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Long Sharable Patterns
49
o What is a long, sharable pattern?
o Similarities
= Time
= Location

o Example
= Carpooling



|dentification of patterns

\

ldentify trips

¢ Filtering out non-trips
¢ Atrip must be longer than a displacement




|dentification of patterns
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Projection of temporal dimension

Map date time to recurring events:
¢ Time-of-day

¢ Day-of-month

¢ Day-of-week
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|dentification of patterns
Substitute noisy GPS readings

Road network based generalization
Region-based generalization

» Map matched readings

o Noisy GPS readings
//\// Matched road segments
/\./ Road network

/
/
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Frequent Itemset Mining

Has to be modified to support Carpooling:
A frequent item set has to be long

A frequent item set has to shared by an amount of
travelers.

Our data can be converted a format <oid, tid,
s>, that Is required for Frequent Itemset Mining



Approahces

Nailve approach
~inding sub-trajectories through k-way self-joins.
terative manner

Running time
Worst case: Exponential




Projection-based LSP mining

o Temporal dimension: 5 Minutes

o Spatial dimension: Square cells
0 5 step Iiterative approach
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Step 1 - Filter infrequent items

o An item is frequent if:
The amount of transactions that contain an item is >= 4

The amount of unique objects associated with those
transactions is >= 2

--0BJ.1(2) == OBJ.2(3) ===0BJ.3(4) OBJ. 4 (5) === OBJ. 5 (8)
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Step 2 — Filter short transactions

1 Atrajectories Is short:
o If the length of the trajectories >= 4

TN
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Step 3 & 4 — Project and select

- Takes one out one element and projects it to
another DB.

1 Selects the most frequent itemset

(—-091. 1(2) == OBJ.2(3) === OBJ. 3 (4) OBJ. 4 (5) === OBJ.5 (6)
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Step 5 - Deletion

1 Deletes unnecessary items from
predecessor DB.

-—OBJ.1(2) ==0BJ.2(3) ===0BJ.3(4) OBJ. 4 (5) === OBJ. 5 (6)
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Pattern discovery and deletion phase

T =,
o Iterative process over step 3 to 5.
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INFATI dataset

Real dataset from Aalborg

20 unique test cars

Transformation from noisy readings into 100
*100 m 5 minute spatio-temporal regions.

~ 200.000 unigue items In 3.699 transactions



LSP Discovery in INFATI
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Alternative modeling

Macro patterns

Works on origin and destination.

Requires modification to the Distance concept.
Hybrid model using both Macro and Micro-
Patterns

Scales better

Does not find all local LSPs



Performance — minLength

Running time and space increase
exponentially as minLength decrease.

Average running time decrease lineary as
minLength decrease.
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Performance - minSupp

Running time and space increase
exponentially as minLength decrease.

Average running time decrease lineary as
minLength decrease.
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{odal processing time (sec)

Performance - scalability

As the patterns increase linearly the amount of
patterns increase sub—exponentially.

Amount of time/space required per pattern
decrease to a constant.
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Summary

LSP mining method is effective and robust

Scale up test

Running time and space required scales
exponentially with input size.

Macro modeling

Effective, yet insensitive to user—defined
parameter settings.

Hybrid model
Able to find most local LSPs effectively.



Related work

Frequent Itemset Mining

All frequent item sets are too large
Closed Frequent Itemsets (CFl)
Compression



Relation to our project

Article picked on interest.

Product status
Airport Case

Flow analysis

Convert our data into FIM accepted data
<Signal strength, time>
<oid, tid, s>



Comments about article

Reads good
Covers a lot of areas with various detail level.

Ordering of article

Introduction of micro LSP mining method before
Introducing macro and hybrid model.

Scope of the article
More focus on hybrid model.



Thank you for listening

s
- Questions?
o Comments?



