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ABSTRACT 
Location-dependent applications are becoming very popular 
in mobile environments. To improve system performance 
and facilitate disconnection, caching is crucial to such ap- 
plications. In this paper, a semantic caching scheme is used 
to access location dependent data in mobile computing. We 
first develop a mobility model to represent the moving be- 
haviors of mobile users and formally define location depen- 
dent queries. We then investigate query processing and 
cache management strategies. The performance of the se- 
mantic caching scheme and its replacement strategy FAR 
is evaluated through a simulation study. Our results show 
that semantic caching is more flexible and effective for use 
in LDD applications than page caching, whose performance 
is quite sensitive to the database physical organization. We 
also notice that  the semantic cache replacement strategy 
FAR, which utilizes the semantic locality in terms of loca- 
tions, performs robustly under different kinds of workloads. 

1. INTRODUCTION 
Location dependent data (LDD) is the data whose value is 
determined by the location to which it is related. Examples 
include local yellow pages, traffic reports, weather informa- 
tion, maps and so on. A location dependent query is a query 
that is processed on location dependent data, and whose 
result depends on the location criteria explicitly or implic- 
itly specified. Moreover, the result may change as the user 
changes his location. Although such applications can also 
be requested in and supported by conventional systems, mo- 
bility increases the intensity of the needs, opportunities and 
challenges. Nowadays, location-dependent applications are 
becoming more and more popular in the mobile computing 
environment. 
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E x a m p l e  1 - A C o n t i n u o u s  L D D  Q u e r y :  Suppose Jane 
is traveling through a new city in her car and she wants to 
find the nearest restaurant. A typical query requested could 
be "Show me the restaurants within a radius of 5 miles". 
However, assume that no satisfactory restaurant is found 
since Jane prefers chinese food, the same query may be is- 
sued continuously. 

To improve system performance and deal with disconnec- 
tion, caching is crucial to LDD applications. In Example 1, 
Jane gets different restaurant information as she moves to 
different locations. Furthermore, since Jane asks the same 
question continuously, there may be a large degree of overlap 
in the results of consecutive queries. Clearly, continuously 
evaluating a query from scratch would be very inefficient. If 
we keep a cache on the mobile unit,  part of the new query 
result could be obtained locally. By doing this, the wireless 
network traffic is reduced, and the system performance is 
improved as well. 

However, how to choose an effective caching scheme requires 
further study. Obviously, location plays a distinguished role 
in location dependent queries, it actually provides an addi- 
tional, if not the only, semantic criteria to access the data. 
Hence an LDD query workload is more likely to exhibit a 
semantic locality in terms of the locations, rather than a 
static spatial locality 1 defined by the fixed database physi- 
cal organization. That  is to say, an LDD data item with 
a location closer to the current position of the mobile user 
and in the direction of his movement is more likely to be 
visited in the near future. This unique characteristic makes 
the traditional page or tuple caching inappropriate to the 
LDD applications in mobile computing. In addition, the se- 
mantic locality among LDD queries is usually highly related 
with the moving path of the mobile user, e.g. the contin- 
uous query issued in Example 1. To dynamically adapt to 
the query access pattern, the cached contents are required 
to move as the mobile unit  moves. This observation moti- 
vates the development of cache replacement strategies built 
around location and movement. 

The idea of semantic caching is that  the mobile client main- 
tains both the semantic descriptions and associated answers 
of previous queries in the cache. If a new query is totally an- 

1Here, spatial locality means that  the data items which are 
physically stored closely are likely to be accessed together. 
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swerable from the cache, no communication with the server 
is necessary; if it can only be part ial ly answered, the orig- 
inal query is t r immed and the t r immed part  is sent to the 
server to be processed. Semantic caching is by nature an 
ideal cache scheme for location dependent applications due 
to the following reasons. First  of all, semantic caching is 
built on the semantic locality among queries, which just  
fits the LDD applications where much semantic rather than 
temporal  or spatial  locality is exhibited. Secondly, continu- 
ous LDD queries can be incrementally processed by seman- 
tic caching. Wi th  each successive request, a much smaller 
t r immed LDD query is processed at the server side and 
only the differences are t ransmi t ted  over the wireless link. 
Thirdly, semantic caching makes cache management more 
flexible. The cache can be managed based on temporal  or 
location information, it could even be managed according 
to the instructions explicitly given by the mobile user. I t  is 
the semantic granularity and the semantic descriptions kept 
that  makes all of these possible. At last, semantic caching 
also facilitates disconnections. Even though the da ta  at cur- 
rent location can not be obtained, the mobile user might still 
be able to learn the information for other neighbor locations 
from the local cache. A page or tuple cache can not offer 
such functionality, since the cached da ta  there is not associ- 
ated with any semantic meanings. 

This paper  is composed of two main parts. The first part  of 
the work includes a formal model to represent moving ob- 
jects and the definition of LDD queries. From that  start ing 
point, we then investigate ways in which a semantic cache 
can be used efficiently in LDD applications. In Section 2, 
we first review related research in location dependent data, 
then examine previous semantic caching and cache manage- 
ment work. We model mobili ty and define location depen- 
dent queries in Section 3. Section 4 gives the strategies of 
applying semantic caching to location dependent applica- 
tions. The performance of the proposed scheme is examined 
through a simulation s tudy in Section 5. Finally, we sum- 
marize our work and discuss future research in Section 6. 

2. RELATED WORK 
One area of research that  is related to this paper is about 
location dependent application modeling, including how to 
represent moving objects and define location dependent query. 
Another body of relevant work is the semantic caching scheme 
and the cache management  issues. In this section, we review 
previous works from these two aspects. 

2.1 Modeling Mobility 
A formal da ta  model (MOST) to represent moving objects 
in a database system was introduced in [20]. They treat  the 
position of a moving object as a dynamic database at tr ibute,  
and express it with three sub-at tr ibutes,  value, update t ime 
and function, where the function indicates how the value 
changes over time. [20] also proposes three types of queries 
arising in MOST: instantaneous, continuous and persistent. 
These queries exhibit both temporal  and spatial  features, 
since they query moving objects whose values change as time 
passes by. Moreover, the parties who issue these queries may 
also move. The problem of how to index moving objects in 
a database is investigated in [14] and [20]. A straightfor- 
ward use of spatial  indexing is inefficient and infeasible since 
the spatial  index has to be continuously upda ted  when the 

objects are continuously moving. The previous works dis- 
cussed so fax mainly deal with how to model, store, index 
and query moving objects in databases.  In this paper,  we 
are interested in how to query location dependent da ta  from 
a moving party. The da ta  are not assumed to be dynamic 
database at tr ibutes.  

In [7], location dependent queries are shown to be impor- 
tant  and popular applications related to mobility of a mo- 
bile environment. They also indicate the research chal- 
lenges brought about  by this new type of application, such as 
changes to query language and database design. More LDD 
examples and further discussions about  LDD management 
can be found in [8]. A formal model, which treats location 
dependent da ta  as database spatial replicas t ightly coupled 
with specific data regions, is proposed. Then based on this 
model, research issues such as query processing, caching and 
transaction management  are explored. [8] serves as an ex- 
cellent review about LDD applications, however, it doesn't  
provide detailed algorithms and performance study. 

[2] implements a location dependent application system, which 
provides a way for mobile users to access location dependent 
information from the Internet.  Like [8], they also part i t ion 
LDD da ta  among servers, and propose a network-layer prim- 
itive, nearcast, for a mobile client to locate and access the 
specific server covering the da ta  it  needs. [2] points out that  
the cached LDD da ta  can become obsolete due to an explicit 
update  from the server, and because of a move as well. To 
solve this new location-dependent invalidation problem, for 
LDD data, they send the associated scopes to the mobile 
client along with the contents. The scope information is 
sufficient for the client to detect  location-dependent valid- 
ity, just  as an at tached expiration period is used in checking 
tradit ional  t ime-dependent  validity. 

Our work differs from these previous research in that  we fo- 
cus on location dependent da ta  caching issues. We apply 
the semantic caching scheme to LDD applications, with ev- 
ery cached item having an at tached semantic description. 
We also examine cache management  strategies in the LDD 
domain. 

2.2 Semantic Caching and Cache Management 
In what follows, we first briefly review previous semantic 
caching work from the aspects of definition, organization 
and operation. Then we look at different strategies in cache 
replacement. 

Semantic caching has been widely used in centralized sys- 
tems ([4], [18]), client-server environment ([5], [13]), OLAF 
systems ([6]), mobile computing ([15], [17]) and heteroge- 
neous systems ([9]). All these works cache query results 
rather than database tuples or pages. The cache is com- 
posed of a set of items at tached with the related semantic 
descriptions, which are called semantic regions in [5], seman- 
tic segments in [17] and so on. While logically the cache is 
always organized using an index which maintains the seman- 
tic as well as physical storage information for every cached 
item, there are various ways to physically store the data. [5] 
stores semantic regions in tuples, and [17] stores semantic 
segments in pages. The query processing strategies used in 
these works are very similar. When a new query comes, it 
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gets split into two disjoint pieces: one that can be locally an- 
swered by the cache and one which can not. Only the second 
part is sent to the database server to be processed. Another 
important issue is how to partition and coalesce the disjoint 
parts after query processing. Different coalescing and de- 
composing strategies are developed in [5], [15] and [16]. The 
objective of this paper is to apply semantic caching to lo- 
cation dependent applications. We base our work on the 
cache model proposed in ([16], [17]), which is extended to 
incorporate the unique characteristics of LDD data. 

The commonly used cache replacement strategies are built 
on temporal locality, such as LRU, MRU and CLOCK. Profit- 
based or benefit-based replacement schemes are proposed in 
[6], [13] and [19]. [19] implements an intelligent cache man- 
ager in data warehouse systems, where the retrieved sets by 
queries are cached. They choose the replacement victim by 
considering its average reference rate, size and the execu- 
tion cost of the associated queries. Similarly, [13] develops 
a benefit-based replacement strategy for a semantic cache. 
[6] works in the OLAP domain, cache replacement is done 
at the chunk level and uses a benefit-based CLOCK pol- 
icy. The benefit metric mainly involves execution cost which 
varies from chunk to chunk. Another different replacement 
policy is used in [3]. The victim is selected according to the 
access probabilities which are predicted by observing the 
data access history. Moreover, [5] utilizes semantic locality 
in semantic caching replacement. For each cached semantic 
region, a replacement value is assigned which is the negative 
of the Manhattan distance between the "center of gravity" 
of that region a n d t h e  "center of gravity" of the most recent 
query. With this distance function, semantic regions that  
are semantically "closer" to current query are less likely to 
be discarded. The rationale used here is to predict the future 
use patterns for the segments by examining their semantic 
relationships with the current query. This paper also utilizes 
semantic information to do replacement. However, since we 
work in LDD application domain, the semantic locality used 
is highly related with the moving behavior of mobile users. 

3. MODELING LDD QUERY 
Location dependent queries usually originate from moving 
objects, whose locations determine the results of these queries. 
To effectively manage LDD queries, a mobility model is 
required to represent the locations and moving behaviors 
for mobile users. We model the moving behavior of mo- 
bile clients from the aspects of locations, speeds and direc- 
tions. While in general an object can move anywhere in 
the 3-dimensional space with varied speed and direction, 
this research assumes that  a mobile unit  always moves in 
the 2-dimensional space at a speed that keeps constant dur- 
ing any observed time period and may change from time 
to time. This assumption makes sense in many cases, e.g. 
cars moving on highways, planes flying in the sky and so on. 
To model a moving object, we first define the related basic 
concepts. 

D e f i n i t i o n  1 A Loca t ion ,  L, is a tuple (L=, Lv), where L= 
and L~ are integers. 

A location denotes an exact position in space. In real life, 
a location can always be represented in terms of a pair of 
the absolute latitude and longitude coordinates, which are 

both float numbers. Without  loss of generality, we truncate 
them into integers in this research. Alternatively, given a 
reference point in a predefined geographic region, Definition 
1 can also be used to stand for relative locations. We assume 
that a mobile client is equipped with a certain mechanism 
to obtain its current location. For example, the client may 
determine its location via GPS or through communicating 
with the corresponding server. Here, all the details about 
location tracking are ignored. 

D e f i n i t i o n  2 A Veloci ty ,  V, is a vector < V~, Vy >, where 
V= and V v are integers. 

For ease of modeling, we build up a reference coordinate 
system, where x axis stands for the east and west dimension 
with the east direction being positive, and y axis represents 
the north and south dimension with the north direction be- 
ing positive. To model both the speed and direction of an 
object moving in a 2-dimensional space, we use a pair of val- 
ues V~ and V~, which are the projections of its speed vector 
on x axis and y axis respectively. Notice that  the signs of 
V~ and Vy, and the ratio of the absolute value of V~ and 
that  of V~ determine the direction of the movement. Some 
velocity examples are given in Figure 1. Suppose the mo- 
bile unit  starts from P1 with the location (1, 1), when it 
moves at a speed of v/2 in the northeast direction, its veloc- 
ity can be expressed as I/1 = <  1, 1 >. After two seconds, 
it arrives at P2 with the location (3, 3). Then it moves to 
the west at a speed of 2, and its velocity is I/2 = <  - 2 ,  0 >. 
Later on, the mobile unit  moves to the south at the velocity 
113 = <  0 , - 5  >, changes its velocity to V4 = <  6 , - 3  > at 
P4, moves to P5 and finally arrives at P6 with a velocity of 
V5 = <  3, 1 >. 

N o r t h  

V 2  P3 = = <-2, 0> _ I ' 2  (3, 3) 

4 " / ~  
IJ P1 (1, 1) 

West ~ O(0, 0) = East 

P4  7P6 

South 

F i g u r e  1: T h e  Ve loc i ty  E x a m p l e s  

Velocity helps to predict future locations of moving objects. 
Let L -- (L~, L~) stand for the location of a mobile client 
M at time T, also suppose that  M moves at a velocity V 
= < V~,Vy > and keeps this velocity during the period 
IT, T+~T] ,  then M's location at time T÷~t,  where ~t < ~T, 
is expressed as L~ = (L~ +V~ x ~t,L~ + V  v × ~t). This 
can be illustrated by a scenario in Figure 1 when the object 
moves from P1 to P2. 

At a certain point in time, the status of a moving object can 
be specified by its location and the velocity of the movement. 
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As time passes by, the object  may change its moving behav- 
ior. Hence, the s tatus of a mobile unit is modeled to be 
always associated with a part icular  t imestamp.  

D e f i n i t i o n  3 The S t a t u s ,  of a mobile unit, M, is a tu- 
pie (MT, ML, M y ) ,  where MT is a timestamp, ML is M's 
location at MT and M y  is M's velocity at MT.  

For example, in Figure 1, assume tha t  the mobile unit s tar ts  
at t ime Tz at  location PI(1, 1), then arrives at P2(3, 3) at 
t ime T2 and changes its velocity there. According to Defi- 
nition 3, its status at P1, P2 can be expressed as (T1, PI(1, 
1), VI< 1,1 >),  (T2, P2(3, 3), V~_< - 2 , 0  >) respectively. 
Keeping track of the s tatus of a mobile user helps to exam- 
ine his location dependent  query workload, thus facilitates 
cache management.  We can store in the cache those da ta  
that  are very likely to be visited in the future by making the 
replacement strategy dynamical ly adapt  to the query access 
pattern.  Also, useful information can be prefetched based 
on the user profile in which the future status are specified. 

The key issue in modeling location dependent  queries is how 
to specify the location related select predicates. Our s trat-  
egy is to t reat  the location criteria as normal conditions. 
Before processing LDD queries, they must be bound to a 
precise location. This process adds the location a t t r ibute  
values to them. 

E x a m p l e  2 - M o d e l i n g  a n  L D D  Q u e r y :  Suppose there 
is a hotel relation with attributes n a m e ,  p r i ce ,  vacancy ,  
x p o s i t i o n ,  y p o s i t i o n ,  and the mobile unit M issues a query 
Q = "Give me the names of the hotels within 20 miles whose 
prices are below $100." at location L. Then the predicate of  
Q, Qp can be represented as Qp = (price < 100) A (L~ - 20 
< xposition < L~ + 20) A (L~ - 20 <_ yposition < L~ + 20). 
It is evident that Qp is not a direct select condition, and Q 
can be answered only when the value of L is given. Assume 
that currently L is (10, 30), then Qp is converted into Qp'  
= (price < 100) A (-10 <_ xposition < 30) A (10 <_ yposition 

t 

<_ 50). Qp could have a different expression as M moves to 
another location. Sometimes, even i f  M stays at the same 
location, it may ask for  hotel information at another place. 

t 

In this case, Qp also changes because L changes. 

We consider select and project LDD queries in this research, 
and assume that  each query predicate involves only one lo- 
cation vaxiable. However, the proposed model can be easily 
extended to handle other more complicated queries, which 
is an important  direction of future work. LDD queries are 
constructed with two kinds of predicates: t radit ional  loca- 
tion unrelated predicates and location related ones. Before 
formally defining an LDD query, we first discuss these two 
kinds of predicates and other related concepts. 

Suppose that  the database being examined, D, consists of a 
number of base relations Rz, R2, ..., R~, namely, D ---- {R~, 1 
< i < n}. Further  let AR~ s tand for the a t t r ibute  set of R~, 
and A represents the a t t r ibute  set of the whole database, 
i.e. A = UAR~. Then, we have the following definitions. 

D e f i n i t i o n  4 Given a database D = {Ri} and its attribute 
set A = UARI, a C o m p a r e  P r e d i c a t e  P is of the form 
P = a op c, where a E A, op E {<, <,  >,  >,  =},  c is a 

constant in a specific domain. 

D e f i n i t i o n  5 A L o c a t i o n  V a r i a b l e ,  L V, is a tuple ( L V= , L V~ ) , 
where LV~, LV~ are integer variables. 

D e f i n i t i o n  6 Given a database D={P~}, its attribute set 
A=UAR~ and a location variable LV, a L o c a t i o n  C o m -  
p a r e  P r e d i c a t e  with respect to LV, LCP, is of the form 
LCP = a op (LV~ +c) or LCP = a op (LVu +c), where aEA, 
opE{<,<,_>,>,=},  c is a numeric constant. A L o c a t i o n  
P r e d i c a t e  with respect to LV, LP, is a disjunction of con- 
junctions of compare predicates and location compare predi- 
cates with respect to LV. 

Look at Example 2 again. According to the above defini- 
tions, we know tha t  the predicate (price < 100) in Qp is a 
compare predicate which is not related with a location, and 
(xposition < L~ + 20) is a location compare predicate with 
respect to L. Moreover, Qp  itself is a location predicate. 
Since an LDD query can be processed only when a certain 
location is given, we now examine the concept of location 
binding. 

D e f i n i t i o n  7 Given a location L, a location variable LV, 
and a location predicate LP  with respect to LV, the procedure 
of assigning Lx to LVz,  L~ to LV~ is called the L o c a t i o n  
B i n d i n g  of L V  with L. Furthermore, the procedure of  per- 
forming location binding for  every L V  in LP  with L is called 
the P r e d i c a t e  L o c a t i o n  B i n d i n g  of LP  with L. 

For ease of expression, in this paper,  we denote the predicate 
location binding procedure of LP with L as Loc_Bind(LP,  
L). Consider Example 2, Qp '  is actually obtained through a 

predicate location binding on Qp with L(10, 30), i.e. Qp '  = 
Loc_Bind(Qp, L). An LDD query is uniquely defined when 
both its predicate and bound location are specified, thus we 
have Definition 8. 

D e f i n i t i o n  8 Given a database D = {P~} and its attribute 
set A = UAR~, a L o c a t i o n  D e p e n d e n t  Q u e r y  Q is a tuple 
(QR, QA, QP, QL, Qc ) ,  where Qn E D, QA C AOR , Qp is 

a location predicate, QL is a location, Qp' = Loc_Bind(Qp, 
QL), and O c  = 7rQAO'Qp' (QR). 

4. SEMANTIC CACHING IN LDD 
A semantic caching model which stores LDD da ta  is first 
presented in this section, then we investigate how to process 
LDD queries through such a cache. At last, we examine 
how to effectively manage the semantic cache by taking into 
account the unique characteristics of LDD applications. 

4.1 LDD Cache Model 
From the definition, we know tha t  an LDD query Q is ex- 
pressed by the tuple (QR, QA, QP, QL, Qc) ,  with the first 
four elements specifying the associated semantic information 
and the last one representing the result. Correspondingly, 
we use the same tuple (SR, SA, Sp,  SL, So)  to describe 
an LDD semantic segment S, which is a cached LDD query. 
Among these, S• and SA define the database relation and 
at t r ibutes  involved in computing S, Sp indicates the select 
condition that  the tuples in S satisfy, SL gives the bound lo- 
cation and S c  represents the actual  content of S. The whole 
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cache is then defined to be composed of a set of such seg- 
ments. This model differs from the basic semantic caching 
scheme of [16] in two aspects. First, Sp is a location pred- 
icate. Second, the bound location SL is also maintained in 
the cache. 

Physically, we store the LDD semantic segments by pag- 
ing them. Each segment is stored in one or multiple linked 
pages, and is associated with a pointer pointing to its first 
page in the memory/disk cache. Notice that  each page now 
contains LDD query results rather than database tuples. 
Meanwhile, the cache is logically organized through an index 
which maintains the semantic descriptions as well as physi- 
cal storage informations for every cached segment. The in- 
dex structure is consistent with the definition of LDD query. 
In addition to the five basic components of a segment, we 
might add other items for maintenance reasons, such as the 
last-visited t imestamp which is used for cache replacement. 
The LDD cache index is more clearly illustrated through the 
following Example 3. 

S SR 

$1 Hotel 

$2 Rest. 

$3 Hotel 

SA Sp 
(L~ - 5 
<_ hxpos < 

Hname L~ + 5)A 
(L~ - 5 
<_ hypos < 
L~ + 5) 
(L~ - 10 
<_ rxpos <_ 
L= + 10)A 

Rname, (Lv - 10 
Type <_ typos  < 

L~ + 10)A 
(6 <_ sched 
< 9) 
(L= - 5 
<_ hxpos <_ 
L= + 5)A 

Hname, (Lv - 5 
Vacancy < hypos <_ 

L~ + 5)^ 
(Price<100) 

Sz Sc STs 

10,20 2 Tt 

-5,15 5 T2 

-5,-20 8 T3 

Tab l e  1: E x a m p l e  of  L D D  S e m a n t i c  Cache  I n d e x  

E x a m p l e  3 - A n  L D D  Cache  I n d e x :  Consider a yellow 
page database with two relations: Hotel(Hno, Hname, Price, 
Vacancy, hzpos, hypos) and Restaurant(Rno, Rname, Type, 
Schedule, rxpos, rypos). Suppose that the mobile unit M asks 
the following questions on his way, whose results are cached 
afterwards. 

• At  time Tt location (10, 20), M asks query Qt:  "Give 
me all the names of the hotels within 5 miles", and 
then keeps on driving to the southwest. The result of 
Qz is cached as segment $1. 

• After it arrives at location (-5, 15) at time T2, M 
asks query Q2: "Give me the names and types of the 
restaurants within 10 miles that open from 6:00pro to 

9:00pm", and then keeps on driving to the South. The 
result of Q2 is cached as segment $2. 

• Finally at t ime T3 location (-5, -20), M asks query 
Q3: "Give me the names and vacancy information for 
hotels within 5 miles whose prices are below $I00". 
The result of Q3 is cached as segment $3. 

Assume that the J~rst pages of $1, $2 and $3 are 2, 5 and 8 
respectively, the index is shown as Table 1. 

4.2 LDD Query Processing 
As discussed before, the result of an LDD query is not only 
determined by the selection and projection conditions speci- 
fied, but  also related with the given bound location. There- 
fore, the first step of LDD query processing is to perform 
the corresponding predicate location binding. After that, 
an LDD query is converted into a normal database query 
and can be processed from the local cache using the strate- 
gies similar to those proposed in [16]. 

Since an LDD cache is composed of a set of LDD semantic 
segments, we examine the query processing problem from 
two aspects: how to process a query via a single segment 
and how to compute it from the entire cache. The rela- 
tionship between an LDD query Q and an LDD semantic 
segment S can be determined from the semantic specifica- 
tions associated with them. However, to reason among the 
predicates, we must conduct predicate location binding on 
both Q and S. If S is known to contain a part or the whole 
result of Q, we divide Q into two parts through a procedure 
called query trimming: a probe query which specifies the por- 
tion of Q satisfied by S and a remainder query which defines 
the portion of Q not found in S. Sometimes, the probe query 
can not be processed from S because the attributes needed 
to further qualify Q's result are not found in S, where only 
the projected attr ibutes of S are stored. The solution of [16] 
is to always keep the key attr ibutes in every cached segment 
and base on them to append the segments with the rele- 
vant missing attributes, which are fetched from the server 
using amending queries. As LDD query predicates often in- 
volve the location attributes, to reduce the number of the 
amending queries, a new heuristic is to also maintain the lo- 
cation attributes in LDD semantic segments even when they 
are not projected. This is a time and space tradeoff: extra 
cache space is used to reduce the wireless network delay and 
cost. 

While every individual segment may contain only a small 
part of a query result, they can combine together to generate 
a much bigger part of or even the whole result. Therefore, 
after an LDD query is t r immed by the first segment, we 
let the remainder query be further tr immed by the next 
candidate segment that  also contains the query result. This 
process continues until  there is no candidate segment in the 
cache or the remainder query becomes empty. If the final 
remainder query is not empty, it is sent to the database 
server to be processed. At last, the result of the LDD query 
is obtained by coalescing every partial result. To efficiently 
locate the candidate segments, heuristics can be proposed 
based on the cached bound locations. For example, we may 
examine the segments according to the distances between 
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their bound locations and the query's bound location: the 
closer the distance, the sooner the segment is examined. 

Another interesting issue related with query processing is 
how to handle the scenario after an LDD query Q is trimmed 
by an LDD segment S. Three disjoint parts are left after a 
query trimming: the intersection of Q and S, the difference 
of S with respect to Q, and the difference of Q with respect 
to S. To better reflect the frequency of reference, Q's results 
are always coalesced together and cached as a new LDD seg- 
ment. Meanwhile, S gets decomposed accordingly to avoid 
duplicates. The portion of S not contained in Q is further di- 
vided into two parts, the horizontal LDD subsegment Sh and 
the vertical LDD subsegment S , .  Since a location depen- 
dent query workload tends to exhibit an intrinsic semantic 
locality interms of locations, the bound location of an LDD 
segment is a special semantic metric which indicates its rela- 
tionship with other segments and future queries. As part of 
S, Sh and Sv should keep that indicator. Thus we associate 
them with the bound location SL. 

4.3 LDD Cache Management 
Since a semantic cache organizes data by semantic metrics, it 
makes cache management more flexible. Different strategies 
can be developed to adapt to the requirements explicitly or 
implicitly specified by the mobile user. When user provided 
information is not available, strategies need to be carefully 
designed to effectively manage an LDD cache. As we dis- 
cussed before, in most cases, the LDD query access pattern 
is tightly associated with the movement of the mobile user. 
Hence it is reasonable to incorporate the impact of mobility 
in LDD cache management. Before describing the detailed 
algorithms, let us first look at an example. 

M U,T2,~ l N 

Figure  2: A n  E x a m p l e  for F A R  

E x a m p l e  4 - Cache  R e p l a c e m e n t  Scenarios: Figure 2 
shows the moving path of a mobile user MU. Suppose the 
current timestamp is Ts, and the LDD cache has stored the 
results of  queries submitted by MU at time To through T4, 
with To < T1 < T2 < T3 < T4 < Ts. T6 is the timestamp 
when the next query is expected to come, the predicted MU's 
location is also shown in Figure ~. Also assume that the 
query result obtained at T5 needs to be cached and there is 
not su~c ien t  space, a victim must be chosen to be replaced. 

The segment So which stores the result of  the query submitted 
at To would be discarded i f  an L R U  policy is used. However, 
it shouldn't be replaced since it may soon be visited by the 
MU at time T6, jus t  as indicated in Figure 2. This can be 
derived from the current location of M U  and the location 
associated with So. Furthermore, the moving direction is 
another important factor in replacement. I f  M U  moves to 
north at Ts, it makes sense to replace $3. I f  M U  moves to 
west instead, $3 can not be discarded. 

An optimal replacement scheme can be found with totally 
accurate apriori knowledge, since we may simply discard 
those segments which will not be used during the trip. Oth- 
erwise, we can only work on a locally optimal plan using 
the known information about the user's current status, i.e. 
his location, moving speed and direction. A mobility-based 
semantic cache replacement policy was first proposed in [5]. 
They utilize a semantic value function, the directional Man- 
hattan distance function, to calculate a value for each cached 
semantic region based on its Manhat tan distance from the 
user's current location. Then they discard regions accord- 
ing to the values computed. We extend their work in three 
aspects and develop an LDD semantic cache replacement 
policy FAR (Furthest Away Replacement). First, to com- 
pute Manhat tan distances in [5], the center of each region 
must be determined. In our case, when a semantic seg- 
ment is decomposed into two disjoint parts, it is difficult 
to define its center, let alone calculate it. Hence we use 
the location information attached to each segment, which 
is simpler and more efficient. Second, [5] calculates Man- 
hat tan distances using estimated weights which are difficult 
to determine most of time. Instead, we derive the relation- 
ships between the cached segments and the current query 
using the mobile user's current status, which is more accu- 
rate and reasonable. Third, [5] does not use the knowledge 
concerning the moving direction of the mobile user to do re- 
placement. Here we further classify segments into two sets, 
those segments which are not in the direction of movement 
will be discarded first. 

FAR chooses replacement victims according to the current 
status of the mobile user. Those segments which are not in 
the moving direction and are furthest from the user will 
be discarded first, as we believe that  they won't be vis- 
ited in the near future. Given a mobile user M, its status 
(MT, ML, M v )  and an LDD segment seg, we tell whether seg 
is in M~s moving direction in the following way. According 
to M's status, we compute a MfL,  which is the anticipated 
M~s future location at time MT -~ 6t where $t is a predefined 
small number. If seg is closer to M/L  than to ML, then 
seg is in the moving direction. Otherwise, it is not. Cor- 
respondingly, the segments are then divided into two sets: 
In-Direction and Out-Direction. The victim is always chosen 
from the Out-Direction set. Once that  set becomes empty, 
the furthest segment in the In-Direction set will be replaced. 
This whole procedure is described in the following algorithm 
FAR(C, M), where C is an LDD cache and M is a mobile 
user. 

A l g o r i t h m  F A R ( C ,  M)  { 

In-Direction +-- NULL; 

Out-Direction +-- NULL; 
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6 t +- a predefined small number; 

MfL +-- M~s future location at time MT -b ~t; 

for every segment seg in C { 

if Distance2(segL, MfL) ~ Distance(segL, ML) 
then In-Direction +-- In-Direction -t- {seg}; 

else Out-Direction +-- Out-Direction Jr {seg}; } 

while ( Out-Direction != Empty ) { 

seg +-- the segment in Out-Direction which is the 
furthest from M; 

discard seg from C; 

remove seg from Out-Direction; 
add free space; 

if ( free space is enough ) return (Success); } 

while ( In-Direction != Empty ) { 

seg +- the segment in In-Direction which is the 
furthest from M; 

discard seg from C; 

remove seg from In-Direction; 
add free space; 

if ( free space is enough ) return (Success); } 

return (Fail); } 

5. P E R F O R M A N C E  S T U D Y  
We examine the performance of the semantic caching scheme 
and its replacement policy FAR through a simulation study. 
Our simulator is implemented in C + +  using CSIM ([1]). 
Prior to presenting the experiment results we discuss the 
simulation design. 

5.1  W o r k l o a d  D e s i g n  
At present, there are no existing benchmarks for location 
dependent applications. To evaluate the performance of dif- 
ferent caching schemes and replacement strategies, specific 
LDD query workloads must be properly designed. In this 
study, we design workloads along three dimensions. The first 
dimension is the database, which is the basic component 
and whose physical organization directly impacts the per- 
formance. Secondly, since we are dealing with LDD queries, 
the changes of locations, namely, the moving path of mobile 
users, is another important  design issue. Thirdly, we specify 
the characteristics of queries from the aspects of size, type 
and relationships with locations. All the parameters related 
with workload design are listed in Table 2. 

D a t a b a s e  D e s i g n  The database used in this study con- 
tains one single relation R. Each tuple of R has NumAtt at- 
tributes, each attr ibute is 4 bytes long. Two of the attributes 
z and y simulate the X and Y coordinates in a 2-dimensional 
space and take values from [1..MAX,] and [1..MAX~] re- 
spectively. Also we assume that  there is always a tuple in R 
for each pair of (x, y). Hence the database size is determined 
by the values of M A X , ,  MAX~ and NumAtt.  To study 
the impact of database organization on the performance, 

2Any distance measure could be used here. How- 
ever, we assume the distance between LI(LI=,LI~) 
and L2(L2=,L2~) is defined as Distance(L1, L2) = 

x/(LI= - L2=) 2 + (LI~ - L ~ )  ~ 
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Parameter Description Value 
MAX= 

MAXy 

NumAtt  

Index 

Cluster 

TotalQuery 

Movement 
Speed 

XScope 

YScope 

StartLoc 
StartSpeed 
StartDir 
SelSz 
ThinkTm 

OverlapRate 

the max value 
that  x can take 
the max value 
that  y can take 
how many attributes 
per tuple 
indexing situation 
on P~ 
clustering situation 
on P~ 
total queries 
generated 
movement type 
absolute move speed 
of mobile user 
move how far 
along x-dimension 
move how far 
along y-dimension 
start location 
absolute start speed 
start move direction 
selection range 
interval between 
consecutive queries 
overlap ratio between 
consecutive queries 

400-600 

400-600 

10 

non or column- 
Index on x 
Non or 
wise Scan 
500 

1, 2, 3 
16-20 

100-600 

80-600 

(20, 20) 
16-20 
N,S,E,W 
20 
1 

0-0.2 

T a b l e  2: W o r k l o a d  P a r a m e t e r  S e t t i n g s  

two database indexing/clustering cases are simulated. The 
database is neither indexed nor clustered in the first case, 
while under the second scenario, it is both indexed on x and 
clustered through a Column-wise Scan function ([11]). 

M o v i n g  P a t h  D e s i g n  We assume that  the mobile user 
keeps on asking LDD queries while on the move, hence his 
moving path actually indicates how the semantic locality 
among queries looks like. In this study, we develop three 
different movement types which are commonly observed in 
our daily life. To simplify the design, only four moving di- 
rections, namely, North, South, East and West, are allowed. 
Also we assume that  the mobile user moves at a constant 
speed. Given a starting status, the next status is generated 
according to the definition of the specific movement type. 
In what follows, we give the design details. 

• W o r k l o a d  1 - O n e W a y  Tr ip  This is the simplest 
case. The mobile user moves in a line keeping the 
direction and speed specified by the starting status, 
he finishes moving when he hits the boundary of the 
database or has submitted enough queries. 

• W o r k l o a d  2 - R o u n d  Tr ip  In this case, the trip is 
composed of two rounds. The first round is very sim- 
ilar to the OneWay trip, the only difference is that 
when the mobile user hits the boundary or finishes 
half of the queries, he changes to the opposite direc- 
tion and begins the second round. The mobile user's 
moving behavior in the second round is the same as 



the OneWay trip. 

• W o r k l o a d  3 - R a n d o m  Tr ip  The random trip work- 
load allows the mobile user to move randomly in a 
region, the next moving direction is randomly chosen 
from {North, South, East, West} with an equal prob- 
ability. In order to control the scope of moving, we 
specify the boundary of the region using two param- 
eters )(Scope and YScope, which indicate how far the 
user can move along x-dimension and y-dimension re- 
spectively. The workload ends when the mobile user 
has submitted enough queries. 

L D D  Q u e r y  D e s i g n  We consider selection-only LDD 
queries, where the selection condition is a disjunction of 
conjunctions of Location Compare Predicates. Each LDD 
query forms a SelSz x SelSz rectangle whose center is the 
mobile user's current location, this defines its selection pred- 
icates and specifies its size. We assume that the mobile user 
requests a new query after a time interval ThinkTm, and 
each pair of consecutive queries overlap with each other at a 
rate OverlapRate. We also assume that the user changes his 
status after a query is submitted. Hence the absolute mov- 
ing speed is given by the three parameters SelSz, ThinkTm 
and OverlapRate. 

5.2 Simulation Model 
Our simulation model is composed of a single server, a single 
mobile client, and a wireless link between them. The server 
maintains a complete copy of the database and acts as a 
database server, while all the LDD queries are submitted by 
the mobile client. We also assume that there exists either a 
page cache or a semantic cache on the mobile client side. 

Parameter Description 
ServerMips 
ClientMips 
ClientCache 
BandWidth 

PageSize 
FixMsgIns 

PerByteMsg 

StartIO 

Compare 

CopyWord 

DiskTm 

Value 
server CPU speed(Mips) 50 
mobile client CPU speed(Mips) 50 
client side cache size(kb) 128 
wireless network 1 
bandwidth(Mb/s)  
size of data page(bytes) 
number of CPU instructions 
to send/receive a message 
(fixed part protocol cost) 
number of CPU instructions 3 
to send/receive message (size 
(related part protocol cost) 
number of CPU instructions 5000 
to start an IO operation 
number of CPU instructions 2 
to compare 
number of CPU instructions 1 
to copy a word 
time to read a page 12 
from disk(ms) 

4096 
20000 

Tab l e  3: System Parameter Settings 

M o b i l e  C l i en t  M o d e l  To compare the performance of 
page and semantic caching in LDD applications, two types 
of client models axe simulated: page caching client and se- 
mantic caching client. Both clients have the same Query 

Generator module which generates LDD queries according 
to the workload, and Network Manager module that man- 
ages the wireless network. However, they differ in query 
processing and cache management.  The other modules of a 
page caching client include: Cache Manager, which manage 
the memory page cache; Query Processor, which processes 
the query with the data shipped from the server; and File 
Manager, which helps to determine physical locations for re- 
quired data. If there is an index on the attr ibute queried, the 
client first access the index and then access the qualifying 
data pages. If there is no index, the client has to scan the 
whole database. For a semantic caching client, the Semantic 
Cache Manager manages the memory semantic cache, and 
the Semantic Cache Query Processor processes LDD queries 
via the cache. In order to be fair for these two schemes, the 
space overhead for cache management, such as the Buffer 
Control Blocks of page caching ([10]) and the index of se- 
mantic caching, is also counted. 

Se rve r  M o d e l  The server receives and processes messages 
from the mobile client. For a page caching client, when 
the client sends a page request to the server, the server will 
prepare that page and send it back to the client. In this case, 
the message flow over the wireless link is page request/page. 
On the other hand, for a semantic caching client, when the 
client sends a query to the server, the server processes it 
locally and sends the result back. The message flow in this 
case is query request/query result. 

S y s t e m  P a r a m e t e r s  Table 3 shows the primary param- 
eters used in the simulation study. The first part gives 
the parameters that  specify the physical resources of the 
modeled mobile system. Both the server and client CPUs 
adopt a FCFS scheduling policy, and their speeds are de- 
scribed by ServerMips and ClientMips respectively. Client- 
Cache defines the size of the memory cache at the client 
side. The wireless network bandwidth is given by Band- 
Width. Database relations, cached pages and semantic seg- 
ments are all physically stored in pages, whose size is speci- 
fied by PageSize. The second part of the table provides the 
cost model used in the simulation, which is mainly taken 
from [12]. The wireless network is modeled as a FIFO queue. 
The cost of sending/receiving a message involves the time- 
on-wire (transfer time), and the time for protocol including 
a fixed part (FixMsglns) and a size-dependent part (Per- 
ByteMsg). StartIO gives the CPU cost for starting a disk 
I /O operation, and DiskTm specifies how long it takes to 
read a page from the disk. Only the cost of basic operators 
is listed in Table 3, for more complicated operations such as 
predicate computation and reasoning, the cost can be easily 
derived. 

5.3 Experiments 
The experiments presented are designed for two objectives. 
First, we study the performance differences between page 
and semantic caching in LDD applications. Second, we com- 
pare our semantic caching replacement strategy FAR with 
conventional ones. We do not compare FAR to the mobility- 
based semantic cache replacement policy proposed in [5] as 
their proposal was preliminary with many implementation 
details omitted. We run experiments varying the parame- 
ters such as database size, database physical organization, 
movement type, movement range etc. The primary metric 
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used is response time, which is the t ime from the submis- 
sion of the query to the t ime when its result is obtained. 
In general, this involves three parts: the client processing 
time, the server processing t ime and the time spent on the 
wireless link. All results shown are generated by averaging 
the results of three runs of simulation. 

5.3.1 Page Caching vs. Semantic Caching 
This set of experiments studies the effect of database and 
movement type on the performance of page and semantic 
caching. The results are shown in Figures 3-5. 
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Figure 3 gives the response t ime of the two caching schemes 
under different workloads when the database  is neither in- 
dexed nor clustered. Here, OverlapRate is set to 0.2 and 
SelSz is set to 20. Also we let XScope be 400 and YScope be 
80 for the random tr ip case. I t  can be seen tha t  the perfor- 
mance of page caching is independent of movement, and be- 
comes worse as the database size increases. This is because 
when there is no index, the query access pa th  is always a file 
scan, and more pages have to be scanned as the database 
becomes bigger. The fixed access path  of page caching also 
makes MRU perform bet ter  than LRU. However since the 
cache size is very small compared to the database size, MRU 
is only slightly better .  The performance of semantic caching 
varies under different movement types. The random trip in 
the 400 x 80 range shows the best performance, since it 
exhibits the highest degree of locality. Semantic caching is 
less sensitive to the database  size, as only part  of an LDD 
query is processed by the server via a file scan. The most im- 
por tant  observation from Figure 3 is tha t  semantic caching 
completely outperforms page caching. This is due to the 
highly reduced wireless network traffic in a semantic cache 
case, where only the required da ta  are transferred. 
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the difference between LRU and MRU is very small. An in- 
teresting thing is tha t  even in this case, the movement type 
still has no impacts  on page caching. This is due to two rea- 
sons. First ,  since the database  is only indexed on x, there 
are still a lot of pages to be visited for each query. Sec- 
ond, the workloads used, which axe oneway-trip, round-tr ip 
along x-dimension and random trip,  do not match with the 
Column-wise Scan database  clustering. Hence there are only 
a small percentage of overlapped pages between consecutive 
queries, which results in a bad  cache hit rate. Many pages 
still must  be fetched over the network. These also explains 
why semantic caching outperforms page caching in this case 
too. 
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Figure 4 compares the two schemes when the database is in- 
dexed on x and is clustered using the Column-wise Scan 
mapping function. All the other parameters  remain un- 
changed. We can see tha t  the performance of page caching 
is greatly improved. The page client can first locate the nec- 
essary da ta  pages via the index and fetch only those pages 
from the server, thus the network traffic is substantially re- 
duced. Since now the access path  is not a fixed file scan, 

We further s tudy the sensitiveness of page caching to database 
organization in Figure 5. Workload 1 is used in this case. We 
let the mobile user move along x-dimension and y-dimension 
respectively, all the parameter  settings are kept the same as 
before. I t  can be seen tha t  when the mobile user moves along 
y-dimension, the performance of page caching is much bet ter  
than the case when he moves along x-dimension. The rea- 
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son is very straightforward, when it is a y-dimension moving, 
the consecutive queries share the same predicate on x, hence 
they access the same set of da ta  pages when the database 
is indexed on x and clustered using a Column-wise Scan. 
As part  of the da ta  can be found in the cache, the per- 
formance is improved. However, the x-dimension moving 
couldn' t  benefit from this organization. Notice that  things 
are total ly different for semantic caching: the performance 
of x-way is bet ter  than that  of y-way. This is due to two 
reasons. First ,  a smaller set of da ta  pages are visited at the 
server side for x-way queries since their predicates on x get 
trimmed• Second, we assume that  the server doesn' t  con- 
tain any da ta  pages in the memory buffer for a query when 
it comes. 
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From this set of experiments,  we notice that  semantic caching 
completely outperforms page caching due to the reduced 
wireless network traffic. While the performance of page 
caching is quite sensitive to the database physical organi- 
zation, the effectiveness of semantic caching is related with 
the nature of workloads. There might exist other more ef- 
ficient database clustering approach for page caching, but  
one thing is for sure, the clustering approach only works 
well when the query workload matches with it. Hence, it is 
safe to say tha t  semantic caching is more flexible and effec- 
tive for use in LDD applications. 

5.3.2 Semantic Cache Replacement Strategies 
In this set of experiments,  we s tudy semantic cache replace- 
ment strategies. We compare the performance of LRU, MRU 
and FAR, under different workloads. 

F i g u r e  6: c o m p a r i n g  L R U ,  M R U  a n d  F A R  u n d e r  
w o r k l o a d  3 - r a n d o m  t r i p ,  O v e r l a p R a t e  ---- 0 

of locality. The database  parameters  MAXx and MAX~ 
are both set to 600• The x-axis of Figure 6 stands for the 
moving range in terms of XScope, while YScope is limited 
to 80. In order to t ruly examine the impact of moving path  
on the performance, OverlapRate is set to 0. Clearly, the 
performance of MRU is the worst, since it is not effective in 
utilizing the locality among the moving path.  We can also 
see that  FAR outperforms LRU 10% in average, this demon- 
strates that  FAR is more efficient in examing the semantic 
locality in terms of locations. 

MoveType OverlapRt 
0 

one-way 0.1 
0.2 
0 

round tr ip 0.1 
0.2 

LRU MRU FAR 
1865ms 1865ms 1865ms 
1686ms 1686ms 1686ms 
1507ms 1507ms 1507ms 
1675ms 1675ms 1675ms 
1520ms 1494ms 1494ms 
1371ms 1351ms 1351ms 

T a b l e  4: R e s p o n s e  T i m e  o f  L R U ,  M R U  
a n d  F A R  u n d e r  w o r k l o a d  1 a n d  w o r k l o a d  2, 
M A X x = M A X y - - 6 0 0  

Table 4 il lustrates the results for different cases with var- 
ied OverlapRate.  For the oneway-trip, all the approaches 
perform the same, the performance simply depends on the 
overlap rate between consecutive queries• This is reason- 
able, since this workload doesn' t  exhibit any kind of local- 
ity. There are only small differences between the replace- 
ment strategies in the round-tr ip case. LRU keeps the most 
recently used da ta  in the first round, which will be visited 
immediately on the way back. MRU keeps the least recently 
used da ta  in the first round, which will be guaranteed to be 
visited in the second round. Moreover, FAR always discards 
those unuseful data. Hence the three approaches have very 
similar cache hit rate. Since there is no much space for im- 
provement in these two cases, in the following, we focus on 
examining the third workload - random trip. 

Figure 6 compares the three semantic cache replacement 
strategies when the random moving path  has a good degree 
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3 - r a n d o m  t r i p ,  O v e r l a p R a t e  ---- 0 

Since MRU is not comparable  to both LRU and FAR, we 
only s tudy LRU and FAR in the next experiments. Fig- 
ure 7 and 8 illustrate the results for LRU and FAR with 
different overlap rates. The objective of these experiments 
is to find out the factors tha t  impact  the performance of 
LRU and FAR respectively. We keep the same parameter  
settings as Figure 6. Figure 7 gives the results when Over- 
lapRate is set to 0, while Figure 8 shows the results when 
OverlapRate is set to 0.1. FAR outperforms LRU in both 
cases, this is because when YScope is set to 80, the moving 
path  of the mobile user always exhibits a good degree of lo- 
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F i g u r e  8: c o m p a r i n g  L R U  a n d  F A R  u n d e r  w o r k l o a d  
3 - r a n d o m  t r i p ,  O v e r l a p R a t e  : 0 . 1  

cality. Notice tha t  when the overlap rate  is increased from 
0 to 0.1, the performance of both strategies are improved, 
however, LRU shows a relatively bet ter  improvement. This 
demonstrates the fact tha t  while LR,U makes use of tempo- 
ral locality, FAR utilizes the semantic locality in terms of 
locations. The results shown in Table 5 further strengthens 
the above assertion. 

XScopexYScope Overlap LRU FAR ratio 
100 x 80 0 528 425 19.5% 

600 x 600 0 1039 991 4.6% 
100 x 80 0.1 463 400 13.6% 

600 x 600 0.1 963 948 1.5% 

T a b l e  5: A n a l y z e  t h e  P e r f o r m a n c e  o f  L R U  a n d  F A R  

In some cases, LRU behaves extremely poorly. Table 6 
shows such a scenario when the mobile user moves in a 
square multiple times. We intentionally set the size of each  
loop slightly bigger than the cache size, hence LRU always 
discards the page tha t  will be visited next. However we can 
see that  FAR works robust ly here. 

CacheSz(kb) SquareSz 
128 100x60 
256 200x60 

LRU MR,U FAR 
1867 291 336 
1864 379 461 

T a b l e  6: C o m p a r e  L R U ,  M R U  a n d  F A R  W h e n  M o -  
b i l e  U s e r  M o v i n g  in  S q u a r e s  

From this set of experiments,  we notice tha t  FAR, which 
utilizes the semantic locality in terms of locations, is more 
effective in managing a semantic cache for LDD applications. 
I t  performs very well when the query workload exhibits a 
high degree of locality, and it behaves robustly under other 
workload types. 

6. CONCLUSIONS AND FUTURE WORK 
An LDD query workload is more likely to exhibit a seman- 
tic locality in terms of locations, rather than a static spa- 

tial locality defined by the fixed database physical organi- 
zation. This unique characteristic makes semantic caching 
an ideal cache scheme for the LDD applications in mobile 
computing. In order to further utilize this intrinsic seman- 
tic locality among LDD queries, we developed the semantic 
cache replacement s trategy FAR,, which aims to let the cache 
contents move as the user moves. We believe that  the se- 
mantic cache scheme with FAR, is a very effective solution 
for LDD applications, which is also proved by our simula- 
tion study. Moreover, we examined the issues about how to 
build a model to abstract  moving objects and formally de- 
fined LDD queries. We gave a t ry  in LDD workload design 
too. 

For future research, we intend to work along the following 
dimensions. First ,  we plan to design more types of LDD 
query workloads, and s tudy the performance of semantic 
caching as well as FAR under them. Second, we will work on 
other cache management  aspects in LDD applications, such 
as prefetching and cache admission policies. Meanwhile, we 
would like to apply the directional Manha t tan  distance ap- 
proach of [5] to our semantic caching model and compaxe 
FAR, with it. Moreover, we will also look at the other 2- 
dimensional space clustering approaches and analyze their 
impact  on page caching. 

7. ACKNOWLEDGMENTS 
This work was suppor ted  part ial ly by the National Science 
Foundation (NSF) under Grant  No. IIS-9979458. The au- 
thors are very grateful to the anonymous reviewers for their 
valuable comments. 

8. REFERENCES 
[1] CSIMIS Simulation Engine (C++ Version): User's 

Guide. Mesquite Software Inc., Austin, TX, 1998. 

[2] A. Acharya, B. R,. Badrinath,  T. Imielinski, and J. C. 
Navas. A www-based location-dependent information 
service for mobile clients. Technical report,  Rutgers 
University, July 1995. 

[3] B. Y. Chan, A. Si, and H. V. Leong. Cache 
management  for mobile databases: Design and 
evaluation. In Proceedings of ICDE, pages 54-63, 
Orlando, Florida, February 1998. 

[4] C. M. Chen and N. R,oussopoulos. The 
implementat ion and performance evaluation of the 
adms query optimizer: Integrat ing query result 
caching and matching. In Proceedings of EDBT, pages 
323-336, Cambridge, UK, March 1994. 

[5] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivatava, 
and M. Tan. Semantic da ta  caching and replacement. 
In Proceedings of VLDB, pages 330-341, Bombay, 
India, September 1996. 

[6] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F. 
Naughton. Caching multidimensional queries using 
chunks. In Proceedings of ACM SIGMOD, pages 
259-270, Seattle, WA, June 1998. 

[7] M. H. Dunham and A. Helal. Mobile computing and 
databases: Anything new? SIGMOD Record, 
24(4):5-9, December 1995. 

220 



[8] M. H. Dunham and V. Kumar. Location dependent 
data and its management in mobile databases. In 
Proceedings of DEXA Workshop, pages 414-419, 
Vienna, Austria, August 1998. 

[9] P. Godfrey and J. Gryz. Semantic query caching in 
heterogeneous databases. In Proceedings of KRDB at 
VLDB, pages 6.1-6.6, Athens, Greece, August 1997. 

[10] J. Gray and A. Reuter. Transaction Processing: 
Concepts and Techniques. Morgan Kaufmann 
Publishers, San Mateo, CA, 1993. 

[11] H. V. Jagadish. Linear clustering of objects with 
multiple attributes. In Proceedings o] A CM SIGMOD, 
pages 332-342, Atlantic City, N J, May 1990. 

[12] B. T. Jonsson. Siumei: Design overview and class 
interfaces. Technical report, University of Maryland, 
1996. Available from 
http://www.cs.umd.edu/projects/dimsum/. 

[13] A. M. Keller and J. Basu. A predicate-based caching 
scheme for client-server database architectures. The 
VLDB Journal, 5(2):35-47, April 1996. 

[14] G. Kollios, D. Gunopulos, and V. J. Tsotras. On 
indexing mobile objects. In Proceedings of PODS, 
pages 261-272, Philadephia, PA, May 1999. 

[15] K. C. K. Lee, H. V. Leong, and A. Si. Semantic query 
caching in a mobile environment. Mobile Computing 
and Communications Review, 3(2):28-36, April 1999. 

[16] Q. Ren and M. Dunham. Semantic caching and query 
processing. Technical Report 98-CSE-4, Southern 
Methodist University, May 1998. 

[17] Q. Ren and M. Dunham. Using clustering for effective 
management of a semantic cache in mobile computing. 
In Proceedings of the International Workshop of 
MobiDE, pages 94-101, Seattle, WA, August 1999. 

[18] N. Roussopoulos. An incremental access method for 
viewcache: Concept, algorithms, and cost analysis. 
A CM Transactions on Database Systems, 
16(3):535-563, September 1991. 

[19] P. Scheuermann, J. Shim, and R. Vingralek. 
Watchman: A data warehouse intelligent cache 
manager. In Proceedings of VLDB, pages 51-62, 
Bombay, India, September 1996. 

[20] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. 
Modeling and querying moving objects. In Proceedings 
of ICDE, pages 422-432, Birmingham, U.K., April 
1997. 

221 


