r) and |Tr |−k

|Tlr | for the minconf(r). This implies that

the inner loop executes until |Tr |−k
|D| < M ST − SM or |Tr |−k

|Tlr | < MCT − SM , that is, k =
min(|D|∗(minsup(r )−(M ST −SM))), |D|∗(minsup(r )−(MCT −SM)∗minsup(lr ))),
which can be assessed in both cases as being O(|D|). The cost of each iteration is given by
the choose item operation, which takes O(1) time. Therefore, Algorithm CR takes O(|Rh|∗
AD) to hide all the sensitive rules in Rh. �

Proof-of Theorem 4.3 For each rule r, Algorithm CR2 performs the following tasks: it
generates the set T ′

lr
of transactions of D that partially support lr and do not fully support

rr, taking O(|D|∗ ATL), then for each transaction t in T ′
lr

it counts the number of items
of lr in t, that is of order O(|T ′

lr
| ∗ AT L). To sort the transactions in T ′

lr
in descending

order of the calculated counts, the algorithm takes O(|T ′
lr
|) in this particular case. To hide

the selected rule r, the algorithm executes the inner loop until the minimum confidence
becomes lower than MCT by SM. The minconf(r) is initially equal to minsup(r )

maxsup(lr ) = |Tr |
|T ′

lr
| ,

and after k iterations the fraction becomes |Tr |
|T ′

lr
|+k . This implies that the inner loop executes

	|D|( minsup(r )
MCT −SM − minsup(lr ))
 steps. The cost of each iteration takes O(1) time, thus

Algorithm CR2 performs in O(|Rh| ∗ AD). �

Note

1. Health Insurance Portability and Accountability Act
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