

Location Privacy in LBS (Part I)

Simonas Šaltenis

daisy.cs.aau.dk

Center for Data-intensive Systems

Outline

- Location Privacy An Overview*
 - Assumptions, requirements, and challenges
 - Location privacy problems (attacks on privacy)
 - High-level overview of the proposed solutions
- G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan, "Private Queries in Location-Based Services: Anonymizers are Not Necessary," ACM SIGMOD 2008**

- * Based on M.Decker "Location Privacy An Overview," 7th IEEE Intl. Conf. On Mobile Business, 2008.
 - Acknowledging material from Ling Liu's (VLDB 2007 tutorial) and M.F. Mokbel (VLDB 2006 paper) slides.
- ** Acknowledging material from P.Kalnis slides

Location Based Services

- Location Based Services (LBS)
 - Internet services (usually mobile) that use geo-location(s) of the user(s) to provide services
 - Example: "Nearest restaurant" service
 - Geo-Location:
 - Current location (+ velocity vector)
 - Past locations
 - Locations of other users
 - "track-my-kid" and "friend-finder" services

LBS: Example Queries

- Location-based emergency services & Traffic monitoring:
 - Range query: How many cars on the highway E-45 north in Aalborg?
 - Nearest-neighbor query: Give me the location of 5 nearest Toyota maintenance stations?
- Location-based advertisement/entertainment:
 - Range query: Send E-coupons to all customers within five miles of my store
 - Nearest-neighbor query: Where is the nearest movie theater to my current location?
- Other "Points of Interest" (POI) location services:
 - Range query: Where are the gas stations within five miles of my location?
 - Nearest-neighbor query: Where is the nearest grocery store?

Privacy

- Location privacy the claim/right of individuals, groups and institutions to determine for themselves, when, how and to what extent location information about them is communicated to others
 - Part of a more general concept of data privacy
- Location privacy is in conflict with context awareness using all the available information about the user's context (including its location) to provide a relevant, unobtrusive service.
- Important assumptions (not always clearly stated):
 - What exactly is the object of privacy?
 - Who is the attacker and what knowledge is available to the attacker?

Key Assumptions

- Different geo-positioning technologies:
 - Client-based positioning (GPS, Galileo)
 - Network-based positioning (cellular networks, in-door positioning)
- Assumption: the source of geo-locations is trusted.
- An attacker is the LBS provider (or someone who compromised the provider's systems)
 - An attack is successful, when LBSP gains more knowledge about a user's location(s) than the user intended to let the LBSP know.
 - Client hardware and communication links are considered trustworthy and not compromised

Challenge – Query Processing

- Why not just encrypt information?
 - The LBS server needs to process queries!
- Three cases [Mokbel et al., VLDB 2006]:
 - Private queries over public data
 - What is my nearest gas station?
 - Public queries over private data
 - How many cars in on the E45 north in Aalborg?
 - Private queries over private data
 - Where is my nearest friend?

Location Privacy Problems I

- *Direct* location privacy problems:
 - Knowing where. Knowing that Alice has visited location L may reveal:
 - Political, religious, etc. views (party headquarters, church)
 - Personal interests (shops, clubs...)
 - Employer
 - Circle of friends (friend's house)
 - Health problems (hospital)
 - Knowing *when*. Knowing that *Alice* has visited location *L* at time *T*.
 - Knowing how many times. Knowing the history $(L_1, T_1), (L_2, T_2), \dots, (L_n, T_n)$

Location Privacy Problems II

- Some LBS may not need to know the user's true identity. Thus, pseudonymization can be applied
 - A mediator replaces the user's identity by a pseudonym in each request to the LBS provider.
- Indirect privacy problems involve attacks on pseudonyms
 - Location information + other external information = revealed identity of the user

Attacks on Pseudonyms

- Known-place attack.
 - External information = knowledge about places where certain users typically stay (e.g., work, home address from public telephone books)
- Commuter attack.
 - Like the known-place attack, but based on a recorded spatiotemporal track of requests.
- Observation attack.
 - External information from observation cameras, car number plate recognition systems enables to correlate (through a shared location) known identity with a pseudonym.

Outline

- Location Privacy An Overview
 - Assumptions, requirements, and challenges
 - Location privacy problems (attacks on privacy)
 - High-level overview of the proposed solutions

Architectures

- Possible system architectures for location anonymization:
 - Centralized trusted third-party location anonymizer:
 - Such anonymization proxy server takes care of location updates and location anonymization.
 - Client-based non-cooperative location anonymization:
 - Client-based knowledge and special client-server protocols are used to maintain the client's location privacy.
 - Decentralized cooperative P2P protocols to protect privacy:
 - A Group of mobile clients collaborate with one another to provide location privacy of a single user without involving a centralized trusted authority.

Overview of Approaches

Obfuscation

- Obfuscation: deliberate reduction in precision of location
 - May be acceptable by the service:

	Spallal precision					
	High	Low				
precision Low	Turn-by-Turn On-line Navigation, POI-Finder, Tourist-Guide	Weather Notifications, Time-Critical Ads				
Temporal High	Mobile Blogging, Virtual Grqafitti/Memo, Road Hazard Detection, Mobile Data Gathering	Locatinon-Aware News, Weather Forecast				

Cratial presider

- If not, filter-refinement approach is used:
 - The LBS server sends all the answers that are relevant to the ٠ obfuscated position
 - Anonymizer or client itself computes selects the true answer

Obfuscation: Spatial Cloaking

Obfuscation: Spatio-Temporal Cloak

Spatial Cloaking first followed by temporal cloaking

How Much Cloaking: Trade-offs

Location privacy and LBS quality trade-off

• [GedikLiu-ICDCS 2005, TMC 2007]

How Much Cloaking: Trade-offs

Location privacy and LBS performance trade-off

K-Anonimity

daisy

- How to chose the size of the cloaking region? (ASR anonymization spatial region)
- K-Anonimity [Samarati & Sweeney]: a concept from privacypreserving data mining.
 - Goal: Preserving individual privacy while allowing public release of information

<u></u>	Race	Birth	Gender	ZIP	Problem
_ t1	Black	1965	m	0214*	short breath
2تيا -	Black	1965	m	0214*	chest pain
_ t3	Black	1965	f	0213*	hypertension
4 توار	Black	1965	f	0213*	hypertension
_ t5	Black	1964	f	0213*	obesity
ەير	Black	1964	f	0213*	chest pain
t7	White	1964	m	0213*	chest pain
≺ 18	White	1964	m	0213*	obesity
ول	White	1964	m	0213*	short breath
_ ¹¹⁰	White	1967	m	0213*	chest pain
1:11	White	1967	m	0213*	chest pain

- K-anonymity: Each tuple is indistinguishable from at least k-1 others.
 - 1. Identify quasi identifier
 - 2. Remove identifier of each record
 - Ensure k-anonymity of sensitive data columns on quasi-identifier
 - Ensure I-diversity of sensitive data columns

> Violate I-diversity for / =2

Example of k-anonymity, where k=2 and Ql={Race, Birth, Gender, ZIP}

Location k-Anonymity

- Location k-anonymity
 - Make sure for each location query message, there are at least k-1other messages (entries) with the same location information, each associated with a different (pseudo) identity
 - It guarantees that the adversary can only associate location information to k participants instead of to a particular individual/group/institution through inference attacks
- Location *I*-diversity (PrivacyGrid, [Bamba et al., WWW 2008])
 - For each location query message, in addition to user level kanonymity (k different user identities), there are at least / different still location objects associated with each of the k users.

New Casper [Mokbel et al., VLDB 2006]

The entire system area is divided into grids.

Architecture with anonymizer

users residing in each grid.

- Traverse the pyramid structure from the bottom level to the top level, until a cell satisfying the user privacy profile is found.
 - Disadvantages:
 - High location update cost.
 - High searching cost

Hash Table

The Location Anonymizer incrementally keeps track the number of

New Casper [Mokbel et al., VLDB 2006]

- Adaptive Location Anonymizer
 - Each sub-structure may have a different depth that is adaptive to the environmental changes and user privacy requirements.

- Cell Splitting: A cell cid at level i needs to be split into four cells at level i+1 if there is at least one user u in cid with a privacy profile that can be satisfied by some cell at level i+1.
- Cell Merging: Four cells at level *i* are merged into one cell at a higher level *i*-1 only if all users in the level *i* cells have strict privacy requirements that cannot be satisfied within level *i*.

Outline

- Location Privacy An Overview
 - Assumptions, requirements, and challenges
 - Location privacy problems (attacks on privacy)
 - High-level overview of the proposed solutions
- G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan, "Private Queries in Location-Based Services: Anonymizers are Not Necessary," ACM SIGMOD 2008**

** Acknowledging material from P.Kalnis slides

Motivation

- Limitations of existing solutions
 - Assumption of trusted entities
 - anonymizer and trusted, non-colluding users
 - Considerable overhead for sporadic benefits
 - maintenance of user locations
 - No privacy guarantees
 - especially for continuous queries

- Computationally hard to find *i* from q(*i*)
- Bob can easily find X_i from r (trap-door)

PIR Theoretical foundations

- Let $N = q_1^* q_2$, where q_1 , and q_2 are large primes

$$\mathbb{Z}_{N}^{*} = \{ x \in \mathbb{Z}_{N} \mid gcd(N, x) = 1 \}$$
$$QR = \{ y \in \mathbb{Z}_{N}^{*} \mid \exists x \in \mathbb{Z}_{N}^{*} : y \equiv x^{2} \mod N \}$$

- Quadratic Residuosity Assumption (QRA)
 - QR/QNR decision computationally hard
 - Essential properties:
 - QR * QR = QR
 - QR * QNR = QNR

PIR Protocol for Binary Data

N one-bit records are organized into $\sqrt{N} \times \sqrt{N}$ matrix

$$Z_{i} = \prod_{\substack{j=1\\ j \neq j \neq j}}^{4} QR => X_{10} = 1 \\ A + (j-1) + i = 1 \\ Y_{j} = 0 \\ Y_{j} = 1 \\ Y_{j} = 0$$

DB seminar, September 22, 2008

Approximate Nearest Neighbor

• Data organized as a square matrix

daisy

- Each column corresponds to index leaf
- An entire leaf is retrieved the closest to the user

Exact Nearest Neighbor

- Voronoi diagram of POIs and a regular grid is used
 - Data base size is proportional to the grid size

Rectangular PIR Matrix

Avoiding Redundant Computations

- Data mining
 - Identify frequent partial products

Other Optimizations

- Output from the server (z values) can be compressed (up to 90% in experiments), saving communication
- Values of z can be computed in parallel
 - Master-slave paradigm
 - Offline phase: master scatters PIR matrix
 - Online phase:
 - Master broadcasts y
 - Each worker computes z values for its strip
 - Master collects z results

LBS with PIR: pros/cons

Pros:

- Two-party cryptographic protocol
 - No trusted anonymizer required
 - No trusted users required
- No pooling of a large user population required
 - No need for location updates
- Location data completely obscured
- Cons:
 - Quite complex

