
Using Semantic Caching to Manage Location Dependent
Data in Mobile Computing*

Qun Ren
Department of Computer Science and

Engineering
Southern Methodist University

Dallas, Texas 75275
qren@seas.smu.edu

Margaret H. Dunham
Department of Computer Science and

Engineering
Southern Methodist University

Dallas, Texas 75275
mhd@seas.smu.edu

ABSTRACT
Location-dependent applications are becoming very popular
in mobile environments. To improve system performance
and facilitate disconnection, caching is crucial to such ap-
plications. In this paper, a semantic caching scheme is used
to access location dependent data in mobile computing. We
first develop a mobility model to represent the moving be-
haviors of mobile users and formally define location depen-
dent queries. We then investigate query processing and
cache management strategies. The performance of the se-
mantic caching scheme and its replacement strategy FAR
is evaluated through a simulation study. Our results show
that semantic caching is more flexible and effective for use
in LDD applications than page caching, whose performance
is quite sensitive to the database physical organization. We
also notice that the semantic cache replacement strategy
FAR, which utilizes the semantic locality in terms of loca-
tions, performs robustly under different kinds of workloads.

1. INTRODUCTION
Location dependent data (LDD) is the data whose value is
determined by the location to which it is related. Examples
include local yellow pages, traffic reports, weather informa-
tion, maps and so on. A location dependent query is a query
that is processed on location dependent data, and whose
result depends on the location criteria explicitly or implic-
itly specified. Moreover, the result may change as the user
changes his location. Although such applications can also
be requested in and supported by conventional systems, mo-
bility increases the intensity of the needs, opportunities and
challenges. Nowadays, location-dependent applications are
becoming more and more popular in the mobile computing
environment.

*This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-9979458

Pcrnaission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOBICOM 2000 Boston MA USA
Copyright ACM 2000 1-58113-197-6/00/08...$5.00

E x a m p l e 1 - A C o n t i n u o u s L D D Q u e r y : Suppose Jane
is traveling through a new city in her car and she wants to
find the nearest restaurant. A typical query requested could
be "Show me the restaurants within a radius of 5 miles".
However, assume that no satisfactory restaurant is found
since Jane prefers chinese food, the same query may be is-
sued continuously.

To improve system performance and deal with disconnec-
tion, caching is crucial to LDD applications. In Example 1,
Jane gets different restaurant information as she moves to
different locations. Furthermore, since Jane asks the same
question continuously, there may be a large degree of overlap
in the results of consecutive queries. Clearly, continuously
evaluating a query from scratch would be very inefficient. If
we keep a cache on the mobile unit, part of the new query
result could be obtained locally. By doing this, the wireless
network traffic is reduced, and the system performance is
improved as well.

However, how to choose an effective caching scheme requires
further study. Obviously, location plays a distinguished role
in location dependent queries, it actually provides an addi-
tional, if not the only, semantic criteria to access the data.
Hence an LDD query workload is more likely to exhibit a
semantic locality in terms of the locations, rather than a
static spatial locality 1 defined by the fixed database physi-
cal organization. That is to say, an LDD data item with
a location closer to the current position of the mobile user
and in the direction of his movement is more likely to be
visited in the near future. This unique characteristic makes
the traditional page or tuple caching inappropriate to the
LDD applications in mobile computing. In addition, the se-
mantic locality among LDD queries is usually highly related
with the moving path of the mobile user, e.g. the contin-
uous query issued in Example 1. To dynamically adapt to
the query access pattern, the cached contents are required
to move as the mobile unit moves. This observation moti-
vates the development of cache replacement strategies built
around location and movement.

The idea of semantic caching is that the mobile client main-
tains both the semantic descriptions and associated answers
of previous queries in the cache. If a new query is totally an-

1Here, spatial locality means that the data items which are
physically stored closely are likely to be accessed together.

210

swerable from the cache, no communication with the server
is necessary; if it can only be part ial ly answered, the orig-
inal query is t r immed and the t r immed part is sent to the
server to be processed. Semantic caching is by nature an
ideal cache scheme for location dependent applications due
to the following reasons. First of all, semantic caching is
built on the semantic locality among queries, which just
fits the LDD applications where much semantic rather than
temporal or spatial locality is exhibited. Secondly, continu-
ous LDD queries can be incrementally processed by seman-
tic caching. Wi th each successive request, a much smaller
t r immed LDD query is processed at the server side and
only the differences are t ransmi t ted over the wireless link.
Thirdly, semantic caching makes cache management more
flexible. The cache can be managed based on temporal or
location information, it could even be managed according
to the instructions explicitly given by the mobile user. I t is
the semantic granularity and the semantic descriptions kept
that makes all of these possible. At last, semantic caching
also facilitates disconnections. Even though the da ta at cur-
rent location can not be obtained, the mobile user might still
be able to learn the information for other neighbor locations
from the local cache. A page or tuple cache can not offer
such functionality, since the cached da ta there is not associ-
ated with any semantic meanings.

This paper is composed of two main parts. The first part of
the work includes a formal model to represent moving ob-
jects and the definition of LDD queries. From that start ing
point, we then investigate ways in which a semantic cache
can be used efficiently in LDD applications. In Section 2,
we first review related research in location dependent data,
then examine previous semantic caching and cache manage-
ment work. We model mobili ty and define location depen-
dent queries in Section 3. Section 4 gives the strategies of
applying semantic caching to location dependent applica-
tions. The performance of the proposed scheme is examined
through a simulation s tudy in Section 5. Finally, we sum-
marize our work and discuss future research in Section 6.

2. RELATED WORK
One area of research that is related to this paper is about
location dependent application modeling, including how to
represent moving objects and define location dependent query.
Another body of relevant work is the semantic caching scheme
and the cache management issues. In this section, we review
previous works from these two aspects.

2.1 Modeling Mobility
A formal da ta model (MOST) to represent moving objects
in a database system was introduced in [20]. They treat the
position of a moving object as a dynamic database at tr ibute,
and express it with three sub-at tr ibutes, value, update t ime
and function, where the function indicates how the value
changes over time. [20] also proposes three types of queries
arising in MOST: instantaneous, continuous and persistent.
These queries exhibit both temporal and spatial features,
since they query moving objects whose values change as time
passes by. Moreover, the parties who issue these queries may
also move. The problem of how to index moving objects in
a database is investigated in [14] and [20]. A straightfor-
ward use of spatial indexing is inefficient and infeasible since
the spatial index has to be continuously upda ted when the

objects are continuously moving. The previous works dis-
cussed so fax mainly deal with how to model, store, index
and query moving objects in databases. In this paper, we
are interested in how to query location dependent da ta from
a moving party. The da ta are not assumed to be dynamic
database at tr ibutes.

In [7], location dependent queries are shown to be impor-
tant and popular applications related to mobility of a mo-
bile environment. They also indicate the research chal-
lenges brought about by this new type of application, such as
changes to query language and database design. More LDD
examples and further discussions about LDD management
can be found in [8]. A formal model, which treats location
dependent da ta as database spatial replicas t ightly coupled
with specific data regions, is proposed. Then based on this
model, research issues such as query processing, caching and
transaction management are explored. [8] serves as an ex-
cellent review about LDD applications, however, it doesn't
provide detailed algorithms and performance study.

[2] implements a location dependent application system, which
provides a way for mobile users to access location dependent
information from the Internet. Like [8], they also part i t ion
LDD da ta among servers, and propose a network-layer prim-
itive, nearcast, for a mobile client to locate and access the
specific server covering the da ta it needs. [2] points out that
the cached LDD da ta can become obsolete due to an explicit
update from the server, and because of a move as well. To
solve this new location-dependent invalidation problem, for
LDD data, they send the associated scopes to the mobile
client along with the contents. The scope information is
sufficient for the client to detect location-dependent valid-
ity, just as an at tached expiration period is used in checking
tradit ional t ime-dependent validity.

Our work differs from these previous research in that we fo-
cus on location dependent da ta caching issues. We apply
the semantic caching scheme to LDD applications, with ev-
ery cached item having an at tached semantic description.
We also examine cache management strategies in the LDD
domain.

2.2 Semantic Caching and Cache Management
In what follows, we first briefly review previous semantic
caching work from the aspects of definition, organization
and operation. Then we look at different strategies in cache
replacement.

Semantic caching has been widely used in centralized sys-
tems ([4], [18]), client-server environment ([5], [13]), OLAF
systems ([6]), mobile computing ([15], [17]) and heteroge-
neous systems ([9]). All these works cache query results
rather than database tuples or pages. The cache is com-
posed of a set of items at tached with the related semantic
descriptions, which are called semantic regions in [5], seman-
tic segments in [17] and so on. While logically the cache is
always organized using an index which maintains the seman-
tic as well as physical storage information for every cached
item, there are various ways to physically store the data. [5]
stores semantic regions in tuples, and [17] stores semantic
segments in pages. The query processing strategies used in
these works are very similar. When a new query comes, it

211

gets split into two disjoint pieces: one that can be locally an-
swered by the cache and one which can not. Only the second
part is sent to the database server to be processed. Another
important issue is how to partition and coalesce the disjoint
parts after query processing. Different coalescing and de-
composing strategies are developed in [5], [15] and [16]. The
objective of this paper is to apply semantic caching to lo-
cation dependent applications. We base our work on the
cache model proposed in ([16], [17]), which is extended to
incorporate the unique characteristics of LDD data.

The commonly used cache replacement strategies are built
on temporal locality, such as LRU, MRU and CLOCK. Profit-
based or benefit-based replacement schemes are proposed in
[6], [13] and [19]. [19] implements an intelligent cache man-
ager in data warehouse systems, where the retrieved sets by
queries are cached. They choose the replacement victim by
considering its average reference rate, size and the execu-
tion cost of the associated queries. Similarly, [13] develops
a benefit-based replacement strategy for a semantic cache.
[6] works in the OLAP domain, cache replacement is done
at the chunk level and uses a benefit-based CLOCK pol-
icy. The benefit metric mainly involves execution cost which
varies from chunk to chunk. Another different replacement
policy is used in [3]. The victim is selected according to the
access probabilities which are predicted by observing the
data access history. Moreover, [5] utilizes semantic locality
in semantic caching replacement. For each cached semantic
region, a replacement value is assigned which is the negative
of the Manhattan distance between the "center of gravity"
of that region a n d t h e "center of gravity" of the most recent
query. With this distance function, semantic regions that
are semantically "closer" to current query are less likely to
be discarded. The rationale used here is to predict the future
use patterns for the segments by examining their semantic
relationships with the current query. This paper also utilizes
semantic information to do replacement. However, since we
work in LDD application domain, the semantic locality used
is highly related with the moving behavior of mobile users.

3. MODELING LDD QUERY
Location dependent queries usually originate from moving
objects, whose locations determine the results of these queries.
To effectively manage LDD queries, a mobility model is
required to represent the locations and moving behaviors
for mobile users. We model the moving behavior of mo-
bile clients from the aspects of locations, speeds and direc-
tions. While in general an object can move anywhere in
the 3-dimensional space with varied speed and direction,
this research assumes that a mobile unit always moves in
the 2-dimensional space at a speed that keeps constant dur-
ing any observed time period and may change from time
to time. This assumption makes sense in many cases, e.g.
cars moving on highways, planes flying in the sky and so on.
To model a moving object, we first define the related basic
concepts.

D e f i n i t i o n 1 A Loca t ion , L, is a tuple (L=, Lv), where L=
and L~ are integers.

A location denotes an exact position in space. In real life,
a location can always be represented in terms of a pair of
the absolute latitude and longitude coordinates, which are

both float numbers. Without loss of generality, we truncate
them into integers in this research. Alternatively, given a
reference point in a predefined geographic region, Definition
1 can also be used to stand for relative locations. We assume
that a mobile client is equipped with a certain mechanism
to obtain its current location. For example, the client may
determine its location via GPS or through communicating
with the corresponding server. Here, all the details about
location tracking are ignored.

D e f i n i t i o n 2 A Veloci ty , V, is a vector < V~, Vy >, where
V= and V v are integers.

For ease of modeling, we build up a reference coordinate
system, where x axis stands for the east and west dimension
with the east direction being positive, and y axis represents
the north and south dimension with the north direction be-
ing positive. To model both the speed and direction of an
object moving in a 2-dimensional space, we use a pair of val-
ues V~ and V~, which are the projections of its speed vector
on x axis and y axis respectively. Notice that the signs of
V~ and Vy, and the ratio of the absolute value of V~ and
that of V~ determine the direction of the movement. Some
velocity examples are given in Figure 1. Suppose the mo-
bile unit starts from P1 with the location (1, 1), when it
moves at a speed of v/2 in the northeast direction, its veloc-
ity can be expressed as I/1 = < 1, 1 >. After two seconds,
it arrives at P2 with the location (3, 3). Then it moves to
the west at a speed of 2, and its velocity is I/2 = < - 2 , 0 >.
Later on, the mobile unit moves to the south at the velocity
113 = < 0 , - 5 >, changes its velocity to V4 = < 6 , - 3 > at
P4, moves to P5 and finally arrives at P6 with a velocity of
V5 = < 3, 1 >.

N o r t h

V 2 P3 = = <-2, 0> _ I ' 2 (3, 3)

4 " / ~
IJ P1 (1, 1)

West ~ O(0, 0) = East

P4 7P6

South

F i g u r e 1: T h e Ve loc i ty E x a m p l e s

Velocity helps to predict future locations of moving objects.
Let L -- (L~, L~) stand for the location of a mobile client
M at time T, also suppose that M moves at a velocity V
= < V~,Vy > and keeps this velocity during the period
IT, T+~T] , then M's location at time T÷~t, where ~t < ~T,
is expressed as L~ = (L~ +V~ x ~t,L~ + V v × ~t). This
can be illustrated by a scenario in Figure 1 when the object
moves from P1 to P2.

At a certain point in time, the status of a moving object can
be specified by its location and the velocity of the movement.

2 1 2

As time passes by, the object may change its moving behav-
ior. Hence, the s tatus of a mobile unit is modeled to be
always associated with a part icular t imestamp.

D e f i n i t i o n 3 The S t a t u s , of a mobile unit, M, is a tu-
pie (MT, ML, M y) , where MT is a timestamp, ML is M's
location at MT and M y is M's velocity at MT.

For example, in Figure 1, assume tha t the mobile unit s tar ts
at t ime Tz at location PI(1, 1), then arrives at P2(3, 3) at
t ime T2 and changes its velocity there. According to Defi-
nition 3, its status at P1, P2 can be expressed as (T1, PI(1,
1), VI< 1,1 >), (T2, P2(3, 3), V~_< - 2 , 0 >) respectively.
Keeping track of the s tatus of a mobile user helps to exam-
ine his location dependent query workload, thus facilitates
cache management. We can store in the cache those da ta
that are very likely to be visited in the future by making the
replacement strategy dynamical ly adapt to the query access
pattern. Also, useful information can be prefetched based
on the user profile in which the future status are specified.

The key issue in modeling location dependent queries is how
to specify the location related select predicates. Our s trat-
egy is to t reat the location criteria as normal conditions.
Before processing LDD queries, they must be bound to a
precise location. This process adds the location a t t r ibute
values to them.

E x a m p l e 2 - M o d e l i n g a n L D D Q u e r y : Suppose there
is a hotel relation with attributes n a m e , p r i ce , vacancy ,
x p o s i t i o n , y p o s i t i o n , and the mobile unit M issues a query
Q = "Give me the names of the hotels within 20 miles whose
prices are below $100." at location L. Then the predicate of
Q, Qp can be represented as Qp = (price < 100) A (L~ - 20
< xposition < L~ + 20) A (L~ - 20 <_ yposition < L~ + 20).
It is evident that Qp is not a direct select condition, and Q
can be answered only when the value of L is given. Assume
that currently L is (10, 30), then Qp is converted into Qp'
= (price < 100) A (-10 <_ xposition < 30) A (10 <_ yposition

t

<_ 50). Qp could have a different expression as M moves to
another location. Sometimes, even i f M stays at the same
location, it may ask for hotel information at another place.

t

In this case, Qp also changes because L changes.

We consider select and project LDD queries in this research,
and assume that each query predicate involves only one lo-
cation vaxiable. However, the proposed model can be easily
extended to handle other more complicated queries, which
is an important direction of future work. LDD queries are
constructed with two kinds of predicates: t radit ional loca-
tion unrelated predicates and location related ones. Before
formally defining an LDD query, we first discuss these two
kinds of predicates and other related concepts.

Suppose that the database being examined, D, consists of a
number of base relations Rz, R2, ..., R~, namely, D ---- {R~, 1
< i < n}. Further let AR~ s tand for the a t t r ibute set of R~,
and A represents the a t t r ibute set of the whole database,
i.e. A = UAR~. Then, we have the following definitions.

D e f i n i t i o n 4 Given a database D = {Ri} and its attribute
set A = UARI, a C o m p a r e P r e d i c a t e P is of the form
P = a op c, where a E A, op E {<, <, >, >, =}, c is a

constant in a specific domain.

D e f i n i t i o n 5 A L o c a t i o n V a r i a b l e , L V, is a tuple (L V= , L V~) ,
where LV~, LV~ are integer variables.

D e f i n i t i o n 6 Given a database D={P~}, its attribute set
A=UAR~ and a location variable LV, a L o c a t i o n C o m -
p a r e P r e d i c a t e with respect to LV, LCP, is of the form
LCP = a op (LV~ +c) or LCP = a op (LVu +c), where aEA,
opE{<,<,_>,>,=}, c is a numeric constant. A L o c a t i o n
P r e d i c a t e with respect to LV, LP, is a disjunction of con-
junctions of compare predicates and location compare predi-
cates with respect to LV.

Look at Example 2 again. According to the above defini-
tions, we know tha t the predicate (price < 100) in Qp is a
compare predicate which is not related with a location, and
(xposition < L~ + 20) is a location compare predicate with
respect to L. Moreover, Qp itself is a location predicate.
Since an LDD query can be processed only when a certain
location is given, we now examine the concept of location
binding.

D e f i n i t i o n 7 Given a location L, a location variable LV,
and a location predicate LP with respect to LV, the procedure
of assigning Lx to LVz, L~ to LV~ is called the L o c a t i o n
B i n d i n g of L V with L. Furthermore, the procedure of per-
forming location binding for every L V in LP with L is called
the P r e d i c a t e L o c a t i o n B i n d i n g of LP with L.

For ease of expression, in this paper, we denote the predicate
location binding procedure of LP with L as Loc_Bind(LP,
L). Consider Example 2, Qp ' is actually obtained through a

predicate location binding on Qp with L(10, 30), i.e. Qp ' =
Loc_Bind(Qp, L). An LDD query is uniquely defined when
both its predicate and bound location are specified, thus we
have Definition 8.

D e f i n i t i o n 8 Given a database D = {P~} and its attribute
set A = UAR~, a L o c a t i o n D e p e n d e n t Q u e r y Q is a tuple
(QR, QA, QP, QL, Qc) , where Qn E D, QA C AOR , Qp is

a location predicate, QL is a location, Qp' = Loc_Bind(Qp,
QL), and O c = 7rQAO'Qp' (QR).

4. SEMANTIC CACHING IN LDD
A semantic caching model which stores LDD da ta is first
presented in this section, then we investigate how to process
LDD queries through such a cache. At last, we examine
how to effectively manage the semantic cache by taking into
account the unique characteristics of LDD applications.

4.1 LDD Cache Model
From the definition, we know tha t an LDD query Q is ex-
pressed by the tuple (QR, QA, QP, QL, Qc) , with the first
four elements specifying the associated semantic information
and the last one representing the result. Correspondingly,
we use the same tuple (SR, SA, Sp, SL, So) to describe
an LDD semantic segment S, which is a cached LDD query.
Among these, S• and SA define the database relation and
at t r ibutes involved in computing S, Sp indicates the select
condition that the tuples in S satisfy, SL gives the bound lo-
cation and S c represents the actual content of S. The whole

213

cache is then defined to be composed of a set of such seg-
ments. This model differs from the basic semantic caching
scheme of [16] in two aspects. First, Sp is a location pred-
icate. Second, the bound location SL is also maintained in
the cache.

Physically, we store the LDD semantic segments by pag-
ing them. Each segment is stored in one or multiple linked
pages, and is associated with a pointer pointing to its first
page in the memory/disk cache. Notice that each page now
contains LDD query results rather than database tuples.
Meanwhile, the cache is logically organized through an index
which maintains the semantic descriptions as well as physi-
cal storage informations for every cached segment. The in-
dex structure is consistent with the definition of LDD query.
In addition to the five basic components of a segment, we
might add other items for maintenance reasons, such as the
last-visited t imestamp which is used for cache replacement.
The LDD cache index is more clearly illustrated through the
following Example 3.

S SR

$1 Hotel

$2 Rest.

$3 Hotel

SA Sp
(L~ - 5
<_ hxpos <

Hname L~ + 5)A
(L~ - 5
<_ hypos <
L~ + 5)
(L~ - 10
<_ rxpos <_
L= + 10)A

Rname, (Lv - 10
Type <_ typos <

L~ + 10)A
(6 <_ sched
< 9)
(L= - 5
<_ hxpos <_
L= + 5)A

Hname, (Lv - 5
Vacancy < hypos <_

L~ + 5)^
(Price<100)

Sz Sc STs

10,20 2 Tt

-5,15 5 T2

-5,-20 8 T3

Tab l e 1: E x a m p l e of L D D S e m a n t i c Cache I n d e x

E x a m p l e 3 - A n L D D Cache I n d e x : Consider a yellow
page database with two relations: Hotel(Hno, Hname, Price,
Vacancy, hzpos, hypos) and Restaurant(Rno, Rname, Type,
Schedule, rxpos, rypos). Suppose that the mobile unit M asks
the following questions on his way, whose results are cached
afterwards.

• At time Tt location (10, 20), M asks query Qt: "Give
me all the names of the hotels within 5 miles", and
then keeps on driving to the southwest. The result of
Qz is cached as segment $1.

• After it arrives at location (-5, 15) at time T2, M
asks query Q2: "Give me the names and types of the
restaurants within 10 miles that open from 6:00pro to

9:00pm", and then keeps on driving to the South. The
result of Q2 is cached as segment $2.

• Finally at t ime T3 location (-5, -20), M asks query
Q3: "Give me the names and vacancy information for
hotels within 5 miles whose prices are below $I00".
The result of Q3 is cached as segment $3.

Assume that the J~rst pages of $1, $2 and $3 are 2, 5 and 8
respectively, the index is shown as Table 1.

4.2 LDD Query Processing
As discussed before, the result of an LDD query is not only
determined by the selection and projection conditions speci-
fied, but also related with the given bound location. There-
fore, the first step of LDD query processing is to perform
the corresponding predicate location binding. After that,
an LDD query is converted into a normal database query
and can be processed from the local cache using the strate-
gies similar to those proposed in [16].

Since an LDD cache is composed of a set of LDD semantic
segments, we examine the query processing problem from
two aspects: how to process a query via a single segment
and how to compute it from the entire cache. The rela-
tionship between an LDD query Q and an LDD semantic
segment S can be determined from the semantic specifica-
tions associated with them. However, to reason among the
predicates, we must conduct predicate location binding on
both Q and S. If S is known to contain a part or the whole
result of Q, we divide Q into two parts through a procedure
called query trimming: a probe query which specifies the por-
tion of Q satisfied by S and a remainder query which defines
the portion of Q not found in S. Sometimes, the probe query
can not be processed from S because the attributes needed
to further qualify Q's result are not found in S, where only
the projected attr ibutes of S are stored. The solution of [16]
is to always keep the key attr ibutes in every cached segment
and base on them to append the segments with the rele-
vant missing attributes, which are fetched from the server
using amending queries. As LDD query predicates often in-
volve the location attributes, to reduce the number of the
amending queries, a new heuristic is to also maintain the lo-
cation attributes in LDD semantic segments even when they
are not projected. This is a time and space tradeoff: extra
cache space is used to reduce the wireless network delay and
cost.

While every individual segment may contain only a small
part of a query result, they can combine together to generate
a much bigger part of or even the whole result. Therefore,
after an LDD query is t r immed by the first segment, we
let the remainder query be further tr immed by the next
candidate segment that also contains the query result. This
process continues until there is no candidate segment in the
cache or the remainder query becomes empty. If the final
remainder query is not empty, it is sent to the database
server to be processed. At last, the result of the LDD query
is obtained by coalescing every partial result. To efficiently
locate the candidate segments, heuristics can be proposed
based on the cached bound locations. For example, we may
examine the segments according to the distances between

2 1 4

their bound locations and the query's bound location: the
closer the distance, the sooner the segment is examined.

Another interesting issue related with query processing is
how to handle the scenario after an LDD query Q is trimmed
by an LDD segment S. Three disjoint parts are left after a
query trimming: the intersection of Q and S, the difference
of S with respect to Q, and the difference of Q with respect
to S. To better reflect the frequency of reference, Q's results
are always coalesced together and cached as a new LDD seg-
ment. Meanwhile, S gets decomposed accordingly to avoid
duplicates. The portion of S not contained in Q is further di-
vided into two parts, the horizontal LDD subsegment Sh and
the vertical LDD subsegment S , . Since a location depen-
dent query workload tends to exhibit an intrinsic semantic
locality interms of locations, the bound location of an LDD
segment is a special semantic metric which indicates its rela-
tionship with other segments and future queries. As part of
S, Sh and Sv should keep that indicator. Thus we associate
them with the bound location SL.

4.3 LDD Cache Management
Since a semantic cache organizes data by semantic metrics, it
makes cache management more flexible. Different strategies
can be developed to adapt to the requirements explicitly or
implicitly specified by the mobile user. When user provided
information is not available, strategies need to be carefully
designed to effectively manage an LDD cache. As we dis-
cussed before, in most cases, the LDD query access pattern
is tightly associated with the movement of the mobile user.
Hence it is reasonable to incorporate the impact of mobility
in LDD cache management. Before describing the detailed
algorithms, let us first look at an example.

M U,T2,~ l N

Figure 2: A n E x a m p l e for F A R

E x a m p l e 4 - Cache R e p l a c e m e n t Scenarios: Figure 2
shows the moving path of a mobile user MU. Suppose the
current timestamp is Ts, and the LDD cache has stored the
results of queries submitted by MU at time To through T4,
with To < T1 < T2 < T3 < T4 < Ts. T6 is the timestamp
when the next query is expected to come, the predicted MU's
location is also shown in Figure ~. Also assume that the
query result obtained at T5 needs to be cached and there is
not su~c ien t space, a victim must be chosen to be replaced.

The segment So which stores the result of the query submitted
at To would be discarded i f an L R U policy is used. However,
it shouldn't be replaced since it may soon be visited by the
MU at time T6, jus t as indicated in Figure 2. This can be
derived from the current location of M U and the location
associated with So. Furthermore, the moving direction is
another important factor in replacement. I f M U moves to
north at Ts, it makes sense to replace $3. I f M U moves to
west instead, $3 can not be discarded.

An optimal replacement scheme can be found with totally
accurate apriori knowledge, since we may simply discard
those segments which will not be used during the trip. Oth-
erwise, we can only work on a locally optimal plan using
the known information about the user's current status, i.e.
his location, moving speed and direction. A mobility-based
semantic cache replacement policy was first proposed in [5].
They utilize a semantic value function, the directional Man-
hattan distance function, to calculate a value for each cached
semantic region based on its Manhat tan distance from the
user's current location. Then they discard regions accord-
ing to the values computed. We extend their work in three
aspects and develop an LDD semantic cache replacement
policy FAR (Furthest Away Replacement). First, to com-
pute Manhat tan distances in [5], the center of each region
must be determined. In our case, when a semantic seg-
ment is decomposed into two disjoint parts, it is difficult
to define its center, let alone calculate it. Hence we use
the location information attached to each segment, which
is simpler and more efficient. Second, [5] calculates Man-
hat tan distances using estimated weights which are difficult
to determine most of time. Instead, we derive the relation-
ships between the cached segments and the current query
using the mobile user's current status, which is more accu-
rate and reasonable. Third, [5] does not use the knowledge
concerning the moving direction of the mobile user to do re-
placement. Here we further classify segments into two sets,
those segments which are not in the direction of movement
will be discarded first.

FAR chooses replacement victims according to the current
status of the mobile user. Those segments which are not in
the moving direction and are furthest from the user will
be discarded first, as we believe that they won't be vis-
ited in the near future. Given a mobile user M, its status
(MT, ML, M v) and an LDD segment seg, we tell whether seg
is in M~s moving direction in the following way. According
to M's status, we compute a MfL, which is the anticipated
M~s future location at time MT -~ 6t where $t is a predefined
small number. If seg is closer to M/L than to ML, then
seg is in the moving direction. Otherwise, it is not. Cor-
respondingly, the segments are then divided into two sets:
In-Direction and Out-Direction. The victim is always chosen
from the Out-Direction set. Once that set becomes empty,
the furthest segment in the In-Direction set will be replaced.
This whole procedure is described in the following algorithm
FAR(C, M), where C is an LDD cache and M is a mobile
user.

A l g o r i t h m F A R (C , M) {

In-Direction +-- NULL;

Out-Direction +-- NULL;

2 1 5

6 t +- a predefined small number;

MfL +-- M~s future location at time MT -b ~t;

for every segment seg in C {

if Distance2(segL, MfL) ~ Distance(segL, ML)
then In-Direction +-- In-Direction -t- {seg};

else Out-Direction +-- Out-Direction Jr {seg}; }

while (Out-Direction != Empty) {

seg +-- the segment in Out-Direction which is the
furthest from M;

discard seg from C;

remove seg from Out-Direction;
add free space;

if (free space is enough) return (Success); }

while (In-Direction != Empty) {

seg +- the segment in In-Direction which is the
furthest from M;

discard seg from C;

remove seg from In-Direction;
add free space;

if (free space is enough) return (Success); }

return (Fail); }

5. P E R F O R M A N C E S T U D Y
We examine the performance of the semantic caching scheme
and its replacement policy FAR through a simulation study.
Our simulator is implemented in C + + using CSIM ([1]).
Prior to presenting the experiment results we discuss the
simulation design.

5.1 W o r k l o a d D e s i g n
At present, there are no existing benchmarks for location
dependent applications. To evaluate the performance of dif-
ferent caching schemes and replacement strategies, specific
LDD query workloads must be properly designed. In this
study, we design workloads along three dimensions. The first
dimension is the database, which is the basic component
and whose physical organization directly impacts the per-
formance. Secondly, since we are dealing with LDD queries,
the changes of locations, namely, the moving path of mobile
users, is another important design issue. Thirdly, we specify
the characteristics of queries from the aspects of size, type
and relationships with locations. All the parameters related
with workload design are listed in Table 2.

D a t a b a s e D e s i g n The database used in this study con-
tains one single relation R. Each tuple of R has NumAtt at-
tributes, each attr ibute is 4 bytes long. Two of the attributes
z and y simulate the X and Y coordinates in a 2-dimensional
space and take values from [1..MAX,] and [1..MAX~] re-
spectively. Also we assume that there is always a tuple in R
for each pair of (x, y). Hence the database size is determined
by the values of M A X , , MAX~ and NumAtt. To study
the impact of database organization on the performance,

2Any distance measure could be used here. How-
ever, we assume the distance between LI(LI=,LI~)
and L2(L2=,L2~) is defined as Distance(L1, L2) =

x/(LI= - L2=) 2 + (LI~ - L ~) ~

216

Parameter Description Value
MAX=

MAXy

NumAtt

Index

Cluster

TotalQuery

Movement
Speed

XScope

YScope

StartLoc
StartSpeed
StartDir
SelSz
ThinkTm

OverlapRate

the max value
that x can take
the max value
that y can take
how many attributes
per tuple
indexing situation
on P~
clustering situation
on P~
total queries
generated
movement type
absolute move speed
of mobile user
move how far
along x-dimension
move how far
along y-dimension
start location
absolute start speed
start move direction
selection range
interval between
consecutive queries
overlap ratio between
consecutive queries

400-600

400-600

10

non or column-
Index on x
Non or
wise Scan
500

1, 2, 3
16-20

100-600

80-600

(20, 20)
16-20
N,S,E,W
20
1

0-0.2

T a b l e 2: W o r k l o a d P a r a m e t e r S e t t i n g s

two database indexing/clustering cases are simulated. The
database is neither indexed nor clustered in the first case,
while under the second scenario, it is both indexed on x and
clustered through a Column-wise Scan function ([11]).

M o v i n g P a t h D e s i g n We assume that the mobile user
keeps on asking LDD queries while on the move, hence his
moving path actually indicates how the semantic locality
among queries looks like. In this study, we develop three
different movement types which are commonly observed in
our daily life. To simplify the design, only four moving di-
rections, namely, North, South, East and West, are allowed.
Also we assume that the mobile user moves at a constant
speed. Given a starting status, the next status is generated
according to the definition of the specific movement type.
In what follows, we give the design details.

• W o r k l o a d 1 - O n e W a y Tr ip This is the simplest
case. The mobile user moves in a line keeping the
direction and speed specified by the starting status,
he finishes moving when he hits the boundary of the
database or has submitted enough queries.

• W o r k l o a d 2 - R o u n d Tr ip In this case, the trip is
composed of two rounds. The first round is very sim-
ilar to the OneWay trip, the only difference is that
when the mobile user hits the boundary or finishes
half of the queries, he changes to the opposite direc-
tion and begins the second round. The mobile user's
moving behavior in the second round is the same as

the OneWay trip.

• W o r k l o a d 3 - R a n d o m Tr ip The random trip work-
load allows the mobile user to move randomly in a
region, the next moving direction is randomly chosen
from {North, South, East, West} with an equal prob-
ability. In order to control the scope of moving, we
specify the boundary of the region using two param-
eters)(Scope and YScope, which indicate how far the
user can move along x-dimension and y-dimension re-
spectively. The workload ends when the mobile user
has submitted enough queries.

L D D Q u e r y D e s i g n We consider selection-only LDD
queries, where the selection condition is a disjunction of
conjunctions of Location Compare Predicates. Each LDD
query forms a SelSz x SelSz rectangle whose center is the
mobile user's current location, this defines its selection pred-
icates and specifies its size. We assume that the mobile user
requests a new query after a time interval ThinkTm, and
each pair of consecutive queries overlap with each other at a
rate OverlapRate. We also assume that the user changes his
status after a query is submitted. Hence the absolute mov-
ing speed is given by the three parameters SelSz, ThinkTm
and OverlapRate.

5.2 Simulation Model
Our simulation model is composed of a single server, a single
mobile client, and a wireless link between them. The server
maintains a complete copy of the database and acts as a
database server, while all the LDD queries are submitted by
the mobile client. We also assume that there exists either a
page cache or a semantic cache on the mobile client side.

Parameter Description
ServerMips
ClientMips
ClientCache
BandWidth

PageSize
FixMsgIns

PerByteMsg

StartIO

Compare

CopyWord

DiskTm

Value
server CPU speed(Mips) 50
mobile client CPU speed(Mips) 50
client side cache size(kb) 128
wireless network 1
bandwidth(Mb/s)
size of data page(bytes)
number of CPU instructions
to send/receive a message
(fixed part protocol cost)
number of CPU instructions 3
to send/receive message (size
(related part protocol cost)
number of CPU instructions 5000
to start an IO operation
number of CPU instructions 2
to compare
number of CPU instructions 1
to copy a word
time to read a page 12
from disk(ms)

4096
20000

Tab l e 3: System Parameter Settings

M o b i l e C l i en t M o d e l To compare the performance of
page and semantic caching in LDD applications, two types
of client models axe simulated: page caching client and se-
mantic caching client. Both clients have the same Query

Generator module which generates LDD queries according
to the workload, and Network Manager module that man-
ages the wireless network. However, they differ in query
processing and cache management. The other modules of a
page caching client include: Cache Manager, which manage
the memory page cache; Query Processor, which processes
the query with the data shipped from the server; and File
Manager, which helps to determine physical locations for re-
quired data. If there is an index on the attr ibute queried, the
client first access the index and then access the qualifying
data pages. If there is no index, the client has to scan the
whole database. For a semantic caching client, the Semantic
Cache Manager manages the memory semantic cache, and
the Semantic Cache Query Processor processes LDD queries
via the cache. In order to be fair for these two schemes, the
space overhead for cache management, such as the Buffer
Control Blocks of page caching ([10]) and the index of se-
mantic caching, is also counted.

Se rve r M o d e l The server receives and processes messages
from the mobile client. For a page caching client, when
the client sends a page request to the server, the server will
prepare that page and send it back to the client. In this case,
the message flow over the wireless link is page request/page.
On the other hand, for a semantic caching client, when the
client sends a query to the server, the server processes it
locally and sends the result back. The message flow in this
case is query request/query result.

S y s t e m P a r a m e t e r s Table 3 shows the primary param-
eters used in the simulation study. The first part gives
the parameters that specify the physical resources of the
modeled mobile system. Both the server and client CPUs
adopt a FCFS scheduling policy, and their speeds are de-
scribed by ServerMips and ClientMips respectively. Client-
Cache defines the size of the memory cache at the client
side. The wireless network bandwidth is given by Band-
Width. Database relations, cached pages and semantic seg-
ments are all physically stored in pages, whose size is speci-
fied by PageSize. The second part of the table provides the
cost model used in the simulation, which is mainly taken
from [12]. The wireless network is modeled as a FIFO queue.
The cost of sending/receiving a message involves the time-
on-wire (transfer time), and the time for protocol including
a fixed part (FixMsglns) and a size-dependent part (Per-
ByteMsg). StartIO gives the CPU cost for starting a disk
I /O operation, and DiskTm specifies how long it takes to
read a page from the disk. Only the cost of basic operators
is listed in Table 3, for more complicated operations such as
predicate computation and reasoning, the cost can be easily
derived.

5.3 Experiments
The experiments presented are designed for two objectives.
First, we study the performance differences between page
and semantic caching in LDD applications. Second, we com-
pare our semantic caching replacement strategy FAR with
conventional ones. We do not compare FAR to the mobility-
based semantic cache replacement policy proposed in [5] as
their proposal was preliminary with many implementation
details omitted. We run experiments varying the parame-
ters such as database size, database physical organization,
movement type, movement range etc. The primary metric

2 1 7

used is response time, which is the t ime from the submis-
sion of the query to the t ime when its result is obtained.
In general, this involves three parts: the client processing
time, the server processing t ime and the time spent on the
wireless link. All results shown are generated by averaging
the results of three runs of simulation.

5.3.1 Page Caching vs. Semantic Caching
This set of experiments studies the effect of database and
movement type on the performance of page and semantic
caching. The results are shown in Figures 3-5.

100000

avg. 80000
resp.
t ime 60000

(msec)40000

s c - l ru - round t r i p .+- -
s c - l r u - r a n d o m o.,, -

pg- l ru -a l l . x . . !
pg -mru -a l l A

20000~
r= r ~ ! ~ ! ~ .~. [] , [] .,~

6500 7000 7500 8000 8500 9000 9500
db s ize(kbytes) : O v e r l a p R a t e = 0 . 2 , Se lSz=20

F i g u r e 3: p a g e vs . s e m a n t i c c a c h i n g w h e n d a t a b a s e
is n e i t h e r i n d e x e d nor c l u s t e r e d

Figure 3 gives the response t ime of the two caching schemes
under different workloads when the database is neither in-
dexed nor clustered. Here, OverlapRate is set to 0.2 and
SelSz is set to 20. Also we let XScope be 400 and YScope be
80 for the random tr ip case. I t can be seen tha t the perfor-
mance of page caching is independent of movement, and be-
comes worse as the database size increases. This is because
when there is no index, the query access pa th is always a file
scan, and more pages have to be scanned as the database
becomes bigger. The fixed access path of page caching also
makes MRU perform bet ter than LRU. However since the
cache size is very small compared to the database size, MRU
is only slightly better . The performance of semantic caching
varies under different movement types. The random trip in
the 400 x 80 range shows the best performance, since it
exhibits the highest degree of locality. Semantic caching is
less sensitive to the database size, as only part of an LDD
query is processed by the server via a file scan. The most im-
por tant observation from Figure 3 is tha t semantic caching
completely outperforms page caching. This is due to the
highly reduced wireless network traffic in a semantic cache
case, where only the required da ta are transferred.

5000 --
4°°° I

t ime 3000 I sc-lrp-g-~nrd°~m, 1 : ~ ' " 1

(msec) 2000 ~ ^ p g - m r u T L ~

6500 7000 7500 8000 8500 9000 9500
d b s ize (kbytes) : O v e r l a p R a t e - - 0 . 2 , Se lSz=20

F i g u r e 4: p a g e vs . s e m a n t i c cach ing: i n d e x on x ,
c o l u m n - w i s e s c a n c l u s t e r i n g

the difference between LRU and MRU is very small. An in-
teresting thing is tha t even in this case, the movement type
still has no impacts on page caching. This is due to two rea-
sons. First , since the database is only indexed on x, there
are still a lot of pages to be visited for each query. Sec-
ond, the workloads used, which axe oneway-trip, round-tr ip
along x-dimension and random trip, do not match with the
Column-wise Scan database clustering. Hence there are only
a small percentage of overlapped pages between consecutive
queries, which results in a bad cache hit rate. Many pages
still must be fetched over the network. These also explains
why semantic caching outperforms page caching in this case
too.

6000
5500
5000

avg. 4500
resp. 4000
t ime 3500

(msec) 3000
25O0
2000
1500
1000

I I I I I

• ~ (. . . x . - sc -xway o
sc -yway . + . .

pg -xway []
p g - y w a y . x . .

. • • - t , ¢

6500 7000 7500 8000 8500 9000 9500
db s ize (kbytes) : ove r l ap=0 .2 , Se lSz=20

F i g u r e 5: i m p a c t o f d a t a b a s e p h y s i c a l o r g a n i z a t i o n
o n p a g e cach ing: i n d e x o n x , c o l u m n - w i s e s c a n c lus-
t e r i n g

Figure 4 compares the two schemes when the database is in-
dexed on x and is clustered using the Column-wise Scan
mapping function. All the other parameters remain un-
changed. We can see tha t the performance of page caching
is greatly improved. The page client can first locate the nec-
essary da ta pages via the index and fetch only those pages
from the server, thus the network traffic is substantially re-
duced. Since now the access path is not a fixed file scan,

We further s tudy the sensitiveness of page caching to database
organization in Figure 5. Workload 1 is used in this case. We
let the mobile user move along x-dimension and y-dimension
respectively, all the parameter settings are kept the same as
before. I t can be seen tha t when the mobile user moves along
y-dimension, the performance of page caching is much bet ter
than the case when he moves along x-dimension. The rea-

2 1 8

son is very straightforward, when it is a y-dimension moving,
the consecutive queries share the same predicate on x, hence
they access the same set of da ta pages when the database
is indexed on x and clustered using a Column-wise Scan.
As part of the da ta can be found in the cache, the per-
formance is improved. However, the x-dimension moving
couldn' t benefit from this organization. Notice that things
are total ly different for semantic caching: the performance
of x-way is bet ter than that of y-way. This is due to two
reasons. First , a smaller set of da ta pages are visited at the
server side for x-way queries since their predicates on x get
trimmed• Second, we assume that the server doesn' t con-
tain any da ta pages in the memory buffer for a query when
it comes.

avg.
resp.
t ime

(msec)

1600

1400

1200

I000

800

_ I I . ~ _ . . . I . . . J r . . . I . . . ~ . . . i . .

_ •

+ sc- l ru 0
, sc -mru - + . -

. . sc-far t~

600

400 I J t J i i i i

100 150 200 250 300 350 400 450 500 550 600
XScope: X M A X = Y M A X = 6 0 0 , Y S c o p e = 8 0

From this set of experiments, we notice that semantic caching
completely outperforms page caching due to the reduced
wireless network traffic. While the performance of page
caching is quite sensitive to the database physical organi-
zation, the effectiveness of semantic caching is related with
the nature of workloads. There might exist other more ef-
ficient database clustering approach for page caching, but
one thing is for sure, the clustering approach only works
well when the query workload matches with it. Hence, it is
safe to say tha t semantic caching is more flexible and effec-
tive for use in LDD applications.

5.3.2 Semantic Cache Replacement Strategies
In this set of experiments, we s tudy semantic cache replace-
ment strategies. We compare the performance of LRU, MRU
and FAR, under different workloads.

F i g u r e 6: c o m p a r i n g L R U , M R U a n d F A R u n d e r
w o r k l o a d 3 - r a n d o m t r i p , O v e r l a p R a t e ---- 0

of locality. The database parameters MAXx and MAX~
are both set to 600• The x-axis of Figure 6 stands for the
moving range in terms of XScope, while YScope is limited
to 80. In order to t ruly examine the impact of moving path
on the performance, OverlapRate is set to 0. Clearly, the
performance of MRU is the worst, since it is not effective in
utilizing the locality among the moving path. We can also
see that FAR outperforms LRU 10% in average, this demon-
strates that FAR is more efficient in examing the semantic
locality in terms of locations.

MoveType OverlapRt
0

one-way 0.1
0.2
0

round tr ip 0.1
0.2

LRU MRU FAR
1865ms 1865ms 1865ms
1686ms 1686ms 1686ms
1507ms 1507ms 1507ms
1675ms 1675ms 1675ms
1520ms 1494ms 1494ms
1371ms 1351ms 1351ms

T a b l e 4: R e s p o n s e T i m e o f L R U , M R U
a n d F A R u n d e r w o r k l o a d 1 a n d w o r k l o a d 2,
M A X x = M A X y - - 6 0 0

Table 4 il lustrates the results for different cases with var-
ied OverlapRate. For the oneway-trip, all the approaches
perform the same, the performance simply depends on the
overlap rate between consecutive queries• This is reason-
able, since this workload doesn' t exhibit any kind of local-
ity. There are only small differences between the replace-
ment strategies in the round-tr ip case. LRU keeps the most
recently used da ta in the first round, which will be visited
immediately on the way back. MRU keeps the least recently
used da ta in the first round, which will be guaranteed to be
visited in the second round. Moreover, FAR always discards
those unuseful data. Hence the three approaches have very
similar cache hit rate. Since there is no much space for im-
provement in these two cases, in the following, we focus on
examining the third workload - random trip.

Figure 6 compares the three semantic cache replacement
strategies when the random moving path has a good degree

avg.
resp.
t ime

(msec)

800

750

700

650

600

550

5O0

45O

40O

I I I I I I I I I

^

/ +

I I I f r I

100 150 200 250 300 350 400 450 500 550 600
XScope: X M A X = Y M A X = 6 0 0 , Y S c o p e = 8 0

F i g u r e 7: c o m p a r i n g L R U a n d F A R u n d e r w o r k l o a d
3 - r a n d o m t r i p , O v e r l a p R a t e ---- 0

Since MRU is not comparable to both LRU and FAR, we
only s tudy LRU and FAR in the next experiments. Fig-
ure 7 and 8 illustrate the results for LRU and FAR with
different overlap rates. The objective of these experiments
is to find out the factors tha t impact the performance of
LRU and FAR respectively. We keep the same parameter
settings as Figure 6. Figure 7 gives the results when Over-
lapRate is set to 0, while Figure 8 shows the results when
OverlapRate is set to 0.1. FAR outperforms LRU in both
cases, this is because when YScope is set to 80, the moving
path of the mobile user always exhibits a good degree of lo-

219

avg.
resp.
t ime

(msec)

800

750

700

650

600

550

500

450 <

400

I I I I I I I I i

s c - l r u - 0 . 1 0
sc-far-O.1 .+. -

. . .+ +

I I I I I I I

100 150 200 250 300 350 400 450 500 550 600
XScope: X M A X = Y M A X = 6 0 0 , YScope- -80

F i g u r e 8: c o m p a r i n g L R U a n d F A R u n d e r w o r k l o a d
3 - r a n d o m t r i p , O v e r l a p R a t e : 0 . 1

cality. Notice tha t when the overlap rate is increased from
0 to 0.1, the performance of both strategies are improved,
however, LRU shows a relatively bet ter improvement. This
demonstrates the fact tha t while LR,U makes use of tempo-
ral locality, FAR utilizes the semantic locality in terms of
locations. The results shown in Table 5 further strengthens
the above assertion.

XScopexYScope Overlap LRU FAR ratio
100 x 80 0 528 425 19.5%

600 x 600 0 1039 991 4.6%
100 x 80 0.1 463 400 13.6%

600 x 600 0.1 963 948 1.5%

T a b l e 5: A n a l y z e t h e P e r f o r m a n c e o f L R U a n d F A R

In some cases, LRU behaves extremely poorly. Table 6
shows such a scenario when the mobile user moves in a
square multiple times. We intentionally set the size of each
loop slightly bigger than the cache size, hence LRU always
discards the page tha t will be visited next. However we can
see that FAR works robust ly here.

CacheSz(kb) SquareSz
128 100x60
256 200x60

LRU MR,U FAR
1867 291 336
1864 379 461

T a b l e 6: C o m p a r e L R U , M R U a n d F A R W h e n M o -
b i l e U s e r M o v i n g in S q u a r e s

From this set of experiments, we notice tha t FAR, which
utilizes the semantic locality in terms of locations, is more
effective in managing a semantic cache for LDD applications.
I t performs very well when the query workload exhibits a
high degree of locality, and it behaves robustly under other
workload types.

6. CONCLUSIONS AND FUTURE WORK
An LDD query workload is more likely to exhibit a seman-
tic locality in terms of locations, rather than a static spa-

tial locality defined by the fixed database physical organi-
zation. This unique characteristic makes semantic caching
an ideal cache scheme for the LDD applications in mobile
computing. In order to further utilize this intrinsic seman-
tic locality among LDD queries, we developed the semantic
cache replacement s trategy FAR,, which aims to let the cache
contents move as the user moves. We believe that the se-
mantic cache scheme with FAR, is a very effective solution
for LDD applications, which is also proved by our simula-
tion study. Moreover, we examined the issues about how to
build a model to abstract moving objects and formally de-
fined LDD queries. We gave a t ry in LDD workload design
too.

For future research, we intend to work along the following
dimensions. First , we plan to design more types of LDD
query workloads, and s tudy the performance of semantic
caching as well as FAR under them. Second, we will work on
other cache management aspects in LDD applications, such
as prefetching and cache admission policies. Meanwhile, we
would like to apply the directional Manha t tan distance ap-
proach of [5] to our semantic caching model and compaxe
FAR, with it. Moreover, we will also look at the other 2-
dimensional space clustering approaches and analyze their
impact on page caching.

7. ACKNOWLEDGMENTS
This work was suppor ted part ial ly by the National Science
Foundation (NSF) under Grant No. IIS-9979458. The au-
thors are very grateful to the anonymous reviewers for their
valuable comments.

8. REFERENCES
[1] CSIMIS Simulation Engine (C++ Version): User's

Guide. Mesquite Software Inc., Austin, TX, 1998.

[2] A. Acharya, B. R,. Badrinath, T. Imielinski, and J. C.
Navas. A www-based location-dependent information
service for mobile clients. Technical report, Rutgers
University, July 1995.

[3] B. Y. Chan, A. Si, and H. V. Leong. Cache
management for mobile databases: Design and
evaluation. In Proceedings of ICDE, pages 54-63,
Orlando, Florida, February 1998.

[4] C. M. Chen and N. R,oussopoulos. The
implementat ion and performance evaluation of the
adms query optimizer: Integrat ing query result
caching and matching. In Proceedings of EDBT, pages
323-336, Cambridge, UK, March 1994.

[5] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivatava,
and M. Tan. Semantic da ta caching and replacement.
In Proceedings of VLDB, pages 330-341, Bombay,
India, September 1996.

[6] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F.
Naughton. Caching multidimensional queries using
chunks. In Proceedings of ACM SIGMOD, pages
259-270, Seattle, WA, June 1998.

[7] M. H. Dunham and A. Helal. Mobile computing and
databases: Anything new? SIGMOD Record,
24(4):5-9, December 1995.

220

[8] M. H. Dunham and V. Kumar. Location dependent
data and its management in mobile databases. In
Proceedings of DEXA Workshop, pages 414-419,
Vienna, Austria, August 1998.

[9] P. Godfrey and J. Gryz. Semantic query caching in
heterogeneous databases. In Proceedings of KRDB at
VLDB, pages 6.1-6.6, Athens, Greece, August 1997.

[10] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

[11] H. V. Jagadish. Linear clustering of objects with
multiple attributes. In Proceedings o] A CM SIGMOD,
pages 332-342, Atlantic City, N J, May 1990.

[12] B. T. Jonsson. Siumei: Design overview and class
interfaces. Technical report, University of Maryland,
1996. Available from
http://www.cs.umd.edu/projects/dimsum/.

[13] A. M. Keller and J. Basu. A predicate-based caching
scheme for client-server database architectures. The
VLDB Journal, 5(2):35-47, April 1996.

[14] G. Kollios, D. Gunopulos, and V. J. Tsotras. On
indexing mobile objects. In Proceedings of PODS,
pages 261-272, Philadephia, PA, May 1999.

[15] K. C. K. Lee, H. V. Leong, and A. Si. Semantic query
caching in a mobile environment. Mobile Computing
and Communications Review, 3(2):28-36, April 1999.

[16] Q. Ren and M. Dunham. Semantic caching and query
processing. Technical Report 98-CSE-4, Southern
Methodist University, May 1998.

[17] Q. Ren and M. Dunham. Using clustering for effective
management of a semantic cache in mobile computing.
In Proceedings of the International Workshop of
MobiDE, pages 94-101, Seattle, WA, August 1999.

[18] N. Roussopoulos. An incremental access method for
viewcache: Concept, algorithms, and cost analysis.
A CM Transactions on Database Systems,
16(3):535-563, September 1991.

[19] P. Scheuermann, J. Shim, and R. Vingralek.
Watchman: A data warehouse intelligent cache
manager. In Proceedings of VLDB, pages 51-62,
Bombay, India, September 1996.

[20] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In Proceedings
of ICDE, pages 422-432, Birmingham, U.K., April
1997.

221

